Datasets:

ArXiv:
License:
HoneyTian commited on
Commit
7bab76c
1 Parent(s): 516549d
README.md CHANGED
@@ -38,9 +38,8 @@ Tips:
38
  | tatoeba | [tatoeba](https://tatoeba.org/); [Tatoeba Paper](https://arxiv.org/abs/1812.10464v2) | TRAIN: 702895 | Tatoeba 是句子和翻译的集合。 | [tatoeba](https://huggingface.co/datasets/tatoeba) |
39
  | bucc2018 | [bucc2018](https://comparable.limsi.fr/bucc2018/bucc2018-task.html) | TRAIN: 2173318, TEST: 2125879 | 共享任务:识别可比语料库中的平行句子,语言:de, en, fr, ru, zh | |
40
  | iwslt2017 | [2017.iwslt-1.1.pdf](https://aclanthology.org/2017.iwslt-1.1.pdf) | TRAIN: 2482649, VALID: 11480, TEST: 72470 | IWSLT 2017 多语言任务解决了文本翻译问题,涵盖英语、德语、荷兰语、意大利语和罗马尼亚语等所有方向。 | [iwslt2017](https://huggingface.co/datasets/iwslt2017) |
41
- | open_subtitles | [L16-1147.pdf](https://aclanthology.org/L16-1147.pdf) | 样本个数 | 我们推出了平行语料库 OpenSubtitles 集合的新主要版本。 该版本由大型电影和电视字幕数据库编译而成,共包含 1689 个双文本,涵盖 60 种语言的 26 亿个句子。 该版本还包含了字幕预处理和对齐方面的许多增强功能,例如自动更正 OCR 错误以及使用元数据来估计每个字幕的质量并对字幕对进行评分。 | [open_subtitles](https://huggingface.co/datasets/open_subtitles) |
42
- | bsd_ja_en | [2008.01940v1](https://arxiv.org/abs/2008.01940v1) | 样本个数 | 尽管由于并行语料库和基于语料库的训练技术的可用性不断增加,书面文本的机器翻译在过去几年中取得了长足的进步,但即使对于现代系统,口语文本和对话的自动翻译仍然具有挑战性。 在本文中,我们的目标是通过引入新构建的日语-英语商务会话平行语料库来提高会话文本的机器翻译质量。 | [bsd_ja_en](https://huggingface.co/datasets/bsd_ja_en) |
43
- | autshumato | | 样本个数 | Autshumato 项目的目标之一是开发三种南非语言对的机器翻译系统。 | [autshumato](https://huggingface.co/datasets/autshumato) |
44
  | chr_en | [2010.04791](https://arxiv.org/abs/2010.04791) | 样本个数 | ChrEn 是切罗基语-英语并行数据集,用于促进切罗基语和英语之间的机器翻译研究。 ChrEn 资源极少,总共包含 14k 个句子对,其分割方式有利于域内和域外评估。 ChrEn 还包含 5k 切罗基语单语数据以实现半监督学习。 | [chr_en](https://huggingface.co/datasets/chr_en) |
45
  | cmu_hinglish_dog | [CMU_DoG](https://github.com/festvox/datasets-CMU_DoG); [1809.07358](https://arxiv.org/abs/1809.07358) | 样本个数 | 这是印度英语(印地语-英语之间的代码混合)文本对话及其相应的英语版本的集合。 可用于两者之间的翻译。 该数据集由 CMU 的 Alan Black 教授团队提供。 | [cmu_hinglish_dog](https://huggingface.co/datasets/cmu_hinglish_dog) |
46
  | europa_eac_tm | [EAC-Translation Memory](https://joint-research-centre.ec.europa.eu/language-technology-resources/eac-translation-memory_en) | 样本个数 | 该数据集是从英语到多达 25 种语言的手动翻译的语料库,由欧盟教育和文化总局 (EAC) 于 2012 年发布。 | [europa_eac_tm](https://huggingface.co/datasets/europa_eac_tm) |
@@ -69,6 +68,7 @@ https://opus.nlpl.eu/
69
  | ecb | [ECB](https://opus.nlpl.eu/ECB/corpus/version/ECB); | 样本个数 | | [ecb](https://huggingface.co/datasets/ecb) |
70
  | emea | [EMEA](https://opus.nlpl.eu/EMEA/corpus/version/EMEA); | 样本个数 | | [emea](https://huggingface.co/datasets/emea) |
71
  | kde4 | [KDE4](https://opus.nlpl.eu/KDE4/corpus/version/KDE4); [apps.kde.org](https://apps.kde.org/zh-cn/); [opus.nlpl.eu](https://opus.nlpl.eu/) | 样本个数 | | [kde4](https://huggingface.co/datasets/kde4) |
 
72
  | php | [PHP](https://opus.nlpl.eu/PHP/corpus/version/PHP) | 样本个数 | 最初从 http://se.php.net/download-docs.php 中提取的并行语料库。该语料库相当嘈杂。 | [php](https://huggingface.co/datasets/php) |
73
 
74
 
 
38
  | tatoeba | [tatoeba](https://tatoeba.org/); [Tatoeba Paper](https://arxiv.org/abs/1812.10464v2) | TRAIN: 702895 | Tatoeba 是句子和翻译的集合。 | [tatoeba](https://huggingface.co/datasets/tatoeba) |
39
  | bucc2018 | [bucc2018](https://comparable.limsi.fr/bucc2018/bucc2018-task.html) | TRAIN: 2173318, TEST: 2125879 | 共享任务:识别可比语料库中的平行句子,语言:de, en, fr, ru, zh | |
40
  | iwslt2017 | [2017.iwslt-1.1.pdf](https://aclanthology.org/2017.iwslt-1.1.pdf) | TRAIN: 2482649, VALID: 11480, TEST: 72470 | IWSLT 2017 多语言任务解决了文本翻译问题,涵盖英语、德语、荷兰语、意大利语和罗马尼亚语等所有方向。 | [iwslt2017](https://huggingface.co/datasets/iwslt2017) |
41
+ | bsd_ja_en | [2008.01940v1](https://arxiv.org/abs/2008.01940v1) | TRAIN: 35755, VALID: 3636, TEST: 3702 | 尽管由于并行语料库和基于语料库的训练技术的可用性不断增加,书面文本的机器翻译在过去几年中取得了长足的进步,但即使对于现代系统,口语文本和对话的自动翻译仍然具有挑战性。 在本文中,我们的目标是通过引入新构建的日语-英语商务会话平行语料库来提高会话文本的机器翻译质量。 | [bsd_ja_en](https://huggingface.co/datasets/bsd_ja_en) |
42
+ | autshumato | | TRAIN: 652824 | Autshumato 项目的目标之一是开发三种南非语言对的机器翻译系统。 | [autshumato](https://huggingface.co/datasets/autshumato) |
 
43
  | chr_en | [2010.04791](https://arxiv.org/abs/2010.04791) | 样本个数 | ChrEn 是切罗基语-英语并行数据集,用于促进切罗基语和英语之间的机器翻译研究。 ChrEn 资源极少,总共包含 14k 个句子对,其分割方式有利于域内和域外评估。 ChrEn 还包含 5k 切罗基语单语数据以实现半监督学习。 | [chr_en](https://huggingface.co/datasets/chr_en) |
44
  | cmu_hinglish_dog | [CMU_DoG](https://github.com/festvox/datasets-CMU_DoG); [1809.07358](https://arxiv.org/abs/1809.07358) | 样本个数 | 这是印度英语(印地语-英语之间的代码混合)文本对话及其相应的英语版本的集合。 可用于两者之间的翻译。 该数据集由 CMU 的 Alan Black 教授团队提供。 | [cmu_hinglish_dog](https://huggingface.co/datasets/cmu_hinglish_dog) |
45
  | europa_eac_tm | [EAC-Translation Memory](https://joint-research-centre.ec.europa.eu/language-technology-resources/eac-translation-memory_en) | 样本个数 | 该数据集是从英语到多达 25 种语言的手动翻译的语料库,由欧盟教育和文化总局 (EAC) 于 2012 年发布。 | [europa_eac_tm](https://huggingface.co/datasets/europa_eac_tm) |
 
68
  | ecb | [ECB](https://opus.nlpl.eu/ECB/corpus/version/ECB); | 样本个数 | | [ecb](https://huggingface.co/datasets/ecb) |
69
  | emea | [EMEA](https://opus.nlpl.eu/EMEA/corpus/version/EMEA); | 样本个数 | | [emea](https://huggingface.co/datasets/emea) |
70
  | kde4 | [KDE4](https://opus.nlpl.eu/KDE4/corpus/version/KDE4); [apps.kde.org](https://apps.kde.org/zh-cn/); [opus.nlpl.eu](https://opus.nlpl.eu/) | 样本个数 | | [kde4](https://huggingface.co/datasets/kde4) |
71
+ | open_subtitles | [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles); [L16-1147.pdf](https://aclanthology.org/L16-1147.pdf) | 样本个数 | 我们推出了平行语料库 OpenSubtitles 集合的新主要版本。 该版本由大型电影和电视字幕数据库编译而成,共包含 1689 个双文本,涵盖 60 种语言的 26 亿个句子。 该版本还包含了字幕预处理和对齐方面的许多增强功能,例如自动更正 OCR 错误以及使用元数据来估计每个字幕的质量并对字幕对进行评分。 | [open_subtitles](https://huggingface.co/datasets/open_subtitles) |
72
  | php | [PHP](https://opus.nlpl.eu/PHP/corpus/version/PHP) | 样本个数 | 最初从 http://se.php.net/download-docs.php 中提取的并行语料库。该语料库相当嘈杂。 | [php](https://huggingface.co/datasets/php) |
73
 
74
 
data/autshumato.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:016a32cb21c39511f8b541d298407dedafc13d20da8f65f63b28c5591fad1a96
3
+ size 101604992
data/bsd_ja_en.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce59ca66051b94a699450ca16b233f27f021f9b083eddefe5d14b1c65167fa02
3
+ size 5985101
dataset_details.md CHANGED
@@ -69,6 +69,116 @@ zh-cn: 196260
69
  ![amazon_reviews_multi_text_length.jpg](docs/picture/amazon_reviews_multi_text_length.jpg)
70
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  #### bucc2018
73
  以下都是 train 训练集的信息
74
 
 
69
  ![amazon_reviews_multi_text_length.jpg](docs/picture/amazon_reviews_multi_text_length.jpg)
70
 
71
 
72
+ #### autshumato
73
+ 以下都是 train 训练集的信息
74
+
75
+ ```text
76
+ 语种数量:
77
+ en: 292326
78
+ ts: 207845
79
+ tn: 125852
80
+ zu: 26801
81
+ ```
82
+
83
+ 样本示例:
84
+
85
+ | 数据 | 语种 | 样本 |
86
+ | :---: | :---: | :---: |
87
+ | autshumato | en | Good progress has been made with the staff composition project in each of the 15 faculties at the NWU . |
88
+ | autshumato | en | The rector , Prof Thanyani Mariba , congratulated the newcomers on their choice to further their studies at the campus and emphasised the importance of choice and responsibility - both in terms of academic commitments and social endeavours . |
89
+ | autshumato | en | Complaints against Correctional Services staff , court officials and members of the South African National Defence Force . |
90
+ | autshumato | tn | Lo tla lemoga gore Thulaganyo ya Setheo ya 2012-2014 e e dirwang mo mafapheng otlhe ka tsamaiso ya ditumalano tsa go dira tiro ke ya gore YBB e fitlhelele maikemisetso a yone kgato ka kgato . |
91
+ | autshumato | tn | Moreketoro , Mop Thanyani Mariba , o ne a akgolela batlabošeng tlhopho e ba e dirileng ya go tla go tswelela dithuto tsa bone mo khamphaseng eno mme o ne a gatelela botlhokwa jwa tlhopho le maikarabelo - malebana le go ineela ga bone mo dithutong le mo botshelong jwa bone jwa go tsalana le ba bangwe . |
92
+ | autshumato | tn | Dingongorego kgatlhanong le badiredi ba Tirelo ya Ditshiamiso batlhankedi ba kgotlatshekelo le ditokololo tsa Mophato wa Phemelo wa Bosetšhaba wa Aforikaborwa . |
93
+ | autshumato | zu | inkululeko yokwakha izinto ngokusebenzisa ubuciko; |
94
+ | autshumato | zu | Lezozakhiwo ezithathwa njengabantu ngumthetho zingabanamalungelo akuMqulu wamaLungelo kuphela ngendlela edingwa uhlobo lwelungelo kanye nolwaleso sakhiwo esithathwa njengomuntu ngumthetho. |
95
+ | autshumato | zu | Thina, Bantu baseNingizimu Afrika, Siyakukhumbula ukucekelwa phansi kwamalungelo okwenzeka eminyakeni eyadlula; |
96
+ | autshumato | ts | Mahungu ya nkoka ya pfhumba ra dyondzo ra ndyangu wa hina hi lama landzelaka : |
97
+ | autshumato | ts | xikan'we na nhlamuselo ya ntirho na xiyimo laha u nga ta tirha kona na leswaku nkarhi a wu nge hundzi malembe mambirhi |
98
+ | autshumato | ts | loko xi laveka . |
99
+
100
+ <details>
101
+ <summary>文本长度</summary>
102
+ <pre><code>0-10: 20573
103
+ 10-20: 47424
104
+ 20-30: 58434
105
+ 30-40: 61884
106
+ 40-50: 73557
107
+ 50-60: 70899
108
+ 60-70: 57249
109
+ 70-80: 42967
110
+ 80-90: 33702
111
+ 90-100: 26516
112
+ 100-110: 21149
113
+ 110-120: 18264
114
+ 120-130: 16390
115
+ 130-140: 14336
116
+ 140-150: 12944
117
+ 150-160: 11351
118
+ 160-170: 9839
119
+ 170-180: 8702
120
+ 180-190: 7294
121
+ 190-200: 6066
122
+ 200-210: 33284
123
+ </code></pre>
124
+ </details>
125
+
126
+ 文本长度统计图像:
127
+
128
+ ![autshumato_text_length.jpg](docs/picture/autshumato_text_length.jpg)
129
+
130
+
131
+ #### bsd_ja_en
132
+ 以下都是 train 训练集的信息
133
+
134
+ ```text
135
+ 语种数量:
136
+ ja: 18054
137
+ en: 17701
138
+ ```
139
+
140
+ 样本示例:
141
+
142
+ | 数据 | 语种 | 样本 |
143
+ | :---: | :---: | :---: |
144
+ | bsd_ja_en | en | Hi this is the systems development department of Company K. |
145
+ | bsd_ja_en | en | My name is Takaichi from Company H. |
146
+ | bsd_ja_en | en | Thank you as always. |
147
+ | bsd_ja_en | ja | はい、K社システム開発部です。 |
148
+ | bsd_ja_en | ja | H社の高市と申します。 |
149
+ | bsd_ja_en | ja | いつもお世話になっております。 |
150
+
151
+ <details>
152
+ <summary>文本长度</summary>
153
+ <pre><code>0-10: 1924
154
+ 10-20: 7921
155
+ 20-30: 7871
156
+ 30-40: 5637
157
+ 40-50: 3521
158
+ 50-60: 2557
159
+ 60-70: 1869
160
+ 70-80: 1399
161
+ 80-90: 944
162
+ 90-100: 721
163
+ 100-110: 496
164
+ 110-120: 324
165
+ 120-130: 224
166
+ 130-140: 123
167
+ 140-150: 85
168
+ 150-160: 51
169
+ 160-170: 33
170
+ 170-180: 19
171
+ 180-190: 18
172
+ 190-200: 9
173
+ 200-210: 9
174
+ </code></pre>
175
+ </details>
176
+
177
+ 文本长度统计图像:
178
+
179
+ ![bsd_ja_en_text_length.jpg](docs/picture/bsd_ja_en_text_length.jpg)
180
+
181
+
182
  #### bucc2018
183
  以下都是 train 训练集的信息
184
 
docs/picture/autshumato_text_length.jpg ADDED

Git LFS Details

  • SHA256: f87f9d85a0f88bbc1288f7cf109bf36b3e804191d41b3dc2d9dee7f3a51aae5a
  • Pointer size: 130 Bytes
  • Size of remote file: 18.9 kB
docs/picture/bsd_ja_en_text_length.jpg ADDED

Git LFS Details

  • SHA256: 8acb4d587e3a08593be82c4ed0d33f8a4e395fa6f761da2966d305fa3d2b6247
  • Pointer size: 130 Bytes
  • Size of remote file: 18.1 kB
examples/make_subset_details.py CHANGED
@@ -12,7 +12,7 @@ from project_settings import project_path
12
 
13
  def get_args():
14
  parser = argparse.ArgumentParser()
15
- parser.add_argument("--dataset_name", default="iwslt2017", type=str)
16
  parser.add_argument(
17
  "--dataset_cache_dir",
18
  default=(project_path / "hub_datasets").as_posix(),
 
12
 
13
  def get_args():
14
  parser = argparse.ArgumentParser()
15
+ parser.add_argument("--dataset_name", default="bsd_ja_en", type=str)
16
  parser.add_argument(
17
  "--dataset_cache_dir",
18
  default=(project_path / "hub_datasets").as_posix(),
examples/preprocess/preprocess_autshumato.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python3
2
+ # -*- coding: utf-8 -*-
3
+ import argparse
4
+ from collections import defaultdict
5
+ import json
6
+ import os
7
+ import sys
8
+
9
+ pwd = os.path.abspath(os.path.dirname(__file__))
10
+ sys.path.append(os.path.join(pwd, "../../"))
11
+
12
+ from datasets import load_dataset, DownloadMode
13
+ from tqdm import tqdm
14
+
15
+ from language_identification import LANGUAGE_MAP
16
+ from project_settings import project_path
17
+
18
+
19
+ def get_args():
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument("--dataset_path", default="autshumato", type=str)
22
+ parser.add_argument(
23
+ "--dataset_cache_dir",
24
+ default=(project_path / "hub_datasets").as_posix(),
25
+ type=str
26
+ )
27
+ parser.add_argument(
28
+ "--output_file",
29
+ default=(project_path / "data/autshumato.jsonl"),
30
+ type=str
31
+ )
32
+
33
+ args = parser.parse_args()
34
+ return args
35
+
36
+
37
+ def main():
38
+ args = get_args()
39
+
40
+ name_list = [
41
+ "autshumato-en-tn", "autshumato-en-zu",
42
+ "autshumato-en-ts", "autshumato-en-ts-manual",
43
+ "autshumato-tn", "autshumato-ts"
44
+ ]
45
+
46
+ text_set = set()
47
+ counter = defaultdict(int)
48
+ with open(args.output_file, "w", encoding="utf-8") as f:
49
+ for name in name_list:
50
+ dataset_dict = load_dataset(
51
+ path=args.dataset_path,
52
+ name=name,
53
+ cache_dir=args.dataset_cache_dir,
54
+ # download_mode=DownloadMode.FORCE_REDOWNLOAD
55
+ )
56
+ for k, v in dataset_dict.items():
57
+ split = k
58
+ if split not in ("train", "validation", "test"):
59
+ print("skip split: {}".format(split))
60
+ continue
61
+
62
+ for sample in tqdm(v):
63
+ translation = sample.get("translation")
64
+ if translation is None:
65
+ break
66
+
67
+ for language, text in translation.items():
68
+ text = text.strip()
69
+
70
+ if text in text_set:
71
+ continue
72
+ text_set.add(text)
73
+
74
+ if language not in LANGUAGE_MAP.keys():
75
+ raise AssertionError("language: {}, text: {}".format(language, text))
76
+
77
+ row = {
78
+ "text": text,
79
+ "language": language,
80
+ "data_source": "autshumato",
81
+ "split": split
82
+ }
83
+ row = json.dumps(row, ensure_ascii=False)
84
+ f.write("{}\n".format(row))
85
+ counter[split] += 1
86
+
87
+ print("counter: {}".format(counter))
88
+
89
+ return
90
+
91
+
92
+ if __name__ == "__main__":
93
+ main()
examples/preprocess/preprocess_bsd_ja_en.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python3
2
+ # -*- coding: utf-8 -*-
3
+ import argparse
4
+ from collections import defaultdict
5
+ import json
6
+ import os
7
+ import sys
8
+
9
+ pwd = os.path.abspath(os.path.dirname(__file__))
10
+ sys.path.append(os.path.join(pwd, "../../"))
11
+
12
+ from datasets import load_dataset, DownloadMode
13
+ from tqdm import tqdm
14
+
15
+ from language_identification import LANGUAGE_MAP
16
+ from project_settings import project_path
17
+
18
+
19
+ def get_args():
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument("--dataset_path", default="bsd_ja_en", type=str)
22
+ parser.add_argument(
23
+ "--dataset_cache_dir",
24
+ default=(project_path / "hub_datasets").as_posix(),
25
+ type=str
26
+ )
27
+ parser.add_argument(
28
+ "--output_file",
29
+ default=(project_path / "data/bsd_ja_en.jsonl"),
30
+ type=str
31
+ )
32
+
33
+ args = parser.parse_args()
34
+ return args
35
+
36
+
37
+ def main():
38
+ args = get_args()
39
+
40
+ dataset_dict = load_dataset(
41
+ path=args.dataset_path,
42
+ cache_dir=args.dataset_cache_dir,
43
+ # download_mode=DownloadMode.FORCE_REDOWNLOAD
44
+ )
45
+ print(dataset_dict)
46
+
47
+ text_set = set()
48
+ counter = defaultdict(int)
49
+ with open(args.output_file, "w", encoding="utf-8") as f:
50
+ for k, v in dataset_dict.items():
51
+ split = k
52
+ if split not in ("train", "validation", "test"):
53
+ print("skip split: {}".format(split))
54
+ continue
55
+
56
+ for sample in tqdm(v):
57
+
58
+ en_sentence = sample["en_sentence"]
59
+ ja_sentence = sample["ja_sentence"]
60
+ for language, text in [("en", en_sentence), ("ja", ja_sentence)]:
61
+ text = text.strip()
62
+
63
+ if text in text_set:
64
+ continue
65
+ text_set.add(text)
66
+
67
+ if language not in LANGUAGE_MAP.keys():
68
+ raise AssertionError(language)
69
+
70
+ row = {
71
+ "text": text,
72
+ "language": language,
73
+ "data_source": "bsd_ja_en",
74
+ "split": split
75
+ }
76
+ row = json.dumps(row, ensure_ascii=False)
77
+ f.write("{}\n".format(row))
78
+ counter[split] += 1
79
+
80
+ print("counter: {}".format(counter))
81
+
82
+ return
83
+
84
+
85
+ if __name__ == '__main__':
86
+ main()
language_identification.py CHANGED
@@ -10,6 +10,8 @@ import datasets
10
 
11
  _URLS = {
12
  "amazon_reviews_multi": "data/amazon_reviews_multi.jsonl",
 
 
13
  "bucc2018": "data/bucc2018.jsonl",
14
  "iwslt2017": "data/iwslt2017.jsonl",
15
  "mike0307": "data/mike0307.jsonl",
@@ -64,12 +66,15 @@ LANGUAGE_MAP = {
64
  "sw": "swahili",
65
  "sv": "swedish",
66
  "th": "thai",
 
67
  "tr": "turkish",
 
68
  "ur": "urdu",
69
  "vi": "vietnamese",
70
  "zh": "chinese",
71
  "zh-cn": "simplified chinese",
72
  "zh-tw": "traditional chinese",
 
73
  }
74
 
75
 
@@ -78,6 +83,8 @@ class LanguageIdentification(datasets.GeneratorBasedBuilder):
78
 
79
  BUILDER_CONFIGS = [
80
  datasets.BuilderConfig(name="amazon_reviews_multi", version=VERSION, description="amazon_reviews_multi"),
 
 
81
  datasets.BuilderConfig(name="bucc2018", version=VERSION, description="bucc2018"),
82
  datasets.BuilderConfig(name="iwslt2017", version=VERSION, description="iwslt2017"),
83
  datasets.BuilderConfig(name="mike0307", version=VERSION, description="mike0307"),
 
10
 
11
  _URLS = {
12
  "amazon_reviews_multi": "data/amazon_reviews_multi.jsonl",
13
+ "autshumato": "data/autshumato.jsonl",
14
+ "bsd_ja_en": "data/bsd_ja_en.jsonl",
15
  "bucc2018": "data/bucc2018.jsonl",
16
  "iwslt2017": "data/iwslt2017.jsonl",
17
  "mike0307": "data/mike0307.jsonl",
 
66
  "sw": "swahili",
67
  "sv": "swedish",
68
  "th": "thai",
69
+ "tn": "sepedi",
70
  "tr": "turkish",
71
+ "ts": "dzonga",
72
  "ur": "urdu",
73
  "vi": "vietnamese",
74
  "zh": "chinese",
75
  "zh-cn": "simplified chinese",
76
  "zh-tw": "traditional chinese",
77
+ "zu": "zulu, south africa",
78
  }
79
 
80
 
 
83
 
84
  BUILDER_CONFIGS = [
85
  datasets.BuilderConfig(name="amazon_reviews_multi", version=VERSION, description="amazon_reviews_multi"),
86
+ datasets.BuilderConfig(name="autshumato", version=VERSION, description="autshumato"),
87
+ datasets.BuilderConfig(name="bsd_ja_en", version=VERSION, description="bsd_ja_en"),
88
  datasets.BuilderConfig(name="bucc2018", version=VERSION, description="bucc2018"),
89
  datasets.BuilderConfig(name="iwslt2017", version=VERSION, description="iwslt2017"),
90
  datasets.BuilderConfig(name="mike0307", version=VERSION, description="mike0307"),