Mardhiyah commited on
Commit
503cd4a
·
1 Parent(s): 589ff57
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - asr
5
+ - speaker-diarization
6
+ language:
7
+ - en
8
+ tags:
9
+ - medical
10
+ - africa
11
  ---
12
+
13
+ # AfriSpeech-Dialog v1: A Conversational Speech Dataset for African Accents
14
+
15
+ [![CC BY-NC-SA 4.0][cc-by-nc-sa-shield]][cc-by-nc-sa]
16
+
17
+ This work is licensed under a
18
+ [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
19
+
20
+ [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
21
+
22
+ [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
23
+ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
24
+ [cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg
25
+
26
+
27
+ ### Overview and Purpose
28
+
29
+ **AfriSpeech-Dialog** is a pan-African conversational speech dataset with 6 hours of recorded dialogue, designed to support speech recognition (ASR), speaker diarization, and language modeling applications. Collected from diverse accents across Nigeria, Kenya, and South Africa, the dataset offers valuable insights into the varied linguistic and phonetic characteristics found in African-accented English. This release includes 50 conversations across both medical and general topics.
30
+
31
+ #### Dataset Statistics
32
+
33
+ | | Medical | General |
34
+ |--------------------------|---------|---------|
35
+ | **Counts** | 20 | 29 |
36
+ | **Timestamped Counts** | 9 | 21 |
37
+ | **Avg. Num. of Turns** | 78.6 | 30.55 |
38
+ | **Total Duration (hrs)** | 2.07 | 4.93 |
39
+ | **Avg. Word Count** | 725.3 | 1356.83 |
40
+ | **Num. of Countries** | 1 | 3 |
41
+ | **Num. of Accents** | 6 | 8 |
42
+ | **Genders (M, F)** | (14,26) | (25,33) |
43
+
44
+ ### Use Cases
45
+ This dataset is tailored for use in:
46
+ - Automatic Speech Recognition (ASR) fine-tuning
47
+ - Speaker Diarization training and testing
48
+
49
+
50
+ ### Dataset Composition
51
+
52
+ - **Languages and Accents**: The dataset includes 11 accents: Hausa, Isoko, Idoma, Urhobo, Ijaw, Yoruba, Swahili, Sesotho, Igbo, Igala, and Ebira.
53
+ - **Domains**: Conversations span two domains—20 medical conversations, simulating doctor-patient interactions, and 30 general-topic conversations.
54
+ - **Participants**: The dataset includes both male and female speakers.
55
+ - **Structure of Conversations**: Conversations are two-speaker free-form dialogues.
56
+
57
+ ### Data Collection and Processing
58
+
59
+ - **Collection Method**: Conversations were collected remotely across various acoustic environments as stored as `.wav` files.
60
+ - **Annotation**: Each conversation is annotated with speaker labels and timestamps, including start and end times for each speaker’s turn.
61
+
62
+ ### Key Columns and Fields
63
+
64
+ - **file_name**: Path to the audio file.
65
+ - **transcript**: Full transcript of the conversation with timestamps.
66
+ - **domain**: Indicates the conversation type, either medical or general.
67
+ - **duration**: Duration of the audio file, in seconds.
68
+ - **age_group**: Age group of the speakers.
69
+ - **accent**: Primary accent represented in the conversation.
70
+ - **country**: Country of origin for the speakers.
71
+
72
+ ### Usage Instructions
73
+
74
+ **Accessing the Dataset**: The dataset can be accessed through Hugging Face:
75
+ ```python
76
+ from datasets import load_dataset
77
+ afrispeech_dialog = load_dataset("intronhealth/afrispeech-dialog")
78
+ ```