IsoBench / README.md
oliu-io's picture
Upload dataset
0e93511 verified
|
raw
history blame
8.3 kB
---
language:
- en
license: apache-2.0
dataset_info:
- config_name: graph_connectivity
features:
- name: image
dtype: image
- name: query_nodes_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: query_node_1
dtype: int64
- name: query_node_2
dtype: int64
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 62682553
num_examples: 128
download_size: 19391513
dataset_size: 62682553
- config_name: graph_isomorphism
features:
- name: image
dtype: image
- name: adjacency_matrix_G
dtype: string
- name: adjacency_matrix_H
dtype: string
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 25082487
num_examples: 128
download_size: 8931620
dataset_size: 25082487
- config_name: graph_maxflow
features:
- name: image
dtype: image
- name: source_node
dtype: int64
- name: source_node_color
dtype: string
- name: sink_node
dtype: int64
- name: sink_node_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 44530168
num_examples: 128
download_size: 16112025
dataset_size: 44530168
- config_name: math_breakpoint
features:
- name: image
dtype: image
- name: xlim
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 14120119.0
num_examples: 256
download_size: 12531433
dataset_size: 14120119.0
- config_name: math_convexity
features:
- name: image
dtype: image
- name: xlim
dtype: string
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 11176740.0
num_examples: 256
download_size: 9253901
dataset_size: 11176740.0
- config_name: math_parity
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 17012598.0
num_examples: 384
download_size: 14230745
dataset_size: 17012598.0
configs:
- config_name: graph_connectivity
data_files:
- split: validation
path: graph_connectivity/validation-*
- config_name: graph_isomorphism
data_files:
- split: validation
path: graph_isomorphism/validation-*
- config_name: graph_maxflow
data_files:
- split: validation
path: graph_maxflow/validation-*
- config_name: math_breakpoint
data_files:
- split: validation
path: math_breakpoint/validation-*
- config_name: math_convexity
data_files:
- split: validation
path: math_convexity/validation-*
- config_name: math_parity
data_files:
- split: validation
path: math_parity/validation-*
---
# Dataset Card for IsoBench
<!-- Provide a quick summary of the dataset. -->
πŸ“š [paper](https://arxiv.org/abs/2404.01266) 🌐 [website](https://isobench.github.io)
Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our [paper](https://arxiv.org/abs/2404.01266) or [website](https://isobench.github.io)!
## Table of Contents
- [Dataset Details](#dataset-details)
- [Mathematics](#mathematics)
- [Algorithms](#algorithms)
- [Games](#games)
- [Science](#science)
- [Data Fields](#deta-fields)
- [Mathematics](#mathematics)
- [Convexity](#convexity)
- [Breakpoint](#breakpoint)
- [Parity](#parity)
- [Algorithms](#algorithms)
- [Connectivity](#connectivity)
- [Maxflow](#maxflow)
- [Isomorphism](#isomorphism)
- [Games](#games)
- [Winner Identification](#winner-identification)
- [Chess Puzzle](#chess-puzzle)
- [Science](#science)
- [Chemistry](#chemistry)
- [Physics](#physics)
- [Citation](#citation)
- [Contact](#contact)
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks. We will show how to load the data for each subtask.
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
IsoBench is designed with two objectives, which are:
- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (*e.g.* mathematical expression and plot of a function) representations of the same input.
- Contributing a language-only/multimodal benchmark in the science domain.
#### Mathematics
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples.
- **Parity** implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither.
- **Convexity** implements a binary classification problem for a model to classify an input function as convex or concave. **Note**: some functions are only convex (resp. concave) within a certain domain (*e.g.* `x > 0`), which is reported in the `xlim` field of each sample. We recommend providing this information as part of the prompt!
- **Breakpoint** counts the number of breakpoints (*i.e.* intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem.
```python
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'math_parity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'math_convexity', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation')
```
### Algorithms
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism.
You can download the data by
```python
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation')
```
Each task has 128 dev samples under the validation split.
### Games
[More Information Needed]
### Science
[More Information Needed]
## Data Fields
### Mathematics
[More Information Needed]
### Algorithms
#### Connectivity
- `image`: a PIL Image feature
- `query_nodes_color`: a `string` feature
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph
- `query_node_1`: a `unit32` feature
- `query_node_2`: a `unit32` feature
- `label`: a `bool` feature, with possible values including `True` (query nodes connected) and `False` (query nodes not connected)
- `id`: a `string` feature
#### Maxflow
#### Isomorphism
### Games
[More Information Needed]
### Science
[More Information Needed]
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```BibTeX
@misc{fu2024isobench,
title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations},
author={Deqing Fu$^*$ and Ghazal Khalighinejad$^*$ and Ollie Liu$^*$ and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger},
year={2024},
eprint={2404.01266},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```
**Chicago:**
Fu, Deqing, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024).
## Contact
deqingfu@usc.edu, me@ollieliu.com, ghazal.khalighinejad@duke.edu