code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") snake_case__ = parser.parse_args() if args.model_type == "bert": snake_case__ = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ = "bert" else: raise ValueError("""args.model_type should be \"bert\".""") snake_case__ = model.state_dict() snake_case__ = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ = state_dict["cls.predictions.decoder.weight"] snake_case__ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ = state_dict[F'cls.predictions.transform.dense.{w}'] snake_case__ = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase_ (__lowercase ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : str = data def __iter__( self : Tuple ): """simple docstring""" for element in self.data: yield element def snake_case__ ( lowerCamelCase__ : Union[str, Any]=True ) -> List[Any]: A_ : Optional[Any] = Accelerator(even_batches=__a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def snake_case__ ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : bool = False ) -> Optional[Any]: if iterable: A_ : int = DummyIterableDataset(torch.as_tensor(range(__a ) ) ) else: A_ : List[Any] = TensorDataset(torch.as_tensor(range(__a ) ) ) A_ : Optional[Any] = DataLoader(__a , batch_size=__a ) A_ : Tuple = accelerator.prepare(__a ) return dl def snake_case__ ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] , ) -> Union[str, Any]: A_ : str = create_dataloader(accelerator=__a , dataset_size=__a , batch_size=__a ) A_ : List[Any] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def snake_case__ ( ) -> Optional[Any]: A_ : List[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def snake_case__ ( ) -> Any: A_ : Union[str, Any] = create_accelerator(even_batches=__a ) verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def snake_case__ ( ) -> Union[str, Any]: A_ : Optional[Any] = create_accelerator(even_batches=__a ) A_ : List[Any] = torch.nn.Linear(1 , 1 ) A_ : Optional[Any] = accelerator.prepare(__a ) A_ : Any = create_dataloader(__a , dataset_size=3 , batch_size=1 ) A_ : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__a ): A_ : List[str] = ddp_model(batch[0].float() ) A_ : Union[str, Any] = output.sum() loss.backward() batch_idxs.append(__a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[Any]: with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __a ) assert "only supported for multi-GPU" in str(w[-1].message ) def snake_case__ ( ) -> Tuple: A_ : Union[str, Any] = True A_ : Optional[int] = False A_ : Dict = create_accelerator(even_batches=__a ) A_ : str = torch.nn.Linear(1 , 1 ) A_ : int = accelerator.prepare(__a ) A_ : int = create_dataloader(__a , dataset_size=3 , batch_size=1 ) A_ : List[Any] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): A_ : List[Any] = train_dl.batch_sampler.even_batches A_ : Optional[int] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def snake_case__ ( ) -> Optional[int]: A_ : Dict = True A_ : Optional[Any] = False A_ : List[str] = create_accelerator(even_batches=__a ) A_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) A_ : Dict = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) A_ : List[Any] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): A_ : Optional[int] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def snake_case__ ( ) -> Any: A_ : Any = create_accelerator() A_ : List[Any] = torch.nn.Linear(1 , 1 ) A_ : Any = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): pass assert issubclass(w[-1].category , __a ) assert "only supported for map-style datasets" in str(w[-1].message ) def snake_case__ ( ) -> Optional[int]: A_ : Any = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) A_ : Optional[Any] = accelerator.state.distributed_type A_ : Optional[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__a ) A_ : str = original_state if __name__ == "__main__": main()
371
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
0
'''simple docstring''' import logging import os from .state import PartialState class UpperCamelCase_ (logging.LoggerAdapter ): """simple docstring""" @staticmethod def _a ( _lowerCamelCase : Tuple ): """simple docstring""" A_ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _a ( self : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , *_lowerCamelCase : Any , **_lowerCamelCase : str ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) A_ : Dict = kwargs.pop('''main_process_only''' , lowercase_ ) A_ : Optional[Any] = kwargs.pop('''in_order''' , lowercase_ ) if self.isEnabledFor(lowercase_ ): if self._should_log(lowercase_ ): A_ : str = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) elif in_order: A_ : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: A_ : Dict = self.process(lowercase_ , lowercase_ ) self.logger.log(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ) state.wait_for_everyone() def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str = None ) -> Tuple: if log_level is None: A_ : str = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __lowerCamelCase ) A_ : Dict = logging.getLogger(__lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCamelCase , {} )
350
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) A_ : int = img A_ : Optional[int] = img.shape[1] A_ : str = img.shape[0] A_ : int = dst_width A_ : Any = dst_height A_ : Tuple = self.src_w / self.dst_w A_ : Any = self.src_h / self.dst_h A_ : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _a ( self : Any ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): A_ : List[str] = self.img[self.get_y(a_ )][self.get_x(a_ )] def _a ( self : Dict , _lowerCamelCase : int ): """simple docstring""" return int(self.ratio_x * x ) def _a ( self : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": snake_case__ = 8_00, 6_00 snake_case__ = imread("""image_data/lena.jpg""", 1) snake_case__ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ', SCREAMING_SNAKE_CASE_, ) class UpperCamelCase_ (SCREAMING_SNAKE_CASE_ ): """simple docstring""" _lowerCAmelCase = RobertaConfig _lowerCAmelCase = 'roberta' def __init__( self : Any , _lowerCamelCase : Optional[int] ): """simple docstring""" super().__init__(snake_case__ ) A_ : Union[str, Any] = RobertaEmbeddings(snake_case__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ', SCREAMING_SNAKE_CASE_, ) class UpperCamelCase_ (SCREAMING_SNAKE_CASE_ ): """simple docstring""" _lowerCAmelCase = RobertaConfig _lowerCAmelCase = 'roberta' def __init__( self : Dict , _lowerCamelCase : Any ): """simple docstring""" super().__init__(snake_case__ ) A_ : Tuple = config.num_labels A_ : Any = config.num_hidden_layers A_ : int = DeeRobertaModel(snake_case__ ) A_ : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) A_ : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(snake_case__ ) def _a ( self : List[str] , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : str=-1 , _lowerCamelCase : Union[str, Any]=False , ): """simple docstring""" A_ : int = self.num_layers try: A_ : str = self.roberta( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , position_ids=snake_case__ , head_mask=snake_case__ , inputs_embeds=snake_case__ , ) A_ : List[Any] = outputs[1] A_ : Tuple = self.dropout(snake_case__ ) A_ : Optional[int] = self.classifier(snake_case__ ) A_ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A_ : List[Any] = e.message A_ : Dict = e.exit_layer A_ : List[Any] = outputs[0] if not self.training: A_ : Union[str, Any] = entropy(snake_case__ ) A_ : Optional[Any] = [] A_ : Any = [] if labels is not None: if self.num_labels == 1: # We are doing regression A_ : Optional[Any] = MSELoss() A_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A_ : Dict = CrossEntropyLoss() A_ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A_ : Union[str, Any] = [] for highway_exit in outputs[-1]: A_ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(snake_case__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A_ : Any = MSELoss() A_ : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A_ : Dict = CrossEntropyLoss() A_ : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case__ ) if train_highway: A_ : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A_ : Dict = (loss,) + outputs if not self.training: A_ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A_ : Any = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : List[Any] , *_lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : List[Any]=None , **_lowerCamelCase : Optional[int] ): """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) A_ : str = eval_examples A_ : Union[str, Any] = post_process_function def _a ( self : Dict , _lowerCamelCase : Optional[Dataset] = None , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "eval" , **_lowerCamelCase : Any , ): """simple docstring""" A_ : int = gen_kwargs.copy() A_ : Any = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) A_ : Any = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) A_ : Dict = gen_kwargs A_ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset A_ : str = self.get_eval_dataloader(__UpperCAmelCase ) A_ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A_ : Any = self.compute_metrics A_ : Optional[Any] = None A_ : List[str] = time.time() A_ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ : List[str] = eval_loop( __UpperCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: A_ : int = compute_metrics A_ : Any = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A_ : Any = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) A_ : Optional[int] = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A_ : Optional[int] = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: A_ : Any = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A_ : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def _a ( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int=None , _lowerCamelCase : str = "test" , **_lowerCamelCase : Any ): """simple docstring""" A_ : str = gen_kwargs.copy() A_ : Optional[int] = self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. A_ : str = self.compute_metrics A_ : Optional[Any] = None A_ : Optional[Any] = time.time() A_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ : Optional[Any] = eval_loop( __UpperCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: A_ : Optional[int] = compute_metrics A_ : str = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A_ : List[Any] = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , '''predict''' ) A_ : List[str] = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A_ : Optional[Any] = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Any=7 , _lowerCamelCase : int=3 , _lowerCamelCase : Optional[int]=18 , _lowerCamelCase : Any=30 , _lowerCamelCase : str=400 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : List[Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _lowerCamelCase : Optional[Any]=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _lowerCamelCase : List[Any]=True , ): """simple docstring""" A_ : List[str] = size if size is not None else {"""height""": 224, """width""": 224} A_ : str = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Tuple = parent A_ : Any = batch_size A_ : Optional[int] = num_channels A_ : Optional[Any] = image_size A_ : str = min_resolution A_ : Any = max_resolution A_ : List[Any] = do_resize A_ : str = size A_ : Union[str, Any] = do_center_crop A_ : Optional[int] = crop_size A_ : Any = do_normalize A_ : Optional[Any] = image_mean A_ : str = image_std A_ : List[str] = do_convert_rgb def _a ( self : List[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _a ( self : List[str] , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=False , _lowerCamelCase : Dict=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: A_ : Tuple = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: A_ : str = [] for i in range(self.batch_size ): A_ : Tuple = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension A_ : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] if torchify: A_ : Optional[int] = [torch.from_numpy(SCREAMING_SNAKE_CASE_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCamelCase_ (_UpperCAmelCase, unittest.TestCase ): """simple docstring""" _lowerCAmelCase : str = ChineseCLIPImageProcessor if is_vision_available() else None def _a ( self : Optional[Any] ): """simple docstring""" A_ : Any = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE_ ) @property def _a ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Any ): """simple docstring""" A_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_convert_rgb''' ) ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) A_ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _a ( self : List[Any] ): """simple docstring""" pass def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ : List[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _a ( self : Tuple ): """simple docstring""" A_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input A_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _a ( self : Any ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input A_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class UpperCamelCase_ (_UpperCAmelCase, unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def _a ( self : Dict ): """simple docstring""" A_ : List[str] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE_ ) A_ : List[str] = 3 @property def _a ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_convert_rgb''' ) ) def _a ( self : Optional[int] ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : int = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input A_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
354
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: if not isinstance(lowercase__ , lowercase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) A_ : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' snake_case__ = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] ) -> Union[str, Any]: return 1 if input_a == input_a else 0 def snake_case__ ( ) -> str: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ (SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self : int , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Dict[str, int]] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = True , _lowerCamelCase : Union[int, float] = 1 / 255 , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(**a_ ) A_ : List[Any] = size if size is not None else {'''shortest_edge''': 256} A_ : Dict = get_size_dict(a_ , default_to_square=a_ ) A_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ : Dict = get_size_dict(a_ ) A_ : Any = do_resize A_ : Union[str, Any] = size A_ : Tuple = resample A_ : Dict = do_center_crop A_ : Any = crop_size A_ : Optional[int] = do_rescale A_ : str = rescale_factor A_ : List[str] = do_normalize A_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : str , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : int , ): """simple docstring""" A_ : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Any = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def _a ( self : List[Any] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): """simple docstring""" A_ : List[str] = get_size_dict(a_ ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def _a ( self : List[Any] , _lowerCamelCase : np.ndarray , _lowerCamelCase : float , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[Any] ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def _a ( self : Optional[Any] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Any , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def _a ( self : List[Any] , _lowerCamelCase : ImageInput , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[float] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowerCamelCase : str , ): """simple docstring""" A_ : List[str] = do_resize if do_resize is not None else self.do_resize A_ : List[str] = size if size is not None else self.size A_ : List[str] = get_size_dict(a_ , default_to_square=a_ ) A_ : str = resample if resample is not None else self.resample A_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size A_ : List[str] = get_size_dict(a_ ) A_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale A_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : int = do_normalize if do_normalize is not None else self.do_normalize A_ : Any = image_mean if image_mean is not None else self.image_mean A_ : Dict = image_std if image_std is not None else self.image_std A_ : str = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ : Optional[Any] = [to_numpy_array(a_ ) for image in images] if do_resize: A_ : Dict = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: A_ : int = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: A_ : Optional[Any] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: A_ : Tuple = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] A_ : List[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] A_ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ )
358
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) -> int: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Any ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : List[Any] = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Union[str, Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Tuple = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case__ ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ) -> Union[str, Any]: A_ : Union[str, Any] = dct.pop(lowerCAmelCase__ ) A_ : Dict = val def snake_case__ ( lowerCamelCase__ : List[Any] ) -> List[Any]: if "handwritten" in checkpoint_url: A_ : Optional[Any] = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : int = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' A_ : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] ) -> List[str]: A_ : int = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) A_ : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Dict = 1_0_2_4 A_ : Optional[Any] = 4_0_9_6 A_ : Optional[Any] = 2_4 A_ : List[Any] = 1_6 A_ : Optional[Any] = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : int = False A_ : Union[str, Any] = '''relu''' A_ : int = 1_0_2_4 A_ : Dict = True A_ : Union[str, Any] = False A_ : List[str] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) A_ : int = TrOCRForCausalLM(lowerCAmelCase__ ) A_ : List[Any] = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys A_ : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' , check_hash=lowerCAmelCase__ )['''model'''] A_ : str = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(lowerCAmelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: A_ : Any = val else: A_ : int = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image A_ : Any = ViTImageProcessor(size=encoder_config.image_size ) A_ : Tuple = RobertaTokenizer.from_pretrained('''roberta-large''' ) A_ : List[Any] = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) A_ : List[Any] = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits A_ : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Tuple = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) A_ : int = outputs.logits A_ : Any = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Tuple = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: A_ : str = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: A_ : Any = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) snake_case__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model snake_case__ = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : str=None ) -> Union[str, Any]: if rng is None: A_ : List[Any] = random.Random() A_ : Any = 1 for dim in shape: total_dims *= dim A_ : Tuple = [] for _ in range(lowercase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) A_ : Optional[Any] = np.array(lowercase_ , dtype=jnp.intaa ).reshape(lowercase_ ) return output def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Dict=None ) -> str: A_ : Dict = ids_tensor(lowercase_ , vocab_size=2 , rng=lowercase_ ) # make sure that at least one token is attended to for each batch A_ : str = 1 return attn_mask @require_flax class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = () def _a ( self : int ): """simple docstring""" A_ ,A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 A_ : Tuple = 2 A_ : str = inputs['''input_ids'''].shape[-1] // 2 A_ : str = inputs['''input_ids'''][:max_batch_size, :sequence_length] A_ : Optional[int] = jnp.ones_like(_lowerCamelCase ) A_ : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens A_ : List[str] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` A_ : Union[str, Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _a ( self : Optional[Any] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Any = self._get_input_ids_and_config() A_ : Union[str, Any] = False A_ : Any = max_length A_ : Optional[Any] = 0 for model_class in self.all_generative_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ : str = getattr(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = pt_model_class(_lowerCamelCase ).eval() A_ : List[str] = load_flax_weights_in_pytorch_model(_lowerCamelCase , flax_model.params ) A_ : List[Any] = flax_model.generate(_lowerCamelCase ).sequences A_ : List[Any] = pt_model.generate(torch.tensor(_lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: A_ : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _a ( self : str ): """simple docstring""" A_ ,A_ ,A_ ,A_ : str = self._get_input_ids_and_config() A_ : Any = False A_ : Tuple = max_length for model_class in self.all_generative_model_classes: A_ : Any = model_class(_lowerCamelCase ) A_ : Union[str, Any] = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Union[str, Any] = jit(model.generate ) A_ : Dict = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Tuple = self._get_input_ids_and_config() A_ : List[Any] = True A_ : List[Any] = max_length for model_class in self.all_generative_model_classes: A_ : Any = model_class(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Tuple = jit(model.generate ) A_ : List[str] = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : List[str] = self._get_input_ids_and_config() A_ : str = False A_ : Any = max_length A_ : Any = 2 for model_class in self.all_generative_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Optional[int] = jit(model.generate ) A_ : Dict = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : List[Any] = self._get_input_ids_and_config() A_ : Dict = False A_ : str = max_length A_ : str = 2 A_ : Optional[Any] = 2 for model_class in self.all_generative_model_classes: A_ : int = model_class(_lowerCamelCase ) A_ : Dict = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _a ( self : Optional[Any] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Union[str, Any] = self._get_input_ids_and_config() A_ : List[str] = True A_ : List[str] = max_length A_ : str = 0.8 A_ : Dict = 10 A_ : Union[str, Any] = 0.3 A_ : int = 1 A_ : Any = 8 A_ : Dict = 9 for model_class in self.all_generative_model_classes: A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Dict = jit(model.generate ) A_ : Optional[Any] = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Optional[int] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Optional[Any] = self._get_input_ids_and_config() A_ : int = max_length A_ : str = 1 A_ : str = 8 A_ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : str = jit(model.generate ) A_ : List[Any] = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : List[str] = self._get_input_ids_and_config() A_ : Optional[int] = max_length A_ : Optional[int] = 2 A_ : str = 1 A_ : Any = 8 A_ : str = 9 for model_class in self.all_generative_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : List[Any] = jit(model.generate ) A_ : Optional[int] = jit_generate(_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Dict = self._get_input_ids_and_config() # pad attention mask on the left A_ : List[str] = attention_mask.at[(0, 0)].set(0 ) A_ : List[str] = False A_ : int = max_length for model_class in self.all_generative_model_classes: A_ : Tuple = model_class(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Any = jit(model.generate ) A_ : Union[str, Any] = jit_generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ): """simple docstring""" A_ ,A_ ,A_ ,A_ : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left A_ : List[str] = attention_mask.at[(0, 0)].set(0 ) A_ : List[Any] = True A_ : Any = max_length for model_class in self.all_generative_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : int = model.generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : Optional[Any] = jit(model.generate ) A_ : Tuple = jit_generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : str ): """simple docstring""" A_ ,A_ ,A_ ,A_ : List[str] = self._get_input_ids_and_config() # pad attention mask on the left A_ : Dict = attention_mask.at[(0, 0)].set(0 ) A_ : List[Any] = 2 A_ : str = max_length for model_class in self.all_generative_model_classes: A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Dict = model.generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowerCamelCase ) A_ : List[str] = jit(model.generate ) A_ : Optional[Any] = jit_generate(_lowerCamelCase , attention_mask=_lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) A_ : Tuple = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ : Any = '''Hello world''' A_ : int = tokenizer(_lowerCamelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowerCamelCase , '''do_samples''' ): model.generate(_lowerCamelCase , do_samples=_lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowerCamelCase , '''foo''' ): A_ : Optional[int] = {'''foo''': '''bar'''} model.generate(_lowerCamelCase , **_lowerCamelCase )
361
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=None ) -> int: require_version(deps[pkg] , UpperCamelCase__ )
362
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Any ): """simple docstring""" A_ : int = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() A_ : str = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) A_ : int = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } A_ : str = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } A_ : int = tempfile.mkdtemp() A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : str = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) # load decoder from hub A_ : Optional[int] = "hf-internal-testing/ngram-beam-search-decoder" def _a ( self : List[str] , **_lowerCamelCase : Tuple ): """simple docstring""" A_ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(_SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] , **_lowerCamelCase : List[str] ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , **_lowerCamelCase : Any ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_SCREAMING_SNAKE_CASE ) def _a ( self : str ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Any ): """simple docstring""" A_ : Optional[int] = self.get_tokenizer() A_ : Optional[int] = self.get_feature_extractor() A_ : List[Any] = self.get_decoder() A_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) A_ : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _SCREAMING_SNAKE_CASE ) def _a ( self : str ): """simple docstring""" A_ : int = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A_ : List[str] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _a ( self : str ): """simple docstring""" A_ : Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _a ( self : List[Any] ): """simple docstring""" A_ : Tuple = self.get_feature_extractor() A_ : List[Any] = self.get_tokenizer() A_ : str = self.get_decoder() A_ : int = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : int = floats_list((3, 1000) ) A_ : Union[str, Any] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : List[str] = processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = self.get_feature_extractor() A_ : Dict = self.get_tokenizer() A_ : Dict = self.get_decoder() A_ : Dict = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : int = "This is a test string" A_ : Dict = processor(text=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Dict , _lowerCamelCase : int=(2, 10, 16) , _lowerCamelCase : List[Any]=77 ): """simple docstring""" np.random.seed(_SCREAMING_SNAKE_CASE ) return np.random.rand(*_SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = self.get_feature_extractor() A_ : List[str] = self.get_tokenizer() A_ : Dict = self.get_decoder() A_ : int = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : str = self._get_dummy_logits(shape=(10, 16) , seed=13 ) A_ : Tuple = processor.decode(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = decoder.decode_beams(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _a ( self : List[Any] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Tuple = self.get_feature_extractor() A_ : Any = self.get_tokenizer() A_ : List[str] = self.get_decoder() A_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A_ : Any = processor.batch_decode(_SCREAMING_SNAKE_CASE ) else: with get_context(_SCREAMING_SNAKE_CASE ).Pool() as pool: A_ : Union[str, Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as p: A_ : List[Any] = decoder.decode_beams_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.logit_score ) self.assertListEqual(_SCREAMING_SNAKE_CASE , decoded_processor.lm_score ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : int = self.get_feature_extractor() A_ : Any = self.get_tokenizer() A_ : List[Any] = self.get_decoder() A_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : List[str] = self._get_dummy_logits() A_ : int = 15 A_ : Optional[int] = -20.0 A_ : Any = -4.0 A_ : Optional[int] = processor.batch_decode( _SCREAMING_SNAKE_CASE , beam_width=_SCREAMING_SNAKE_CASE , beam_prune_logp=_SCREAMING_SNAKE_CASE , token_min_logp=_SCREAMING_SNAKE_CASE , ) A_ : List[str] = decoded_processor_out.text A_ : Tuple = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as pool: A_ : Any = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , beam_width=_SCREAMING_SNAKE_CASE , beam_prune_logp=_SCREAMING_SNAKE_CASE , token_min_logp=_SCREAMING_SNAKE_CASE , ) A_ : Optional[Any] = [d[0][0] for d in decoded_decoder_out] A_ : List[str] = [d[0][2] for d in decoded_decoder_out] A_ : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = self.get_feature_extractor() A_ : int = self.get_tokenizer() A_ : Any = self.get_decoder() A_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self._get_dummy_logits() A_ : int = 2.0 A_ : Optional[int] = 5.0 A_ : Dict = -20.0 A_ : Dict = True A_ : Union[str, Any] = processor.batch_decode( _SCREAMING_SNAKE_CASE , alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , unk_score_offset=_SCREAMING_SNAKE_CASE , lm_score_boundary=_SCREAMING_SNAKE_CASE , ) A_ : Dict = decoded_processor_out.text A_ : int = list(_SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , unk_score_offset=_SCREAMING_SNAKE_CASE , lm_score_boundary=_SCREAMING_SNAKE_CASE , ) with get_context('''fork''' ).Pool() as pool: A_ : str = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) A_ : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _SCREAMING_SNAKE_CASE ) A_ : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _SCREAMING_SNAKE_CASE ) def _a ( self : Any ): """simple docstring""" A_ : List[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A_ : str = processor.decoder.model_container[processor.decoder._model_key] A_ : Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A_ : int = os.listdir(_SCREAMING_SNAKE_CASE ) A_ : str = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) A_ : int = WavaVecaProcessorWithLM.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] A_ : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A_ : Any = os.listdir(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = os.listdir(_SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A_ : List[str] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A_ : int = floats_list((3, 1000) ) A_ : List[str] = processor_wavaveca(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : Optional[int] = processor_auto(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) A_ : Optional[int] = self._get_dummy_logits() A_ : Optional[int] = processor_wavaveca.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = processor_auto.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _a ( self : Any ): """simple docstring""" A_ : int = self.get_feature_extractor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = self.get_decoder() A_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def _a ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Optional[int] = [d[key] for d in offsets] return retrieved_list def _a ( self : Optional[Any] ): """simple docstring""" A_ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A_ : Optional[Any] = self._get_dummy_logits()[0] A_ : int = processor.decode(_SCREAMING_SNAKE_CASE , output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def _a ( self : str ): """simple docstring""" A_ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A_ : List[str] = self._get_dummy_logits() A_ : Optional[Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE , output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _a ( self : Dict ): """simple docstring""" import torch A_ : str = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_SCREAMING_SNAKE_CASE ) A_ : int = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) A_ : Dict = iter(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = next(_SCREAMING_SNAKE_CASE ) A_ : Tuple = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) A_ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A_ : List[str] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): A_ : int = model(_SCREAMING_SNAKE_CASE ).logits.cpu().numpy() A_ : Optional[Any] = processor.decode(logits[0] , output_word_offsets=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A_ : List[str] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] A_ : int = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , '''word''' ) ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE , '''word''' ) ) , output.text ) # output times A_ : int = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE , '''start_time''' ) ) A_ : Optional[Any] = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE , '''end_time''' ) ) # fmt: off A_ : int = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) A_ : List[str] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=0.01 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=0.01 ) )
363
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCamelCase_ (snake_case__ ): """simple docstring""" _lowerCAmelCase = 'roformer' def __init__( self : Tuple , _lowerCamelCase : List[Any]=50000 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Optional[Any]=768 , _lowerCamelCase : int=12 , _lowerCamelCase : str=12 , _lowerCamelCase : Tuple=3072 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Optional[int]=1536 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : Any=1E-12 , _lowerCamelCase : str=0 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]=True , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) A_ : Union[str, Any] = vocab_size A_ : int = hidden_size if embedding_size is None else embedding_size A_ : List[Any] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : int = num_attention_heads A_ : List[Any] = hidden_act A_ : Any = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Dict = type_vocab_size A_ : int = initializer_range A_ : int = layer_norm_eps A_ : str = rotary_value A_ : Optional[Any] = use_cache class UpperCamelCase_ (snake_case__ ): """simple docstring""" @property def _a ( self : str ): """simple docstring""" if self.task == "multiple-choice": A_ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: A_ : List[Any] = {0: "batch", 1: "sequence"} A_ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(UpperCamelCase__ ) < 2: return collection def circle_sort_util(lowerCamelCase__ : list , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> bool: A_ : Optional[Any] = False if low == high: return swapped A_ : Optional[Any] = low A_ : Tuple = high while left < right: if collection[left] > collection[right]: A_ ,A_ : Tuple = ( collection[right], collection[left], ) A_ : List[str] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: A_ ,A_ : str = ( collection[right + 1], collection[left], ) A_ : List[Any] = True A_ : Optional[Any] = low + int((high - low) / 2 ) A_ : Union[str, Any] = circle_sort_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ : Any = circle_sort_util(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) return swapped or left_swap or right_swap A_ : str = True while is_not_sorted is True: A_ : Tuple = circle_sort_util(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) - 1 ) return collection if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
366
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
0
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : Union[str, Any] = 0 A_ : Optional[Any] = len(__lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Dict = i + 1 else: A_ : str = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
367
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'donut-swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Dict=96 , _lowerCamelCase : Tuple=[2, 2, 6, 2] , _lowerCamelCase : Union[str, Any]=[3, 6, 12, 24] , _lowerCamelCase : Dict=7 , _lowerCamelCase : List[Any]=4.0 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : int="gelu" , _lowerCamelCase : List[str]=False , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1E-5 , **_lowerCamelCase : Optional[int] , ): """simple docstring""" super().__init__(**_a ) A_ : Optional[int] = image_size A_ : Any = patch_size A_ : Tuple = num_channels A_ : Dict = embed_dim A_ : Dict = depths A_ : int = len(_a ) A_ : str = num_heads A_ : Tuple = window_size A_ : Dict = mlp_ratio A_ : List[str] = qkv_bias A_ : Any = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Union[str, Any] = drop_path_rate A_ : List[Any] = hidden_act A_ : List[Any] = use_absolute_embeddings A_ : Union[str, Any] = layer_norm_eps A_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : Tuple = int(embed_dim * 2 ** (len(_a ) - 1) )
368
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Any ): """simple docstring""" torch.manual_seed(0 ) A_ : Any = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : str = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def _a ( self : int ): """simple docstring""" torch.manual_seed(0 ) A_ : Union[str, Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) A_ : Any = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def _a ( self : Any ): """simple docstring""" A_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator A_ : int = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A_ : List[Any] = DDPMScheduler() A_ : Tuple = AudioDiffusionPipeline(vqvae=_a , unet=self.dummy_unet , mel=_a , scheduler=_a ) A_ : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = torch.Generator(device=_a ).manual_seed(42 ) A_ : Dict = pipe(generator=_a , steps=4 ) A_ : int = output.audios[0] A_ : Union[str, Any] = output.images[0] A_ : Optional[int] = torch.Generator(device=_a ).manual_seed(42 ) A_ : List[str] = pipe(generator=_a , steps=4 , return_dict=_a ) A_ : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A_ : int = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : Any = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] A_ : str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A_ : int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A_ : Dict = DDIMScheduler() A_ : Optional[Any] = self.dummy_vqvae_and_unet A_ : Any = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_a , scheduler=_a ) A_ : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) np.random.seed(0 ) A_ : Union[str, Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A_ : int = torch.Generator(device=_a ).manual_seed(42 ) A_ : List[str] = pipe(raw_audio=_a , generator=_a , start_step=5 , steps=10 ) A_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A_ : Union[str, Any] = self.dummy_unet_condition A_ : str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_a , mel=_a , scheduler=_a ) A_ : List[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) np.random.seed(0 ) A_ : Optional[int] = torch.rand((1, 1, 10) ) A_ : Tuple = pipe(generator=_a , encoding=_a ) A_ : Tuple = output.images[0] A_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[int] = torch_device A_ : Optional[Any] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) A_ : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : str = torch.Generator(device=_a ).manual_seed(42 ) A_ : str = pipe(generator=_a ) A_ : Union[str, Any] = output.audios[0] A_ : Dict = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A_ : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] A_ : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (_a, _a, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = CycleDiffusionPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } _lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'} _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : Union[str, Any] = CLIPTextModel(snake_case_ ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str=0 ): """simple docstring""" A_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) A_ : List[str] = image / 2 + 0.5 if str(snake_case_ ).startswith('''mps''' ): A_ : Tuple = torch.manual_seed(snake_case_ ) else: A_ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) A_ : str = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a ( self : Tuple ): """simple docstring""" A_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) A_ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Tuple = self.get_dummy_inputs(snake_case_ ) A_ : Any = pipe(**snake_case_ ) A_ : Tuple = output.images A_ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : List[Any] = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _a ( self : List[str] ): """simple docstring""" A_ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , '''half''' ): A_ : Optional[int] = module.half() A_ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) A_ : Union[str, Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : int = self.get_dummy_inputs(snake_case_ ) A_ : List[Any] = pipe(**snake_case_ ) A_ : Any = output.images A_ : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : List[Any] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a ( self : List[Any] ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _a ( self : int ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _a ( self : Dict ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a ( self : int ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : Optional[int] ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) A_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) A_ : Tuple = init_image.resize((512, 512) ) A_ : List[Any] = """CompVis/stable-diffusion-v1-4""" A_ : Tuple = DDIMScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) A_ : Optional[int] = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A_ : int = """A black colored car""" A_ : int = """A blue colored car""" A_ : Dict = torch.manual_seed(0 ) A_ : Dict = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='''np''' , ) A_ : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a ( self : int ): """simple docstring""" A_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) A_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) A_ : Dict = init_image.resize((512, 512) ) A_ : Tuple = """CompVis/stable-diffusion-v1-4""" A_ : List[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) A_ : str = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() A_ : Tuple = """A black colored car""" A_ : List[Any] = """A blue colored car""" A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Any = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type='''np''' , ) A_ : List[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase_ (__lowerCamelCase ): """simple docstring""" _lowerCAmelCase = """codegen""" _lowerCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , _lowerCamelCase : List[Any]=50400 , _lowerCamelCase : List[str]=2048 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : List[Any]=4096 , _lowerCamelCase : Union[str, Any]=28 , _lowerCamelCase : Optional[Any]=16 , _lowerCamelCase : List[str]=64 , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Union[str, Any]="gelu_new" , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : str=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : str=1E-5 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : int=True , _lowerCamelCase : Optional[Any]=50256 , _lowerCamelCase : Any=50256 , _lowerCamelCase : Optional[Any]=False , **_lowerCamelCase : Dict , ): """simple docstring""" A_ : List[Any] = vocab_size A_ : Optional[Any] = n_ctx A_ : Optional[int] = n_positions A_ : Optional[int] = n_embd A_ : Any = n_layer A_ : List[Any] = n_head A_ : List[str] = n_inner A_ : Tuple = rotary_dim A_ : Union[str, Any] = activation_function A_ : Any = resid_pdrop A_ : int = embd_pdrop A_ : Tuple = attn_pdrop A_ : Dict = layer_norm_epsilon A_ : int = initializer_range A_ : Dict = use_cache A_ : Tuple = bos_token_id A_ : int = eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase ) class UpperCamelCase_ (__lowerCamelCase ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : PretrainedConfig , _lowerCamelCase : str = "default" , _lowerCamelCase : List[PatchingSpec] = None , _lowerCamelCase : bool = False , ): """simple docstring""" super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase ) if not getattr(self._config , '''pad_token_id''' , __lowercase ): # TODO: how to do that better? A_ : Dict = 0 @property def _a ( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) A_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A_ : Dict = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _a ( self : int ): """simple docstring""" return self._config.n_layer @property def _a ( self : Union[str, Any] ): """simple docstring""" return self._config.n_head def _a ( self : Optional[Any] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Optional[int] = super(__lowercase , self ).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) # We need to order the input in the way they appears in the forward() A_ : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ : Optional[Any] = seqlen + 2 A_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ : Any = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(self.num_layers ) ] A_ : List[Any] = common_inputs['''attention_mask'''] if self.use_past: A_ : List[Any] = ordered_inputs['''attention_mask'''].dtype A_ : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) return ordered_inputs @property def _a ( self : Optional[int] ): """simple docstring""" return 13
371
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def snake_case__ ( lowerCamelCase__ : str ) -> Tuple: A_ : List[str] = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: A_ : str = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Optional[int] = tf.cast(math.pi , x.dtype ) A_ : Union[str, Any] = tf.cast(0.044715 , x.dtype ) A_ : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase , 3 )) )) return x * cdf def snake_case__ ( lowerCamelCase__ : List[str] ) -> Tuple: A_ : Optional[Any] = tf.convert_to_tensor(_UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) ) def snake_case__ ( lowerCamelCase__ : str ) -> int: A_ : Optional[int] = tf.convert_to_tensor(_UpperCAmelCase ) A_ : List[str] = tf.cast(0.044715 , x.dtype ) A_ : int = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> int: A_ : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) A_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> str: return tf.clip_by_value(_gelu(_UpperCAmelCase ) , -1_0 , 1_0 ) def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=-1 ) -> Optional[Any]: A_ : List[str] = tf.split(_UpperCAmelCase , 2 , axis=_UpperCAmelCase ) return a * tf.math.sigmoid(_UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[Any]: return tf.keras.activations.gelu(_UpperCAmelCase , approximate=_UpperCAmelCase ) snake_case__ = tf.keras.activations.gelu snake_case__ = approximate_gelu_wrap else: snake_case__ = _gelu snake_case__ = _gelu_new snake_case__ = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def snake_case__ ( lowerCamelCase__ : int ) -> List[Any]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
350
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase_ (lowerCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] = None , _lowerCamelCase : List[str] = None , _lowerCamelCase : int = None , _lowerCamelCase : Optional[int] = False , _lowerCamelCase : int = False , _lowerCamelCase : List[str] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) A_ : Optional[int] = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ : Dict = Text( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _a ( self : List[str] ): """simple docstring""" if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : Union[str, Any] = None A_ : List[Any] = None A_ : Optional[Any] = None A_ : Optional[int] = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Any: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_lowerCAmelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class UpperCamelCase_ (lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = "autoformer" _lowerCAmelCase : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple , _lowerCamelCase : Dict = None , _lowerCamelCase : List[str] = None , _lowerCamelCase : Any = "student_t" , _lowerCamelCase : Optional[int] = "nll" , _lowerCamelCase : str = 1 , _lowerCamelCase : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7] , _lowerCamelCase : Union[str, Any] = True , _lowerCamelCase : Union[str, Any] = 0 , _lowerCamelCase : int = 0 , _lowerCamelCase : Optional[int] = 0 , _lowerCamelCase : int = 0 , _lowerCamelCase : List[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Tuple = 64 , _lowerCamelCase : Dict = 2 , _lowerCamelCase : str = 2 , _lowerCamelCase : Any = 2 , _lowerCamelCase : int = 2 , _lowerCamelCase : int = 32 , _lowerCamelCase : Any = 32 , _lowerCamelCase : int = "gelu" , _lowerCamelCase : List[str] = 0.1 , _lowerCamelCase : str = 0.1 , _lowerCamelCase : Optional[Any] = 0.1 , _lowerCamelCase : Optional[Any] = 0.1 , _lowerCamelCase : Optional[int] = 0.1 , _lowerCamelCase : Dict = 100 , _lowerCamelCase : Optional[Any] = 0.02 , _lowerCamelCase : Union[str, Any] = True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[Any] = 10 , _lowerCamelCase : int = 25 , _lowerCamelCase : Optional[Any] = 3 , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Any = prediction_length A_ : List[str] = context_length if context_length is not None else prediction_length A_ : List[str] = distribution_output A_ : Union[str, Any] = loss A_ : int = input_size A_ : List[str] = num_time_features A_ : str = lags_sequence A_ : List[str] = scaling A_ : Union[str, Any] = num_dynamic_real_features A_ : List[str] = num_static_real_features A_ : Tuple = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) A_ : Tuple = cardinality else: A_ : Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) A_ : Dict = embedding_dimension else: A_ : str = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Any = num_parallel_samples # Transformer architecture configuration A_ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features A_ : int = d_model A_ : Tuple = encoder_attention_heads A_ : Union[str, Any] = decoder_attention_heads A_ : Tuple = encoder_ffn_dim A_ : Any = decoder_ffn_dim A_ : Dict = encoder_layers A_ : Dict = decoder_layers A_ : Optional[int] = dropout A_ : Optional[int] = attention_dropout A_ : Optional[Any] = activation_dropout A_ : Union[str, Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : str = activation_function A_ : Optional[Any] = init_std A_ : Tuple = use_cache # Autoformer A_ : Optional[int] = label_length A_ : Tuple = moving_average A_ : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _a ( self : List[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
354
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata snake_case__ = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class UpperCamelCase_ (tr.AbstractTransform ): """simple docstring""" def __init__( self : str , _lowerCamelCase : str = " " ): """simple docstring""" A_ : Optional[Any] = sentence_delimiter def _a ( self : List[Any] , _lowerCamelCase : str ): """simple docstring""" return list(_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Tuple = [] for sent_idx, sentence in enumerate(_lowerCamelCase ): chars.extend(self.process_string(_lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars snake_case__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: snake_case__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) snake_case__ = """\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n""" snake_case__ = """\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n""" snake_case__ = """\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _a ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : List[str]=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _lowerCamelCase , _lowerCamelCase , truth_transform=_lowerCamelCase , hypothesis_transform=_lowerCamelCase , )["wer"] A_ : Dict = 0 A_ : Union[str, Any] = 0 for prediction, reference in zip(_lowerCamelCase , _lowerCamelCase ): A_ : str = jiwer.compute_measures( _lowerCamelCase , _lowerCamelCase , truth_transform=_lowerCamelCase , hypothesis_transform=_lowerCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCamelCase_ (TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : List[str]=None , **_lowerCamelCase : int ): """simple docstring""" super().__init__(features=lowerCamelCase__ ) A_ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def _a ( self : Optional[Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" import torch if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and column: if all( isinstance(lowerCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCamelCase__ ) return column def _a ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" import torch if isinstance(lowerCamelCase__ , (str, bytes, type(lowerCamelCase__ )) ): return value elif isinstance(lowerCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ : Tuple = {} if isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): A_ : int = {'''dtype''': torch.intaa} elif isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ : Any = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase__ , PIL.Image.Image ): A_ : Optional[int] = np.asarray(lowerCamelCase__ ) return torch.tensor(lowerCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(lowerCamelCase__ , '''__array__''' ) and not isinstance(lowerCamelCase__ , torch.Tensor ): A_ : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCamelCase__ ) def _a ( self : int , _lowerCamelCase : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , lowerCamelCase__ , map_list=lowerCamelCase__ ) def _a ( self : Union[str, Any] , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : int = self.numpy_arrow_extractor().extract_row(lowerCamelCase__ ) A_ : Optional[int] = self.python_features_decoder.decode_row(lowerCamelCase__ ) return self.recursive_tensorize(lowerCamelCase__ ) def _a ( self : str , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : List[Any] = self.numpy_arrow_extractor().extract_column(lowerCamelCase__ ) A_ : str = self.python_features_decoder.decode_column(lowerCamelCase__ , pa_table.column_names[0] ) A_ : int = self.recursive_tensorize(lowerCamelCase__ ) A_ : Tuple = self._consolidate(lowerCamelCase__ ) return column def _a ( self : Tuple , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : Dict = self.numpy_arrow_extractor().extract_batch(lowerCamelCase__ ) A_ : Any = self.python_features_decoder.decode_batch(lowerCamelCase__ ) A_ : Tuple = self.recursive_tensorize(lowerCamelCase__ ) for column_name in batch: A_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case__ ( ) -> int: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def snake_case__ ( ) -> str: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def snake_case__ ( ) -> str: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' import unittest from transformers import DonutProcessor snake_case__ = 'naver-clova-ix/donut-base' class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Any = DonutProcessor.from_pretrained(_lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } A_ : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) A_ : Any = self.processor.tokenajson(_lowerCamelCase ) self.assertDictEqual(_lowerCamelCase , _lowerCamelCase )
358
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
0
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ) -> List[str]: # Load configuration defined in the metadata file with open(a__ ) as metadata_file: A_ : Dict = json.load(a__ ) A_ : Optional[Any] = LukeConfig(use_entity_aware_attention=a__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path A_ : List[Any] = torch.load(a__ , map_location='''cpu''' ) # Load the entity vocab file A_ : str = load_entity_vocab(a__ ) A_ : Any = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks A_ : Optional[Any] = AddedToken('''<ent>''' , lstrip=a__ , rstrip=a__ ) A_ : List[Any] = AddedToken('''<ent2>''' , lstrip=a__ , rstrip=a__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a__ ) with open(os.path.join(a__ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(a__ , a__ ) A_ : List[str] = LukeTokenizer.from_pretrained(a__ ) # Initialize the embeddings of the special tokens A_ : List[Any] = state_dict['''embeddings.word_embeddings.weight'''] A_ : List[str] = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) A_ : int = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) A_ : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ : Tuple = f'encoder.layer.{layer_index}.attention.self.' A_ : Any = state_dict[prefix + matrix_name] A_ : Dict = state_dict[prefix + matrix_name] A_ : int = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ : Dict = state_dict['''entity_embeddings.entity_embeddings.weight'''] A_ : str = entity_emb[entity_vocab['''[MASK]''']] A_ : List[str] = LukeModel(config=a__ ).eval() A_ ,A_ : List[Any] = model.load_state_dict(a__ , strict=a__ ) if not (len(a__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(a__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs A_ : int = LukeTokenizer.from_pretrained(a__ , task='''entity_classification''' ) A_ : Optional[Any] = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) A_ : List[Any] = (3_9, 4_2) A_ : List[str] = tokenizer(a__ , entity_spans=[span] , add_prefix_space=a__ , return_tensors='''pt''' ) A_ : List[str] = model(**a__ ) # Verify word hidden states if model_size == "large": A_ : List[str] = torch.Size((1, 4_2, 1_0_2_4) ) A_ : Tuple = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base A_ : Any = torch.Size((1, 4_2, 7_6_8) ) A_ : Dict = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A_ : Optional[Any] = torch.Size((1, 1, 1_0_2_4) ) A_ : List[Any] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base A_ : Union[str, Any] = torch.Size((1, 1, 7_6_8) ) A_ : List[Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(a__ ) ) model.save_pretrained(a__ ) def snake_case__ ( lowerCamelCase__ : int ) -> str: A_ : List[str] = {} with open(a__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(a__ ): A_ ,A_ : List[Any] = line.rstrip().split('''\t''' ) A_ : Union[str, Any] = index return entity_vocab if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) snake_case__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def snake_case__ ( lowerCamelCase__ : int ) -> str: # getting number of pixels in the image A_ ,A_ : Optional[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): A_ : List[Any] = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image snake_case__ = imread("""image_data/lena.jpg""", 1) # convert to its negative snake_case__ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
360
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (UpperCamelCase_, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ConsistencyModelPipeline _lowerCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _lowerCAmelCase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _a ( self : List[str] ): """simple docstring""" A_ : List[str] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _a ( self : str , _lowerCamelCase : Dict=False ): """simple docstring""" if class_cond: A_ : List[Any] = self.dummy_cond_unet else: A_ : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler A_ : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) A_ : int = { """unet""": unet, """scheduler""": scheduler, } return components def _a ( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Any=0 ): """simple docstring""" if str(_a ).startswith('''mps''' ): A_ : str = torch.manual_seed(_a ) else: A_ : List[str] = torch.Generator(device=_a ).manual_seed(_a ) A_ : Tuple = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : List[Any] = ConsistencyModelPipeline(**_a ) A_ : List[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = self.get_dummy_inputs(_a ) A_ : Union[str, Any] = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : List[str] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self : str ): """simple docstring""" A_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components(class_cond=_a ) A_ : Optional[int] = ConsistencyModelPipeline(**_a ) A_ : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : List[Any] = self.get_dummy_inputs(_a ) A_ : str = 0 A_ : str = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) A_ : str = image[0, -3:, -3:, -1] A_ : str = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : Optional[Any] = ConsistencyModelPipeline(**_a ) A_ : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Dict = self.get_dummy_inputs(_a ) A_ : int = 1 A_ : List[Any] = None A_ : Any = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) A_ : Any = image[0, -3:, -3:, -1] A_ : Optional[Any] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components(class_cond=_a ) A_ : Dict = ConsistencyModelPipeline(**_a ) A_ : Tuple = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : int = self.get_dummy_inputs(_a ) A_ : Dict = 1 A_ : Optional[Any] = None A_ : Any = 0 A_ : List[Any] = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[str] , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Dict="cpu" , _lowerCamelCase : Union[str, Any]=torch.floataa , _lowerCamelCase : Union[str, Any]=(1, 3, 64, 64) ): """simple docstring""" A_ : List[str] = torch.manual_seed(_a ) A_ : str = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: A_ : Union[str, Any] = self.get_fixed_latents(seed=_a , device=_a , dtype=_a , shape=_a ) A_ : Dict = latents return inputs def _a ( self : Any , _lowerCamelCase : List[str]=0 , _lowerCamelCase : Optional[Any]="cpu" , _lowerCamelCase : List[str]=torch.floataa , _lowerCamelCase : str=(1, 3, 64, 64) ): """simple docstring""" if type(_a ) == str: A_ : List[Any] = torch.device(_a ) A_ : int = torch.Generator(device=_a ).manual_seed(_a ) A_ : int = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) return latents def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) A_ : str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) A_ : Optional[Any] = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = self.get_inputs() A_ : Union[str, Any] = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) A_ : Optional[int] = image[0, -3:, -3:, -1] A_ : Dict = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _a ( self : int ): """simple docstring""" A_ : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) A_ : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) A_ : List[str] = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a ) pipe.set_progress_bar_config(disable=_a ) A_ : int = self.get_inputs() A_ : Optional[Any] = 1 A_ : Union[str, Any] = None A_ : Optional[int] = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) A_ : Optional[Any] = image[0, -3:, -3:, -1] A_ : str = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _a ( self : Optional[int] ): """simple docstring""" A_ : Any = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) A_ : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) A_ : Dict = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = self.get_inputs(get_fixed_latents=_a , device=_a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_a , enable_math=_a , enable_mem_efficient=_a ): A_ : Optional[Any] = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) A_ : Tuple = image[0, -3:, -3:, -1] A_ : List[str] = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) A_ : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) A_ : str = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_a ) A_ : str = self.get_inputs(get_fixed_latents=_a , device=_a ) A_ : List[str] = 1 A_ : List[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_a , enable_math=_a , enable_mem_efficient=_a ): A_ : Tuple = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) A_ : Any = image[0, -3:, -3:, -1] A_ : Tuple = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
361
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments snake_case__ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ (_A ): """simple docstring""" _lowerCAmelCase = field( default=0.0, metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'Whether to SortishSamler or not.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'whether to use adafactor'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field(default=_A, metadata={'help': 'Dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default=_A, metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _lowerCAmelCase = field( default='linear', metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''}, )
362
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : Union[str, Any] = os.path.join(args.tf_model_dir , '''parameters.json''' ) A_ : Tuple = json.loads(open(__snake_case ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): A_ : Dict = args.output + ".pt" A_ : str = OrderedDict() with tf.device('''/CPU:0''' ): A_ : int = tf.train.load_checkpoint(args.tf_model_dir ) A_ : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A_ : Any = reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A_ : Optional[Any] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A_ : Tuple = 8 A_ : Optional[int] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Tuple = torch.tensor(__snake_case ) elif key_name.startswith('''model/moe''' ): A_ : Union[str, Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A_ : Tuple = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player A_ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Optional[Any] = torch.tensor(__snake_case ) elif key_name.endswith('''/softmlp/kernel''' ): A_ : Optional[int] = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player A_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : str = torch.tensor(__snake_case ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A_ : Tuple = key_name[-9:-7] for i in range(1_6 ): A_ : Optional[int] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) A_ : List[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A_ : Dict = torch.tensor(__snake_case ) elif key_name.startswith('''model/mlp''' ): A_ : Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A_ : Any = "model.blocks.%d.feed_forward.mlp.wi.weight" % player A_ : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Dict = torch.tensor(__snake_case ) elif key_name.endswith('''/p1/bias''' ): A_ : Tuple = "model.blocks.%d.feed_forward.mlp.wi.bias" % player A_ : Optional[Any] = vnp.copy() # same because it is one dimensional A_ : Optional[Any] = torch.tensor(__snake_case ) elif key_name.endswith('''/p2/kernel''' ): A_ : List[Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player A_ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Tuple = torch.tensor(__snake_case ) elif key_name.endswith('''/p2/bias''' ): A_ : List[Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player A_ : Union[str, Any] = vnp.copy() # same because it is one dimensional A_ : Tuple = torch.tensor(__snake_case ) elif key_name.startswith('''model/ln''' ): A_ : Optional[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A_ : List[str] = "model.blocks.%d.feed_forward.norm.bias" % player A_ : List[str] = vnp.copy() # same because it is one dimensional A_ : Tuple = torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): A_ : Optional[int] = "model.blocks.%d.feed_forward.norm.weight" % player A_ : Optional[int] = vnp.copy() # same because it is one dimensional A_ : List[str] = torch.tensor(__snake_case ) elif key_name.startswith('''model/att''' ): A_ : Optional[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A_ : int = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A_ : str = state[:, 0, :, :] A_ : Union[str, Any] = state[:, 1, :, :] A_ : List[Any] = state[:, 2, :, :] A_ : List[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : int = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : Dict = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player A_ : Tuple = torch.tensor(__snake_case ) A_ : Union[str, Any] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player A_ : str = torch.tensor(__snake_case ) A_ : int = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player A_ : Union[str, Any] = torch.tensor(__snake_case ) elif key_name.endswith('''/o/kernel''' ): A_ : Tuple = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player A_ : List[str] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : str = torch.tensor(__snake_case ) elif key_name.startswith('''model/an''' ): A_ : Dict = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A_ : str = "model.blocks.%d.self_attn.norm.bias" % player A_ : str = vnp.copy() # same because it is one dimensional A_ : Optional[int] = torch.tensor(__snake_case ) elif key_name.endswith('''/g''' ): A_ : str = "model.blocks.%d.self_attn.norm.weight" % player A_ : Dict = vnp.copy() # same because it is one dimensional A_ : List[Any] = torch.tensor(__snake_case ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A_ : Optional[Any] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] A_ : Dict = "model.%s.weight" % nlayer A_ : List[Any] = vnp.copy() # same in embedded A_ : Tuple = torch.tensor(__snake_case ) if key_name.startswith('''model/wte''' ): A_ : Any = "lm_head.weight" A_ : Optional[int] = vnp.copy() # same in embedded A_ : str = torch.tensor(__snake_case ) elif key_name.startswith('''model/wob''' ): A_ : Any = "final_logits_bias" A_ : Union[str, Any] = vnp.copy() # same in embedded A_ : Dict = state.reshape((1, -1) ) A_ : int = torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": A_ : Optional[int] = "model.last_project.weight" A_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : List[Any] = torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": A_ : Optional[int] = "model.last_project.bias" A_ : Tuple = vnp.copy() # same because it is one dimensional A_ : Tuple = torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") snake_case__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
363
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 1_0, '''max_num_jobs''': 1}, [range(1_0 )]), ({'''num_shards''': 1_0, '''max_num_jobs''': 1_0}, [range(_a , i + 1 ) for i in range(1_0 )]), ({'''num_shards''': 1, '''max_num_jobs''': 1_0}, [range(1 )]), ({'''num_shards''': 1_0, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({'''num_shards''': 3, '''max_num_jobs''': 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Dict ) -> Tuple: A_ : str = _distribute_shards(**_a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 1_0, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ) -> Any: A_ : List[Any] = _split_gen_kwargs(_a , _a ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def snake_case__ ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) -> Tuple: if expected is RuntimeError: with pytest.raises(_a ): _number_of_shards_in_gen_kwargs(_a ) else: A_ : Any = _number_of_shards_in_gen_kwargs(_a ) assert out == expected
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
0
'''simple docstring''' from collections import defaultdict def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ) -> bool: A_ : str = first_str.lower().strip() A_ : Optional[int] = second_str.lower().strip() # Remove whitespace A_ : List[Any] = first_str.replace(''' ''' , '''''' ) A_ : Optional[int] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): return False # Default values for count should be 0 A_ : List[str] = defaultdict(SCREAMING_SNAKE_CASE_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(SCREAMING_SNAKE_CASE_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = input("""Enter the first string """).strip() snake_case__ = input("""Enter the second string """).strip() snake_case__ = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
365
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class UpperCamelCase_ (lowerCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(_UpperCAmelCase ) def __call__( self : Tuple , _lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCamelCase : Tuple ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self : Union[str, Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return {}, {}, {} def _a ( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : List[Any] = load_image(_UpperCAmelCase ) A_ : str = image.size A_ : Optional[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def _a ( self : List[Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : List[Any] = self.model(**_UpperCAmelCase ) return model_outputs def _a ( self : Optional[Any] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Optional[int] = model_outputs.predicted_depth A_ : Dict = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=_UpperCAmelCase ) A_ : Tuple = prediction.squeeze().cpu().numpy() A_ : Dict = (output * 255 / np.max(_UpperCAmelCase )).astype('''uint8''' ) A_ : List[str] = Image.fromarray(_UpperCAmelCase ) A_ : List[Any] = {} A_ : Union[str, Any] = predicted_depth A_ : Dict = depth return output_dict
366
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class UpperCamelCase_ (_a ): """simple docstring""" _lowerCAmelCase = """deta""" _lowerCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict , _lowerCamelCase : Any=None , _lowerCamelCase : Union[str, Any]=900 , _lowerCamelCase : List[Any]=2048 , _lowerCamelCase : List[str]=6 , _lowerCamelCase : Optional[int]=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : List[Any]=1024 , _lowerCamelCase : int=8 , _lowerCamelCase : int=0.0 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Dict="relu" , _lowerCamelCase : str=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : str=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : int=1.0 , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str=5 , _lowerCamelCase : int=4 , _lowerCamelCase : str=4 , _lowerCamelCase : Tuple=True , _lowerCamelCase : Optional[int]=300 , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : Any=2 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : int=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Dict=2 , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Union[str, Any]=0.25 , **_lowerCamelCase : Tuple , ): """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : List[str] = CONFIG_MAPPING["""resnet"""](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__lowerCamelCase , __lowerCamelCase ): A_ : Any = backbone_config.pop('''model_type''' ) A_ : Any = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(__lowerCamelCase ) A_ : Optional[Any] = backbone_config A_ : List[Any] = num_queries A_ : str = max_position_embeddings A_ : Optional[Any] = d_model A_ : Union[str, Any] = encoder_ffn_dim A_ : Tuple = encoder_layers A_ : str = encoder_attention_heads A_ : str = decoder_ffn_dim A_ : int = decoder_layers A_ : Tuple = decoder_attention_heads A_ : str = dropout A_ : Tuple = attention_dropout A_ : Tuple = activation_dropout A_ : Dict = activation_function A_ : Optional[int] = init_std A_ : Union[str, Any] = init_xavier_std A_ : Optional[int] = encoder_layerdrop A_ : List[str] = auxiliary_loss A_ : Optional[Any] = position_embedding_type # deformable attributes A_ : Optional[int] = num_feature_levels A_ : Union[str, Any] = encoder_n_points A_ : str = decoder_n_points A_ : Any = two_stage A_ : int = two_stage_num_proposals A_ : Tuple = with_box_refine A_ : List[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A_ : List[Any] = class_cost A_ : Optional[int] = bbox_cost A_ : str = giou_cost # Loss coefficients A_ : int = mask_loss_coefficient A_ : Any = dice_loss_coefficient A_ : Optional[Any] = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : Optional[int] = eos_coefficient A_ : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _a ( self : Optional[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Optional[Any] ): """simple docstring""" return self.d_model def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = copy.deepcopy(self.__dict__ ) A_ : Dict = self.backbone_config.to_dict() A_ : List[str] = self.__class__.model_type return output
367
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate snake_case__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) snake_case__ = [] snake_case__ = [] snake_case__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} snake_case__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', """emoji""": True, }, } ] snake_case__ = 0 for log in Path().glob("""*.log"""): snake_case__ = 0 with open(log, """r""") as f: for line in f: snake_case__ = json.loads(line) if line.get("""nodeid""", """""") != "": snake_case__ = line["""nodeid"""] if line.get("""duration""", None) is not None: snake_case__ = F'{line["duration"]:.4f}' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) snake_case__ = [] log.unlink() snake_case__ = """""" snake_case__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" snake_case__ = [] snake_case__ = {} for test in failed_tests: snake_case__ = test[0].split("""::""") snake_case__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: snake_case__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) snake_case__ = [test[0] for test in failed_table] snake_case__ = list(set(files)) # Count number of instances in failed_tests snake_case__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) snake_case__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: snake_case__ = """Too many failed tests, please see the full report in the Action results.""" snake_case__ = len(err) + 10 snake_case__ = message[: 30_00 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: snake_case__ = """No failed tests! 🤗""" print(F'## {message}') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient snake_case__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": snake_case__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) snake_case__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) snake_case__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) snake_case__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) snake_case__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name snake_case__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: snake_case__ = row[0] else: snake_case__ = """""" snake_case__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
368
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None @experimental def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return _map_with_joblib(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> List[str]: A_ : Any = num_proc if num_proc <= len(_lowerCamelCase ) else len(_lowerCamelCase ) A_ : str = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowerCamelCase ): A_ : Dict = len(_lowerCamelCase ) // num_proc A_ : Union[str, Any] = len(_lowerCamelCase ) % num_proc A_ : Tuple = div * index + min(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowerCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'Error dividing inputs iterable among processes. ' f'Total number of objects {len(_lowerCamelCase )}, ' f'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( f'Spawning {num_proc} processes for {len(_lowerCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) A_ : Optional[Any] = None, None if not disable_tqdm: A_ : Optional[int] = (RLock(),), tqdm.set_lock with Pool(_lowerCamelCase , initargs=_lowerCamelCase , initializer=_lowerCamelCase ) as pool: A_ : Dict = pool.map(_lowerCamelCase , _lowerCamelCase ) logger.info(f'Finished {num_proc} processes' ) A_ : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(f'Unpacked {len(_lowerCamelCase )} objects' ) return mapped def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_lowerCamelCase ): return joblib.Parallel()( joblib.delayed(_lowerCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case__ ( lowerCamelCase__ : str ) -> int: A_ : Optional[int] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A_ : int = None
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case__ = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[str]: A_ : Optional[int] = torch.load(lowerCamelCase__ , map_location='''cpu''' ) return sd def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int=rename_keys_prefix ) -> Any: A_ : Tuple = OrderedDict() A_ : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A_ : Union[str, Any] = key for name_pair in rename_keys_prefix: A_ : Any = new_key.replace(name_pair[0] , name_pair[1] ) A_ : List[Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A_ : Union[str, Any] = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int ) -> List[Any]: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: A_ : Dict = '''pretraining''' if "vcr" in checkpoint_path: A_ : int = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A_ : List[str] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A_ : str = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A_ : Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: A_ : List[str] = {'''visual_embedding_dim''': 5_1_2} A_ : List[Any] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A_ : List[Any] = {'''visual_embedding_dim''': 2_0_4_8} A_ : Dict = '''vqa_advanced''' elif "vqa" in checkpoint_path: A_ : List[str] = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A_ : List[Any] = '''vqa''' elif "nlvr" in checkpoint_path: A_ : Optional[Any] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A_ : List[Any] = '''nlvr''' A_ : Optional[Any] = VisualBertConfig(**lowerCamelCase__ ) # Load State Dict A_ : Tuple = load_state_dict(lowerCamelCase__ ) A_ : Tuple = get_new_dict(lowerCamelCase__ , lowerCamelCase__ ) if model_type == "pretraining": A_ : Dict = VisualBertForPreTraining(lowerCamelCase__ ) elif model_type == "vqa": A_ : int = VisualBertForQuestionAnswering(lowerCamelCase__ ) elif model_type == "nlvr": A_ : List[str] = VisualBertForVisualReasoning(lowerCamelCase__ ) elif model_type == "multichoice": A_ : Dict = VisualBertForMultipleChoice(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Save Checkpoints Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Dict: A_ : Tuple = tf.convert_to_tensor(lowerCamelCase__ ) A_ : List[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def snake_case__ ( lowerCamelCase__ : Dict ) -> Optional[int]: A_ : Tuple = tf.convert_to_tensor(lowerCamelCase__ ) A_ : Optional[int] = tf.cast(math.pi , x.dtype ) A_ : Dict = tf.cast(0.044715 , x.dtype ) A_ : Any = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def snake_case__ ( lowerCamelCase__ : Any ) -> int: A_ : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : List[Any] ) -> List[Any]: A_ : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = tf.cast(0.044715 , x.dtype ) A_ : List[str] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def snake_case__ ( lowerCamelCase__ : str ) -> List[Any]: A_ : str = tf.convert_to_tensor(lowerCamelCase__ ) A_ : Union[str, Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def snake_case__ ( lowerCamelCase__ : List[str] ) -> int: return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -1_0 , 1_0 ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int]=-1 ) -> Tuple: A_ ,A_ : int = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def snake_case__ ( lowerCamelCase__ : List[str] ) -> Optional[int]: return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) snake_case__ = tf.keras.activations.gelu snake_case__ = approximate_gelu_wrap else: snake_case__ = _gelu snake_case__ = _gelu_new snake_case__ = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def snake_case__ ( lowerCamelCase__ : List[Any] ) -> List[str]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
371
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : Any=2_8_1_2_3 ) -> Tuple: A_ : Tuple = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i A_ : Union[str, Any] = set() A_ : Dict = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
350
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' import argparse import os import re import packaging.version snake_case__ = 'examples/' snake_case__ = { 'examples': (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), 'release = "VERSION"\n'), } snake_case__ = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } snake_case__ = 'README.md' def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] ) -> List[str]: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A_ : Tuple = f.read() A_ : str = REPLACE_PATTERNS[pattern] A_ : List[str] = replace.replace('''VERSION''' , UpperCamelCase__ ) A_ : str = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def snake_case__ ( lowerCamelCase__ : List[Any] ) -> List[str]: for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=False ) -> Union[str, Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def snake_case__ ( ) -> Optional[Any]: A_ : str = '''🤗 Transformers currently provides the following architectures''' A_ : Optional[int] = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A_ : str = f.readlines() # Find the start of the list. A_ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): A_ : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def snake_case__ ( ) -> Tuple: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: A_ : Optional[int] = f.read() A_ : List[Any] = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any=False ) -> int: A_ : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: A_ : str = default_version.base_version elif patch: A_ : List[str] = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: A_ : Optional[Any] = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. A_ : Optional[Any] = input(f'Which version are you releasing? [{default_version}]' ) if len(UpperCamelCase__ ) == 0: A_ : List[str] = default_version print(f'Updating version to {version}.' ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def snake_case__ ( ) -> Union[str, Any]: A_ : str = get_version() A_ : List[Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0' A_ : Any = current_version.base_version # Check with the user we got that right. A_ : List[str] = input(f'Which version are we developing now? [{dev_version}]' ) if len(UpperCamelCase__ ) == 0: A_ : Optional[Any] = dev_version print(f'Updating version to {version}.' ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") snake_case__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType snake_case__ = logging.get_logger(__name__) snake_case__ = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCamelCase_ (_lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'imagegpt' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=512 + 1 , _lowerCamelCase : Optional[int]=32 * 32 , _lowerCamelCase : int=512 , _lowerCamelCase : int=24 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Tuple="quick_gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=1E-5 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=False , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Dict=False , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : str = vocab_size A_ : Union[str, Any] = n_positions A_ : Tuple = n_embd A_ : Tuple = n_layer A_ : List[Any] = n_head A_ : Any = n_inner A_ : Any = activation_function A_ : Dict = resid_pdrop A_ : List[Any] = embd_pdrop A_ : List[Any] = attn_pdrop A_ : Optional[int] = layer_norm_epsilon A_ : Optional[int] = initializer_range A_ : Dict = scale_attn_weights A_ : Tuple = use_cache A_ : Tuple = scale_attn_by_inverse_layer_idx A_ : Optional[int] = reorder_and_upcast_attn A_ : str = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class UpperCamelCase_ (_lowerCamelCase ): """simple docstring""" @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def _a ( self : Optional[Any] , _lowerCamelCase : "FeatureExtractionMixin" , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional["TensorType"] = None , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 32 , _lowerCamelCase : int = 32 , ): """simple docstring""" A_ : Dict = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : int = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '''▁''' snake_case__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} snake_case__ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } snake_case__ = { '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off snake_case__ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase_ (lowerCamelCase__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : Optional[int]="<s>" , _lowerCamelCase : Any="<unk>" , _lowerCamelCase : Tuple="<pad>" , _lowerCamelCase : Tuple="<mask>" , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Union[str, Any]=False , **_lowerCamelCase : Any , ): """simple docstring""" A_ : int = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs A_ : Any = legacy_behaviour super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenizer_file=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_lowerCamelCase , **_lowerCamelCase , ) A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) A_ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A_ : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : Dict = 1 A_ : Dict = len(self.sp_model ) A_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase ) } A_ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} A_ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ : Dict = src_lang if src_lang is not None else "eng_Latn" A_ : List[str] = self.lang_code_to_id[self._src_lang] A_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = self.__dict__.copy() A_ : Union[str, Any] = None A_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Tuple = {} A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def _a ( self : Dict , _lowerCamelCase : str ): """simple docstring""" A_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self : Dict , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : int = [1] * len(self.prefix_tokens ) A_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : str = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Optional[str] , _lowerCamelCase : Optional[str] , **_lowerCamelCase : Any ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : str = src_lang A_ : str = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) A_ : Any = self.convert_tokens_to_ids(_lowerCamelCase ) A_ : Optional[int] = tgt_lang_id return inputs def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : Optional[int] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : List[Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Dict = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self : Union[str, Any] , _lowerCamelCase : Dict ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self : Optional[Any] , _lowerCamelCase : Dict ): """simple docstring""" A_ : str = "".join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def _a ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def _a ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : str = "eng_Latn" , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "fra_Latn" , **_lowerCamelCase : Tuple , ): """simple docstring""" A_ : List[Any] = src_lang A_ : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self : Optional[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A_ : str = [] A_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: A_ : Any = [self.cur_lang_code] A_ : str = [self.eos_token_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.lang_code_to_id[lang] if self.legacy_behaviour: A_ : Optional[int] = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: A_ : List[Any] = [self.cur_lang_code] A_ : int = [self.eos_token_id]
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Any = LxmertTokenizer _lowerCAmelCase : Tuple = LxmertTokenizerFast _lowerCAmelCase : List[str] = True _lowerCAmelCase : str = True def _a ( self : List[Any] ): """simple docstring""" super().setUp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" A_ : Tuple = '''UNwant\u00E9d,running''' A_ : Dict = '''unwanted, running''' return input_text, output_text def _a ( self : List[Any] ): """simple docstring""" A_ : int = self.tokenizer_class(self.vocab_file ) A_ : Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _a ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : List[Any] = '''I was born in 92000, and this is falsé.''' A_ : int = tokenizer.tokenize(lowerCamelCase_ ) A_ : Dict = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) A_ : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) A_ : Any = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) A_ : List[str] = self.get_rust_tokenizer() A_ : str = tokenizer.encode(lowerCamelCase_ ) A_ : Optional[int] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
354
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : """simple docstring""" @staticmethod def _a ( *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" _lowerCAmelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[str] = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ : Optional[Any] = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : str = vqa_pipeline(lowercase_ , top_k=1 ) self.assertEqual( lowercase_ , [ [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}], [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}], ] , ) @require_torch def _a ( self : Dict ): """simple docstring""" A_ : str = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ : Optional[int] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ : int = '''How many cats are there?''' A_ : Tuple = vqa_pipeline(image=lowercase_ , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( lowercase_ , [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}] ) A_ : List[str] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( lowercase_ , [{'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''answer''': ANY(lowercase_ )}] ) @slow @require_torch def _a ( self : Dict ): """simple docstring""" A_ : str = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) A_ : List[str] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ : Dict = '''How many cats are there?''' A_ : int = vqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ : List[Any] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ : Dict = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [[{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def _a ( self : Optional[Any] ): """simple docstring""" pass
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' from __future__ import annotations import time snake_case__ = list[tuple[int, int]] snake_case__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase_ : """simple docstring""" def __init__( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : str = pos_x A_ : int = pos_y A_ : Dict = (pos_y, pos_x) A_ : Optional[Any] = goal_x A_ : Optional[int] = goal_y A_ : Any = parent class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : str ): """simple docstring""" A_ : Dict = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase__ ) A_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase__ ) A_ : Optional[Any] = [self.start] A_ : Union[str, Any] = False def _a ( self : str ): """simple docstring""" while self.node_queue: A_ : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: A_ : Optional[int] = True return self.retrace_path(lowerCamelCase__ ) A_ : Any = self.get_successors(lowerCamelCase__ ) for node in successors: self.node_queue.append(lowerCamelCase__ ) if not self.reached: return [self.start.pos] return None def _a ( self : Any , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Optional[Any] = [] for action in delta: A_ : List[Any] = parent.pos_x + action[1] A_ : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase__ , lowerCamelCase__ , self.target.pos_y , self.target.pos_x , lowerCamelCase__ ) ) return successors def _a ( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Optional[Any] = node A_ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A_ : List[Any] = current_node.parent path.reverse() return path class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : int = BreadthFirstSearch(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[int] = BreadthFirstSearch(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[int] = False def _a ( self : Optional[Any] ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: A_ : Union[str, Any] = self.fwd_bfs.node_queue.pop(0 ) A_ : Tuple = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: A_ : Union[str, Any] = True return self.retrace_bidirectional_path( lowerCamelCase__ , lowerCamelCase__ ) A_ : List[Any] = current_bwd_node A_ : Any = current_fwd_node A_ : int = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _a ( self : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Any ): """simple docstring""" A_ : Dict = self.fwd_bfs.retrace_path(lowerCamelCase__ ) A_ : List[Any] = self.bwd_bfs.retrace_path(lowerCamelCase__ ) bwd_path.pop() bwd_path.reverse() A_ : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case__ = (0, 0) snake_case__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case__ = time.time() snake_case__ = BreadthFirstSearch(init, goal) snake_case__ = bfs.search() snake_case__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) snake_case__ = time.time() snake_case__ = BidirectionalBreadthFirstSearch(init, goal) snake_case__ = bd_bfs.search() snake_case__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets snake_case__ = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' snake_case__ = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' snake_case__ = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def _a ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict="auto" , _lowerCamelCase : List[Any]=-1 , _lowerCamelCase : Optional[Any]=0.9 , _lowerCamelCase : Any=5 , _lowerCamelCase : int=500 , _lowerCamelCase : Optional[int]="gpt2-large" , _lowerCamelCase : Optional[int]=-1 , _lowerCamelCase : Dict=1024 , _lowerCamelCase : Tuple=25 , _lowerCamelCase : str=5 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]=25 , ): """simple docstring""" A_ : int = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'unispeech' def __init__( self : int , _lowerCamelCase : Optional[int]=32 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Union[str, Any]=12 , _lowerCamelCase : List[Any]=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : int=0.0 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : List[Any]="group" , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Dict=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase : Any=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase : int=False , _lowerCamelCase : Any=128 , _lowerCamelCase : int=16 , _lowerCamelCase : str=False , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Union[str, Any]=0.05 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : str=0.0 , _lowerCamelCase : str=10 , _lowerCamelCase : List[str]=0 , _lowerCamelCase : Any=320 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Optional[int]=100 , _lowerCamelCase : Optional[int]=256 , _lowerCamelCase : Tuple=256 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Tuple="mean" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Any=False , _lowerCamelCase : int=256 , _lowerCamelCase : Union[str, Any]=80 , _lowerCamelCase : Optional[Any]=0 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : str=2 , _lowerCamelCase : Optional[int]=0.5 , **_lowerCamelCase : Optional[int] , ): """simple docstring""" super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) A_ : List[Any] = hidden_size A_ : List[Any] = feat_extract_norm A_ : int = feat_extract_activation A_ : int = list(__A ) A_ : str = list(__A ) A_ : Tuple = list(__A ) A_ : List[Any] = conv_bias A_ : Optional[int] = num_conv_pos_embeddings A_ : Optional[Any] = num_conv_pos_embedding_groups A_ : Any = len(self.conv_dim ) A_ : str = num_hidden_layers A_ : List[Any] = intermediate_size A_ : Any = hidden_act A_ : Dict = num_attention_heads A_ : List[Any] = hidden_dropout A_ : List[str] = attention_dropout A_ : str = activation_dropout A_ : Tuple = feat_proj_dropout A_ : Optional[int] = final_dropout A_ : Tuple = layerdrop A_ : Union[str, Any] = layer_norm_eps A_ : Optional[int] = initializer_range A_ : List[str] = num_ctc_classes A_ : Any = vocab_size A_ : Optional[Any] = do_stable_layer_norm A_ : Optional[int] = use_weighted_layer_sum A_ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Union[str, Any] = apply_spec_augment A_ : Dict = mask_time_prob A_ : Tuple = mask_time_length A_ : Tuple = mask_time_min_masks A_ : Any = mask_feature_prob A_ : List[str] = mask_feature_length A_ : str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ : str = num_codevectors_per_group A_ : Optional[Any] = num_codevector_groups A_ : Union[str, Any] = contrastive_logits_temperature A_ : Union[str, Any] = feat_quantizer_dropout A_ : Tuple = num_negatives A_ : Tuple = codevector_dim A_ : int = proj_codevector_dim A_ : Optional[Any] = diversity_loss_weight # ctc loss A_ : Optional[Any] = ctc_loss_reduction A_ : Union[str, Any] = ctc_zero_infinity # pretraining loss A_ : List[Any] = replace_prob @property def _a ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
358
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
0
'''simple docstring''' snake_case__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } snake_case__ = {value: key for key, value in encode_dict.items()} def snake_case__ ( lowerCamelCase__ : str ) -> List[Any]: A_ : int = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def snake_case__ ( lowerCamelCase__ : str ) -> List[str]: if set(lowerCamelCase__ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) A_ : str = """""" for word in coded.split(): while len(lowerCamelCase__ ) != 0: decoded += decode_dict[word[:5]] A_ : Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case__ = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } snake_case__ = { """facebook/mbart-large-50-one-to-many-mmt""": 10_24, } # fmt: off snake_case__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : str="<s>" , _lowerCamelCase : Tuple="<unk>" , _lowerCamelCase : Tuple="<pad>" , _lowerCamelCase : Optional[int]="<mask>" , _lowerCamelCase : Optional[Any] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token A_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs A_ : List[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) A_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) A_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : Any = 1 A_ : Optional[Any] = len(self.sp_model ) A_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase_ ) } A_ : Dict = {v: k for k, v in self.lang_code_to_id.items()} A_ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : str = src_lang if src_lang is not None else '''en_XX''' A_ : List[str] = self.lang_code_to_id[self._src_lang] A_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a ( self : List[str] ): """simple docstring""" return self._src_lang @src_lang.setter def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): """simple docstring""" A_ : Any = self.__dict__.copy() A_ : Optional[int] = None return state def __setstate__( self : str , _lowerCamelCase : int ): """simple docstring""" A_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Dict = {} A_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def _a ( self : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Optional[int] = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self : Any , _lowerCamelCase : Optional[Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self : str , _lowerCamelCase : Dict ): """simple docstring""" A_ : Optional[Any] = [] A_ : Tuple = '''''' A_ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token A_ : Optional[int] = True A_ : Any = [] else: current_sub_tokens.append(lowerCamelCase_ ) A_ : List[str] = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: A_ : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def _a ( self : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] = None , _lowerCamelCase : Dict = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) A_ : str = [1] * len(self.prefix_tokens ) A_ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def _a ( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , **_lowerCamelCase : List[str] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : Any = src_lang A_ : Tuple = self(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) A_ : str = self.convert_tokens_to_ids(lowerCamelCase_ ) A_ : Optional[Any] = tgt_lang_id return inputs def _a ( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] = "en_XX" , _lowerCamelCase : Dict = None , _lowerCamelCase : Optional[int] = "ro_RO" , **_lowerCamelCase : Tuple , ): """simple docstring""" A_ : Optional[Any] = src_lang A_ : Any = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def _a ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self : Dict ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self : Any , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Dict = self.lang_code_to_id[src_lang] A_ : str = [self.cur_lang_code_id] A_ : List[str] = [self.eos_token_id] def _a ( self : Tuple , _lowerCamelCase : Any ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Dict = [self.cur_lang_code_id] A_ : Union[str, Any] = [self.eos_token_id]
360
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Any=None ) -> Dict: if "." in tensor_name: A_ : Union[str, Any] = tensor_name.split('''.''' ) for split in splits[:-1]: A_ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) A_ : int = new_module A_ : List[str] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) A_ : Union[str, Any] = tensor_name in module._buffers A_ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) A_ : Union[str, Any] = False A_ : str = False if is_buffer or not is_bitsandbytes_available(): A_ : Optional[Any] = False A_ : Optional[int] = False else: A_ : Optional[int] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) A_ : Tuple = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: A_ : Any = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A_ : List[str] = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): A_ : int = value.to('''cpu''' ) if value.dtype == torch.inta: A_ : Optional[int] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: A_ : Dict = torch.tensor(__lowerCAmelCase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: A_ : Dict = new_value.T A_ : List[Any] = old_value.__dict__ if is_abit: A_ : List[str] = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: A_ : Optional[int] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) A_ : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: A_ : List[str] = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): A_ : Tuple = value.to(__lowerCAmelCase ) else: A_ : Dict = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: A_ : Union[str, Any] = new_value else: A_ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) A_ : int = new_value def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : str=False ) -> Optional[int]: for name, module in model.named_children(): if current_key_name is None: A_ : str = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A_ : Tuple = module.weight.shape else: A_ : Tuple = module.in_features A_ : List[Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": A_ : int = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) A_ : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A_ : Tuple = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) A_ : List[str] = True # Store the module class in case we need to transpose the weight later A_ : List[str] = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: A_ : List[str] = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Optional[int]=None ) -> str: A_ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert A_ : str = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) -> Tuple: warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case__ ( *lowerCamelCase__ : Dict , **lowerCamelCase__ : Any ) -> Dict: warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[str]: A_ : str = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A_ : Optional[int] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A_ : str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A_ : Optional[Any] = sum(__lowerCAmelCase , [] ) A_ : List[Any] = len(__lowerCAmelCase ) > 0 # Check if it is a base model A_ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A_ : str = list(model.named_children() ) A_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights A_ : int = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) A_ : List[Any] = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys A_ : List[Any] = ['''.weight''', '''.bias'''] A_ : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A_ : int = name.replace(__lowerCAmelCase , '''''' ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
361
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ : Optional[int] = str(bin(_lowercase ) )[2:] # remove the leading "0b" A_ : Optional[Any] = str(bin(_lowercase ) )[2:] # remove the leading "0b" A_ : str = max(len(_lowercase ) , len(_lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_lowercase ) , b_binary.zfill(_lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = StableDiffusionInpaintPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase = frozenset([] ) def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A_ : Optional[Any] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) A_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) A_ : Union[str, Any] = CLIPTextModel(a__ ) A_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=0 ): """simple docstring""" A_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) A_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : int = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) A_ : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): A_ : Union[str, Any] = torch.manual_seed(a__ ) else: A_ : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : Tuple = StableDiffusionInpaintPipeline(**a__ ) A_ : List[str] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : List[Any] = self.get_dummy_inputs(a__ ) A_ : List[Any] = sd_pipe(**a__ ).images A_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : int = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : Tuple ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : str ): """simple docstring""" A_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A_ : str = '''stabilityai/stable-diffusion-2-inpainting''' A_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Union[str, Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : List[Any] = torch.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A_ : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : List[str] = torch.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self : str ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : Dict = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Any = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) A_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Dict = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) A_ : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
363
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase_ (__lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = '''microsoft/speecht5_tts''' _lowerCAmelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _lowerCAmelCase = '''text_reader''' _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ['''text'''] _lowerCAmelCase = ['''audio'''] def _a ( self : List[Any] ): """simple docstring""" if self.post_processor is None: A_ : str = '''microsoft/speecht5_hifigan''' super().setup() def _a ( self : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None ): """simple docstring""" A_ : Dict = self.pre_processor(text=lowerCAmelCase_ , return_tensors='''pt''' , truncation=lowerCAmelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A_ : Optional[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A_ : Union[str, Any] = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase_ ) def _a ( self : int , _lowerCamelCase : List[Any] ): """simple docstring""" with torch.no_grad(): return self.post_processor(lowerCAmelCase_ ).cpu().detach()
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase_ (_lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = 'marian' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple , _lowerCamelCase : Union[str, Any]=58101 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Optional[Any]=1024 , _lowerCamelCase : int=12 , _lowerCamelCase : Optional[int]=4096 , _lowerCamelCase : List[Any]=16 , _lowerCamelCase : Optional[int]=12 , _lowerCamelCase : List[Any]=4096 , _lowerCamelCase : Optional[Any]=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple="gelu" , _lowerCamelCase : Dict=1024 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : Optional[Any]=58100 , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Any=58100 , _lowerCamelCase : List[str]=0 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : Optional[int]=True , **_lowerCamelCase : Tuple , ): """simple docstring""" A_ : str = vocab_size A_ : List[str] = decoder_vocab_size or vocab_size A_ : str = max_position_embeddings A_ : Dict = d_model A_ : Dict = encoder_ffn_dim A_ : Tuple = encoder_layers A_ : Union[str, Any] = encoder_attention_heads A_ : Any = decoder_ffn_dim A_ : Dict = decoder_layers A_ : List[Any] = decoder_attention_heads A_ : Optional[Any] = dropout A_ : str = attention_dropout A_ : List[str] = activation_dropout A_ : Any = activation_function A_ : Optional[int] = init_std A_ : Union[str, Any] = encoder_layerdrop A_ : Any = decoder_layerdrop A_ : Dict = use_cache A_ : Optional[int] = encoder_layers A_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Union[str, Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class UpperCamelCase_ (_lowerCAmelCase ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _a ( self : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Union[str, Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ : Optional[Any] = {0: """batch"""} A_ : int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : int = {0: """batch""", 1: """decoder_sequence"""} A_ : Tuple = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ : Any = self.num_layers for i in range(SCREAMING_SNAKE_CASE_ ): A_ : Any = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _a ( self : int ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super().outputs else: A_ : Tuple = super(SCREAMING_SNAKE_CASE_ , self ).outputs if self.use_past: A_ : Any = self.num_layers for i in range(SCREAMING_SNAKE_CASE_ ): A_ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a ( self : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] = -1 , _lowerCamelCase : List[Any] = -1 , _lowerCamelCase : int = False , _lowerCamelCase : List[str] = None , ): """simple docstring""" A_ : str = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Generate decoder inputs A_ : Any = seq_length if not self.use_past else 1 A_ : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : int = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A_ : Any = dict(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ : int = common_inputs["""input_ids"""].shape A_ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] A_ : str = self.num_attention_heads A_ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : int = decoder_seq_length + 3 A_ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : Tuple = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , dim=1 ) A_ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ : Optional[int] = self.num_layers A_ : Optional[Any] = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ : Tuple = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - min_num_layers A_ : Optional[int] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(SCREAMING_SNAKE_CASE_ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), ) ) # TODO: test this. A_ : Any = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) ) return common_inputs def _a ( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] = -1 , _lowerCamelCase : str = -1 , _lowerCamelCase : int = False , _lowerCamelCase : Optional[int] = None , ): """simple docstring""" A_ : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : List[str] = seqlen + 2 A_ : Optional[int] = self.num_layers A_ : Any = self.num_attention_heads A_ : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Optional[int] = common_inputs["""attention_mask"""].dtype A_ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) A_ : Union[str, Any] = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(SCREAMING_SNAKE_CASE_ ) ] return common_inputs def _a ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any = -1 , _lowerCamelCase : Any = -1 , _lowerCamelCase : Optional[Any] = False , _lowerCamelCase : Union[str, Any] = None , ): """simple docstring""" A_ : Optional[int] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : List[Any] = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE_ ) A_ : List[Any] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE_ ) # Generate dummy inputs according to compute batch and sequence A_ : str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : Optional[int] = dict(tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) ) return common_inputs def _a ( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str = -1 , _lowerCamelCase : Tuple = -1 , _lowerCamelCase : str = False , _lowerCamelCase : int = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) else: A_ : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) return common_inputs def _a ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Optional[int] = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: A_ : str = super(SCREAMING_SNAKE_CASE_ , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
365
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) snake_case__ = parser.parse_args() snake_case__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
366
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ (_a, unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @property def _a ( self : Union[str, Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : int ): """simple docstring""" A_ : Any = ort.SessionOptions() A_ : List[str] = False return options def _a ( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) A_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) A_ : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : str = 'A red cat sitting on a park bench' A_ : Union[str, Any] = np.random.RandomState(0 ) A_ : str = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type='''np''' , ) A_ : Optional[int] = output.images A_ : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ : Optional[int] = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self : Any ): """simple docstring""" A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) A_ : Any = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) A_ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[int] = 'A red cat sitting on a park bench' A_ : List[Any] = np.random.RandomState(0 ) A_ : Dict = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCamelCase , output_type='''np''' , ) A_ : int = output.images A_ : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ : int = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
367
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__a ) class UpperCamelCase_ (__a ): """simple docstring""" _lowerCAmelCase = field(default='automatic-speech-recognition', metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCAmelCase = Features({'audio': Audio()} ) _lowerCAmelCase = Features({'transcription': Value('string' )} ) _lowerCAmelCase = 'audio' _lowerCAmelCase = 'transcription' def _a ( self : Dict , _lowerCamelCase : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , UpperCamelCase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) A_ : int = copy.deepcopy(self ) A_ : Dict = self.input_schema.copy() A_ : Optional[int] = features[self.audio_column] A_ : List[str] = input_schema return task_template @property def _a ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
368
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ (_lowerCAmelCase, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = KandinskyVaaPipeline _lowerCAmelCase = [ "image_embeds", "negative_image_embeds", ] _lowerCAmelCase = ["image_embeds", "negative_image_embeds"] _lowerCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _lowerCAmelCase = False @property def _a ( self : Any ): """simple docstring""" return 32 @property def _a ( self : str ): """simple docstring""" return 32 @property def _a ( self : Dict ): """simple docstring""" return self.time_input_dim @property def _a ( self : Tuple ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : Dict ): """simple docstring""" return 100 @property def _a ( self : Any ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ : int = UNetaDConditionModel(**_lowercase ) return model @property def _a ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a ( self : int ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : str ): """simple docstring""" A_ : Tuple = self.dummy_unet A_ : Optional[int] = self.dummy_movq A_ : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , ) A_ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _a ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str=0 ): """simple docstring""" A_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) A_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) if str(_lowercase ).startswith('''mps''' ): A_ : List[Any] = torch.manual_seed(_lowercase ) else: A_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A_ : int = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = '''cpu''' A_ : Optional[Any] = self.get_dummy_components() A_ : List[str] = self.pipeline_class(**_lowercase ) A_ : Union[str, Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A_ : Optional[Any] = pipe(**self.get_dummy_inputs(_lowercase ) ) A_ : Tuple = output.images A_ : Any = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Any = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : int ): """simple docstring""" A_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) A_ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A_ : Any = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) A_ : Optional[int] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A_ : str = '''red cat, 4k photo''' A_ : Optional[int] = torch.Generator(device='''cuda''' ).manual_seed(0 ) A_ ,A_ : str = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() A_ : List[Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) A_ : Union[str, Any] = pipeline( image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , output_type='''np''' , ) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask snake_case__ = logging.getLogger(__name__) class UpperCamelCase_ (_a ): """simple docstring""" _lowerCAmelCase = """token-classification""" def __init__( self : Tuple , _lowerCamelCase : List[str] ): """simple docstring""" if type(__lowerCAmelCase ) == dict: A_ : Optional[Any] = Namespace(**__lowerCAmelCase ) A_ : int = import_module('''tasks''' ) try: A_ : Optional[int] = getattr(__lowerCAmelCase , hparams.task_type ) A_ : str = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) A_ : List[Any] = self.token_classification_task.get_labels(hparams.labels ) A_ : Union[str, Any] = CrossEntropyLoss().ignore_index super().__init__(__lowerCAmelCase , len(self.labels ) , self.mode ) def _a ( self : str , **_lowerCamelCase : str ): """simple docstring""" return self.model(**__lowerCAmelCase ) def _a ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": A_ : Optional[Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids A_ : Any = self(**__lowerCAmelCase ) A_ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = self.hparams for mode in ["train", "dev", "test"]: A_ : Dict = self._feature_file(__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowerCAmelCase ) A_ : Union[str, Any] = torch.load(__lowerCAmelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) A_ : int = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCAmelCase ) A_ : List[Any] = self.token_classification_task.convert_examples_to_features( __lowerCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) def _a ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Any = False ): """simple docstring""" A_ : Any = self._feature_file(__lowerCAmelCase ) logger.info('''Loading features from cached file %s''' , __lowerCAmelCase ) A_ : Optional[Any] = torch.load(__lowerCAmelCase ) A_ : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: A_ : int = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: A_ : str = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) A_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , batch_size=__lowerCAmelCase ) def _a ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" """Compute validation""" "" A_ : Any = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": A_ : Optional[int] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids A_ : Dict = self(**__lowerCAmelCase ) A_ ,A_ : List[str] = outputs[:2] A_ : Tuple = logits.detach().cpu().numpy() A_ : Optional[int] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _a ( self : Tuple , _lowerCamelCase : Dict ): """simple docstring""" A_ : List[str] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() A_ : Optional[Any] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) A_ : Optional[Any] = np.argmax(__lowerCAmelCase , axis=2 ) A_ : Tuple = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) A_ : Optional[Any] = dict(enumerate(self.labels ) ) A_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] A_ : str = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) A_ : Tuple = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), '''precision''': precision_score(__lowerCAmelCase , __lowerCAmelCase ), '''recall''': recall_score(__lowerCAmelCase , __lowerCAmelCase ), '''f1''': fa_score(__lowerCAmelCase , __lowerCAmelCase ), } A_ : str = dict(results.items() ) A_ : int = results return ret, preds_list, out_label_list def _a ( self : List[Any] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ ,A_ ,A_ : Tuple = self._eval_end(__lowerCAmelCase ) A_ : Optional[int] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _a ( self : Union[str, Any] , _lowerCamelCase : str ): """simple docstring""" A_ ,A_ ,A_ : int = self._eval_end(__lowerCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 A_ : List[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _a ( _lowerCamelCase : int , _lowerCamelCase : List[str] ): """simple docstring""" BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowerCAmelCase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowerCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowerCAmelCase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowerCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) snake_case__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) snake_case__ = parser.parse_args() snake_case__ = NERTransformer(args) snake_case__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 snake_case__ = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) snake_case__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ) -> Dict: A_ : str = state_dict.pop(__a ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : List[Any] ) -> Dict: A_ : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : str = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[Any] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=False ) -> Optional[int]: A_ : Optional[Any] = '' if is_panoptic: A_ : Dict = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : int = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[:2_5_6, :] A_ : List[str] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] A_ : str = in_proj_weight[-2_5_6:, :] A_ : List[str] = in_proj_bias[-2_5_6:] def snake_case__ ( ) -> List[Any]: A_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : List[Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) -> Any: A_ : List[str] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : Tuple = 'resnet101' if "dc5" in model_name: A_ : int = True A_ : Union[str, Any] = 'panoptic' in model_name if is_panoptic: A_ : Optional[int] = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = 'huggingface/label-files' A_ : Optional[Any] = 'coco-detection-id2label.json' A_ : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) A_ : Dict = {int(__a ): v for k, v in idalabel.items()} A_ : List[str] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load image processor A_ : Any = 'coco_panoptic' if is_panoptic else 'coco_detection' A_ : List[Any] = ConditionalDetrImageProcessor(format=__a ) # prepare image A_ : Any = prepare_img() A_ : List[Any] = image_processor(images=__a , return_tensors='''pt''' ) A_ : Tuple = encoding['pixel_values'] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub A_ : Tuple = torch.hub.load('''DeppMeng/ConditionalDETR''' , __a , pretrained=__a ).eval() A_ : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Optional[int] = 'conditional_detr.' + src rename_key(__a , __a , __a ) A_ : List[str] = rename_backbone_keys(__a ) # query, key and value matrices need special treatment read_in_q_k_v(__a , is_panoptic=__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): A_ : Dict = state_dict.pop(__a ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : Any = state_dict.pop(__a ) A_ : str = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: A_ : str = state_dict.pop(__a ) A_ : Dict = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(__a ) A_ : Union[str, Any] = val # finally, create HuggingFace model and load state dict A_ : Optional[Any] = ConditionalDetrForSegmentation(__a ) if is_panoptic else ConditionalDetrForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() model.push_to_hub(repo_id=__a , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion A_ : Optional[Any] = conditional_detr(__a ) A_ : Optional[int] = model(__a ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) snake_case__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
371
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int = 1_0_0_0 ) -> List[Any]: A_ : Tuple = 1, 1 A_ : Any = 2 while True: A_ : Union[str, Any] = 0 A_ : Optional[Any] = fa + fa A_ : List[str] = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
350
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' import os import sys import unittest snake_case__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) snake_case__ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") snake_case__ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[Any] ): """simple docstring""" A_ : str = get_test_to_tester_mapping(snake_case_ ) A_ : Tuple = get_test_to_tester_mapping(snake_case_ ) A_ : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} A_ : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = get_model_to_test_mapping(snake_case_ ) A_ : Any = get_model_to_test_mapping(snake_case_ ) A_ : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A_ : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def _a ( self : int ): """simple docstring""" A_ : Any = get_model_to_tester_mapping(snake_case_ ) A_ : List[str] = get_model_to_tester_mapping(snake_case_ ) A_ : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A_ : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : Any ) -> Optional[int]: A_ : List[str] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): A_ : List[str] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): A_ : List[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A_ : int = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] A_ : Optional[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(lowerCamelCase__ )-1}' ) if "norm" in key: A_ : Union[str, Any] = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A_ : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] A_ : Optional[int] = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(lowerCamelCase__ )-1}' ) if "layer_norm1" in key: A_ : str = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: A_ : Any = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 A_ : Dict = key[key.find('''block''' ) + len('''block''' )] A_ : Union[str, Any] = key.replace(f'block{idx}' , f'block.{int(lowerCamelCase__ )-1}' ) if "attn.q" in key: A_ : Optional[int] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: A_ : str = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: A_ : str = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: A_ : str = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: A_ : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: A_ : Optional[int] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: A_ : Optional[int] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) A_ : Any = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A_ : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] A_ : int = key.replace(f'linear_c{idx}' , f'linear_c.{int(lowerCamelCase__ )-1}' ) if "bot_conv" in key: A_ : Optional[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: A_ : Any = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: A_ : Union[str, Any] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: A_ : Any = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: A_ : Union[str, Any] = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: A_ : Optional[int] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: A_ : Optional[int] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): A_ : Dict = key.replace('''module.last_layer_depth''' , '''head.head''' ) A_ : Dict = value return new_state_dict def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> Dict: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A_ : List[Any] = state_dict.pop(f'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) A_ : List[Any] = state_dict.pop(f'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A_ : Dict = kv_weight[ : config.hidden_sizes[i], : ] A_ : int = kv_bias[: config.hidden_sizes[i]] A_ : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] A_ : int = kv_bias[config.hidden_sizes[i] :] def snake_case__ ( ) -> Union[str, Any]: A_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : List[str] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict=False , lowerCamelCase__ : int=None ) -> List[str]: A_ : List[str] = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) A_ : int = GLPNImageProcessor() # prepare image A_ : Any = prepare_img() A_ : Any = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict A_ : Dict = torch.load(lowerCamelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys A_ : List[str] = rename_keys(lowerCamelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase__ , lowerCamelCase__ ) # create HuggingFace model and load state dict A_ : Optional[Any] = GLPNForDepthEstimation(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # forward pass A_ : Union[str, Any] = model(lowerCamelCase__ ) A_ : List[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: A_ : List[str] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: A_ : List[Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Optional[Any] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase__ , lowerCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase__ , lowerCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCamelCase__ , ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) snake_case__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case__ = datasets.utils.logging.get_logger(__name__) class UpperCamelCase_ (folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None class UpperCamelCase_ (folder_based_builder.FolderBasedBuilder ): """simple docstring""" _lowerCAmelCase = datasets.Audio() _lowerCAmelCase = "audio" _lowerCAmelCase = AudioFolderConfig _lowerCAmelCase = 42 # definition at the bottom of the script _lowerCAmelCase = AudioClassification(audio_column='audio', label_column='label' ) snake_case__ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] snake_case__ = AUDIO_EXTENSIONS
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class UpperCamelCase_ : """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : bool = True , _lowerCamelCase : bool = False ): """simple docstring""" A_ : Optional[int] = scheduler A_ : List[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] A_ : Union[str, Any] = split_batches A_ : List[Any] = step_with_optimizer A_ : List[str] = GradientState() def _a ( self : Union[str, Any] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Optional[Any] ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step A_ : Any = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def _a ( self : Any ): """simple docstring""" return self.scheduler.get_last_lr() def _a ( self : Tuple ): """simple docstring""" return self.scheduler.state_dict() def _a ( self : Union[str, Any] , _lowerCamelCase : List[str] ): """simple docstring""" self.scheduler.load_state_dict(UpperCamelCase_ ) def _a ( self : Any ): """simple docstring""" return self.scheduler.get_lr() def _a ( self : Any , *_lowerCamelCase : List[str] , **_lowerCamelCase : Any ): """simple docstring""" return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
354
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
0
'''simple docstring''' import numpy as np snake_case__ = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase_ : """simple docstring""" def __init__( self : str ): """simple docstring""" A_ : int = np.array(__lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Dict = np.where(letter == self.SQUARE ) A_ : str = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _a ( self : int , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def _a ( self : Union[str, Any] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Tuple = message.lower() A_ : Optional[int] = message.replace(''' ''' , '''''' ) A_ : List[Any] = message.replace('''j''' , '''i''' ) A_ : Union[str, Any] = np.empty((2, len(__lowerCamelCase )) ) for letter_index in range(len(__lowerCamelCase ) ): A_ : List[str] = self.letter_to_numbers(message[letter_index] ) A_ : List[Any] = numbers[0] A_ : Union[str, Any] = numbers[1] A_ : Dict = first_step.reshape(2 * len(__lowerCamelCase ) ) A_ : Dict = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A_ : str = int(second_step[numbers_index * 2] ) A_ : Optional[int] = int(second_step[(numbers_index * 2) + 1] ) A_ : Dict = self.numbers_to_letter(__lowerCamelCase , __lowerCamelCase ) A_ : Dict = encoded_message + letter return encoded_message def _a ( self : Any , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Optional[Any] = message.lower() message.replace(''' ''' , '''''' ) A_ : Optional[int] = np.empty(2 * len(__lowerCamelCase ) ) for letter_index in range(len(__lowerCamelCase ) ): A_ : Any = self.letter_to_numbers(message[letter_index] ) A_ : List[str] = numbers[0] A_ : Tuple = numbers[1] A_ : Union[str, Any] = first_step.reshape((2, len(__lowerCamelCase )) ) A_ : int = '''''' for numbers_index in range(len(__lowerCamelCase ) ): A_ : Any = int(second_step[0, numbers_index] ) A_ : int = int(second_step[1, numbers_index] ) A_ : List[Any] = self.numbers_to_letter(__lowerCamelCase , __lowerCamelCase ) A_ : Any = decoded_message + letter return decoded_message
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
'''simple docstring''' import argparse import os import re snake_case__ = 'src/transformers' # Pattern that looks at the indentation in a line. snake_case__ = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. snake_case__ = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. snake_case__ = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. snake_case__ = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. snake_case__ = re.compile(R"""\[([^\]]+)\]""") def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Dict: A_ : Tuple = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : int="" , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[int]=None ) -> List[str]: A_ : int = 0 A_ : Tuple = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 A_ : Optional[int] = ['\n'.join(lines[:index] )] else: A_ : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A_ : Any = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(_A ) ) if index < len(_A ) - 1: A_ : Optional[int] = [lines[index + 1]] index += 1 else: A_ : Dict = [] else: blocks.append('''\n'''.join(_A ) ) A_ : Optional[int] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('''\n'''.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def snake_case__ ( lowerCamelCase__ : str ) -> int: def _inner(lowerCamelCase__ : Union[str, Any] ): return key(_A ).lower().replace('''_''' , '''''' ) return _inner def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(lowerCamelCase__ : List[str] ): return x if key is None: A_ : Union[str, Any] = noop # Constants are all uppercase, they go first. A_ : Any = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A_ : Optional[int] = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. A_ : List[Any] = [obj for obj in objects if not key(_A )[0].isupper()] A_ : List[Any] = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def snake_case__ ( lowerCamelCase__ : Tuple ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(lowerCamelCase__ : Optional[Any] ): A_ : Any = match.groups()[0] if "," not in imports: return f'[{imports}]' A_ : Dict = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A_ : List[str] = keys[:-1] return "[" + ", ".join([f'\"{k}\"' for k in sort_objects(_A )] ) + "]" A_ : Optional[Any] = import_statement.split('''\n''' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A_ : List[str] = 2 if lines[1].strip() == '[' else 1 A_ : str = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A_ : Dict = sort_objects(_A , key=lambda lowerCamelCase__ : x[1] ) A_ : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A_ : List[str] = _re_bracket_content.sub(_replace , lines[1] ) else: A_ : Optional[int] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A_ : Optional[int] = keys[:-1] A_ : List[str] = get_indent(lines[1] ) + ', '.join([f'\"{k}\"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line A_ : List[Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any=True ) -> List[str]: with open(_A , encoding='''utf-8''' ) as f: A_ : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A_ : Optional[Any] = split_code_in_indented_blocks( _A , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A_ : Optional[Any] = main_blocks[block_idx] A_ : Union[str, Any] = block.split('''\n''' ) # Get to the start of the imports. A_ : List[str] = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A_ : int = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. A_ : Any = '\n'.join(block_lines[line_idx:-1] ) A_ : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A_ : str = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend A_ : List[str] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A_ : Dict = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A_ : str = [(i, key) for i, key in enumerate(_A ) if key is not None] A_ : Tuple = [x[0] for x in sorted(_A , key=lambda lowerCamelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A_ : str = 0 A_ : Any = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: A_ : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. A_ : Union[str, Any] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_A ) ) def snake_case__ ( lowerCamelCase__ : Dict=True ) -> Any: A_ : List[Any] = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: A_ : Union[str, Any] = sort_imports(os.path.join(_A , '''__init__.py''' ) , check_only=_A ) if result: A_ : str = [os.path.join(_A , '''__init__.py''' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") snake_case__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCamelCase_ (SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCAmelCase = '''camembert''' def __init__( self : Union[str, Any] , _lowerCamelCase : List[Any]=30522 , _lowerCamelCase : Tuple=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Optional[int]=12 , _lowerCamelCase : Union[str, Any]=3072 , _lowerCamelCase : int="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : List[Any]=1E-12 , _lowerCamelCase : Union[str, Any]=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : str=2 , _lowerCamelCase : Tuple="absolute" , _lowerCamelCase : int=True , _lowerCamelCase : Dict=None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) A_ : List[str] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : int = num_attention_heads A_ : Tuple = hidden_act A_ : Any = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : Optional[int] = initializer_range A_ : Tuple = layer_norm_eps A_ : Optional[Any] = position_embedding_type A_ : int = use_cache A_ : Tuple = classifier_dropout class UpperCamelCase_ (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def _a ( self : Union[str, Any] ): """simple docstring""" if self.task == "multiple-choice": A_ : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
358
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ (__a, __a, __a, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = StableDiffusionInpaintPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase = frozenset([] ) def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) A_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) A_ : Dict = CLIPTextModel(a__ ) A_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _a ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=0 ): """simple docstring""" A_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) A_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Tuple = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) A_ : str = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): A_ : str = torch.manual_seed(a__ ) else: A_ : List[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : str = self.get_dummy_components() A_ : List[Any] = StableDiffusionInpaintPipeline(**a__ ) A_ : Union[str, Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A_ : Tuple = self.get_dummy_inputs(a__ ) A_ : Any = sd_pipe(**a__ ).images A_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : int = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Tuple ): """simple docstring""" A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A_ : Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Tuple = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : int = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _a ( self : List[str] ): """simple docstring""" A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A_ : int = '''stabilityai/stable-diffusion-2-inpainting''' A_ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : str = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A_ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A_ : int = '''stabilityai/stable-diffusion-2-inpainting''' A_ : int = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) A_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A_ : int = torch.manual_seed(0 ) A_ : Optional[int] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) A_ : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm snake_case__ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ (lowerCamelCase__ ): """simple docstring""" _lowerCAmelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Optional[int] , **_lowerCamelCase : int ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A_ : Union[str, Any] = deprecated_arg[3:] setattr(self , __A , not kwargs.pop(__A ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) A_ : int = kwargs.pop('''torchscript''' , self.torchscript ) A_ : Union[str, Any] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) A_ : str = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__A ) _lowerCAmelCase = field(default=lowerCamelCase__, metadata={'help': 'Trace the models using torchscript'} ) _lowerCAmelCase = field(default=lowerCamelCase__, metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) _lowerCAmelCase = field( default='O1', metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) }, ) @cached_property def _a ( self : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: A_ : Tuple = torch.device('''cpu''' ) A_ : int = 0 elif is_torch_tpu_available(): A_ : int = xm.xla_device() A_ : List[str] = 0 else: A_ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) A_ : List[str] = torch.cuda.device_count() return device, n_gpu @property def _a ( self : Union[str, Any] ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def _a ( self : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _a ( self : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _a ( self : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _a ( self : Dict ): """simple docstring""" return self.n_gpu > 0
360
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
0
'''simple docstring''' import json import sys def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) -> Union[str, Any]: with open(__snake_case , encoding='''utf-8''' ) as f: A_ : Union[str, Any] = json.load(__snake_case ) A_ : Union[str, Any] = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__snake_case ): A_ : str = results[benchmark_name] A_ : Union[str, Any] = benchmark_name.split('''/''' )[-1] output_md.append(f'### Benchmark: {benchmark_file_name}' ) A_ : Dict = '''| metric |''' A_ : Any = '''|--------|''' A_ : Union[str, Any] = '''| new / old (diff) |''' for metric_name in sorted(__snake_case ): A_ : Tuple = benchmark_res[metric_name] A_ : int = metric_vals['''new'''] A_ : Any = metric_vals.get('''old''' , __snake_case ) A_ : Union[str, Any] = metric_vals.get('''diff''' , __snake_case ) A_ : List[str] = f' {new_val:f}' if isinstance(__snake_case , (int, float) ) else '''None''' if old_val is not None: val_str += f' / {old_val:f}' if isinstance(__snake_case , (int, float) ) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(__snake_case , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__snake_case ) ) if __name__ == "__main__": snake_case__ = sys.argv[1] snake_case__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
361
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) snake_case__ = parser.parse_args() snake_case__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) snake_case__ = CLIPImageProcessor() snake_case__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") snake_case__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
362
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
363
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: A_ : Dict = tmp_path / 'file.csv' A_ : str = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20\n ''' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def snake_case__ ( lowerCamelCase__ : Tuple ) -> int: A_ : List[Any] = tmp_path / 'malformed_file.csv' A_ : Optional[Any] = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20,\n ''' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: A_ : str = tmp_path / 'csv_with_image.csv' A_ : Tuple = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> List[Any]: A_ : Any = tmp_path / 'csv_with_label.csv' A_ : Union[str, Any] = textwrap.dedent( '''\\n label\n good\n bad\n good\n ''' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def snake_case__ ( lowerCamelCase__ : List[str] ) -> int: A_ : Optional[int] = tmp_path / 'csv_with_int_list.csv' A_ : List[Any] = textwrap.dedent( '''\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ''' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ) -> str: A_ : Optional[Any] = Csv() A_ : Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def snake_case__ ( lowerCamelCase__ : Tuple ) -> Optional[int]: with open(snake_case__ , encoding='''utf-8''' ) as f: A_ : Union[str, Any] = f.read().splitlines()[1] A_ : List[str] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) A_ : str = csv._generate_tables([[csv_file_with_image]] ) A_ : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() A_ : Tuple = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def snake_case__ ( lowerCamelCase__ : str ) -> Optional[Any]: with open(snake_case__ , encoding='''utf-8''' ) as f: A_ : Optional[int] = f.read().splitlines()[1:] A_ : List[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) A_ : Any = csv._generate_tables([[csv_file_with_label]] ) A_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() A_ : List[Any] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(snake_case__ ) for label in labels] def snake_case__ ( lowerCamelCase__ : Dict ) -> Optional[Any]: A_ : List[str] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowerCamelCase__ : [int(snake_case__ ) for i in x.split()]} ) A_ : Tuple = csv._generate_tables([[csv_file_with_int_list]] ) A_ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) A_ : List[Any] = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
0
'''simple docstring''' snake_case__ = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
365
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None # sigma(t_i) @classmethod def _a ( cls : Optional[Any] ): """simple docstring""" return cls() @dataclass class UpperCamelCase_ (UpperCAmelCase_ ): """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 class UpperCamelCase_ (UpperCAmelCase_, UpperCAmelCase_ ): """simple docstring""" @property def _a ( self : List[Any] ): """simple docstring""" return True @register_to_config def __init__( self : List[str] , _lowerCamelCase : List[str] = 0.02 , _lowerCamelCase : int = 100 , _lowerCamelCase : List[Any] = 1.0_07 , _lowerCamelCase : Dict = 80 , _lowerCamelCase : Union[str, Any] = 0.05 , _lowerCamelCase : List[str] = 50 , ): """simple docstring""" pass def _a ( self : List[str] ): """simple docstring""" return KarrasVeSchedulerState.create() def _a ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] = () ): """simple docstring""" A_ : Optional[Any] = jnp.arange(0 , __lowercase )[::-1].copy() A_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__lowercase , schedule=jnp.array(__lowercase , dtype=jnp.floataa ) , timesteps=__lowercase , ) def _a ( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: A_ : Any = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A_ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Union[str, Any] = random.split(__lowercase , num=1 ) A_ : str = self.config.s_noise * random.normal(key=__lowercase , shape=sample.shape ) A_ : str = sigma + gamma * sigma A_ : Union[str, Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : int = True , ): """simple docstring""" A_ : Optional[Any] = sample_hat + sigma_hat * model_output A_ : Tuple = (sample_hat - pred_original_sample) / sigma_hat A_ : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowercase , derivative=__lowercase , state=__lowercase ) def _a ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Dict = True , ): """simple docstring""" A_ : int = sample_prev + sigma_prev * model_output A_ : Dict = (sample_prev - pred_original_sample) / sigma_prev A_ : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowercase , derivative=__lowercase , state=__lowercase ) def _a ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Any ): """simple docstring""" raise NotImplementedError()
366
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase_ (UpperCamelCase__ ): """simple docstring""" _lowerCAmelCase = """perceiver""" def __init__( self : int , _lowerCamelCase : Optional[Any]=256 , _lowerCamelCase : List[str]=1280 , _lowerCamelCase : List[Any]=768 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : Dict=26 , _lowerCamelCase : Optional[Any]=8 , _lowerCamelCase : str=8 , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Any]="kv" , _lowerCamelCase : List[str]=1 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[str]=0.02 , _lowerCamelCase : str=1E-12 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=262 , _lowerCamelCase : Optional[Any]=2048 , _lowerCamelCase : List[Any]=56 , _lowerCamelCase : Any=[368, 496] , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Optional[int]=1920 , _lowerCamelCase : Dict=16 , _lowerCamelCase : Union[str, Any]=[1, 16, 224, 224] , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**__a ) A_ : List[str] = num_latents A_ : Dict = d_latents A_ : List[str] = d_model A_ : int = num_blocks A_ : Optional[int] = num_self_attends_per_block A_ : Union[str, Any] = num_self_attention_heads A_ : str = num_cross_attention_heads A_ : str = qk_channels A_ : List[Any] = v_channels A_ : str = cross_attention_shape_for_attention A_ : str = self_attention_widening_factor A_ : List[str] = cross_attention_widening_factor A_ : List[Any] = hidden_act A_ : Any = attention_probs_dropout_prob A_ : Optional[int] = initializer_range A_ : Dict = layer_norm_eps A_ : List[str] = use_query_residual # masked language modeling attributes A_ : Dict = vocab_size A_ : int = max_position_embeddings # image classification attributes A_ : Any = image_size # flow attributes A_ : List[Any] = train_size # multimodal autoencoding attributes A_ : Union[str, Any] = num_frames A_ : Optional[Any] = audio_samples_per_frame A_ : List[Any] = samples_per_patch A_ : Optional[Any] = output_shape class UpperCamelCase_ (UpperCamelCase__ ): """simple docstring""" @property def _a ( self : str ): """simple docstring""" if self.task == "multiple-choice": A_ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _a ( self : Dict ): """simple docstring""" return 1E-4 def _a ( self : int , _lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 40 , _lowerCamelCase : int = 40 , ): """simple docstring""" if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : Optional[Any] = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Union[str, Any] = preprocessor.num_special_tokens_to_add(__a ) A_ : Optional[int] = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence A_ : Optional[int] = [''' '''.join(['''a'''] ) * seq_length] * batch_size A_ : Any = dict(preprocessor(__a , return_tensors=__a ) ) A_ : Tuple = inputs.pop('''input_ids''' ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : str = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) A_ : int = self._generate_dummy_images(__a , __a , __a , __a ) A_ : Union[str, Any] = dict(preprocessor(images=__a , return_tensors=__a ) ) A_ : int = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
367
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } snake_case__ = { """Salesforce/codegen-350M-mono""": 20_48, } class UpperCamelCase_ (_UpperCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = CodeGenTokenizer def __init__( self : Dict , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Dict="<|endoftext|>" , _lowerCamelCase : Dict="<|endoftext|>" , _lowerCamelCase : List[Any]="<|endoftext|>" , _lowerCamelCase : Tuple=False , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , _UpperCAmelCase ): A_ : Any = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) A_ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: A_ : List[str] = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) A_ : int = add_prefix_space A_ : str = pre_tok_class(**_UpperCAmelCase ) A_ : Optional[Any] = add_prefix_space def _a ( self : List[str] , *_lowerCamelCase : Any , **_lowerCamelCase : str ): """simple docstring""" A_ : Optional[Any] = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self : int , *_lowerCamelCase : int , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _a ( self : Tuple , _lowerCamelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[List[str]] = None , **_lowerCamelCase : List[str] , ): """simple docstring""" A_ : List[Any] = super().decode( token_ids=_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , **_UpperCAmelCase , ) if truncate_before_pattern is not None and len(_UpperCAmelCase ) > 0: A_ : Optional[int] = self.truncate(_UpperCAmelCase , _UpperCAmelCase ) return decoded_text def _a ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" def find_re(_lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int ): A_ : int = pattern.search(_UpperCAmelCase , _UpperCAmelCase ) return m.start() if m else -1 A_ : Union[str, Any] = [re.compile(_UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A_ : Tuple = list(re.finditer('''^print''' , _UpperCAmelCase , re.MULTILINE ) ) if len(_UpperCAmelCase ) > 1: A_ : str = completion[: prints[1].start()] A_ : Tuple = list(re.finditer('''^def''' , _UpperCAmelCase , re.MULTILINE ) ) if len(_UpperCAmelCase ) > 1: A_ : Union[str, Any] = completion[: defs[1].start()] A_ : Union[str, Any] = 0 A_ : Optional[Any] = [ pos for pos in [find_re(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_UpperCAmelCase ) > 0: return completion[: min(_UpperCAmelCase )] else: return completion
368
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ (__snake_case ): """simple docstring""" _lowerCAmelCase = """ClapFeatureExtractor""" _lowerCAmelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : int , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Dict=None , **_lowerCamelCase : List[str] ): """simple docstring""" A_ : Dict = kwargs.pop('''sampling_rate''' , UpperCamelCase__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: A_ : Any = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ : Optional[int] = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ : int = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _a ( self : Union[str, Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _a ( self : Any ): """simple docstring""" A_ : str = self.tokenizer.model_input_names A_ : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ (lowerCamelCase_, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline _lowerCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowerCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowerCAmelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase = False @property def _a ( self : Tuple ): """simple docstring""" return 32 @property def _a ( self : Optional[int] ): """simple docstring""" return 32 @property def _a ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def _a ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : List[str] ): """simple docstring""" return 100 @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A_ : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ : Optional[int] = UNetaDConditionModel(**__snake_case ) return model @property def _a ( self : Union[str, Any] ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : int ): """simple docstring""" torch.manual_seed(0 ) A_ : str = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : str ): """simple docstring""" A_ : Optional[Any] = self.dummy_unet A_ : Optional[int] = self.dummy_movq A_ : Any = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A_ : Dict = DDIMScheduler(**__snake_case ) A_ : int = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _a ( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=0 ): """simple docstring""" A_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) A_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image A_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : str = Image.fromarray(np.uinta(__snake_case ) ).convert('''RGB''' ).resize((256, 256) ) # create hint A_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('''mps''' ): A_ : List[Any] = torch.manual_seed(__snake_case ) else: A_ : int = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) A_ : Union[str, Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = '''cpu''' A_ : Optional[int] = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**__snake_case ) A_ : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A_ : Tuple = pipe(**self.get_dummy_inputs(__snake_case ) ) A_ : Tuple = output.images A_ : Any = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] A_ : List[Any] = image[0, -3:, -3:, -1] A_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Union[str, Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : int ): """simple docstring""" A_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) A_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) A_ : List[str] = init_image.resize((512, 512) ) A_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) A_ : Any = torch.from_numpy(np.array(__snake_case ) ).float() / 255.0 A_ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A_ : int = '''A robot, 4k photo''' A_ : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) A_ : Optional[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) A_ : Any = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) A_ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ ,A_ : Dict = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt='''''' , ).to_tuple() A_ : int = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
370
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
0
'''simple docstring''' import math def snake_case__ ( lowerCamelCase__ : str ) -> bool: return math.sqrt(lowerCamelCase__ ) * math.sqrt(lowerCamelCase__ ) == num def snake_case__ ( lowerCamelCase__ : Tuple ) -> bool: A_ : Any = 0 A_ : Optional[int] = n while left <= right: A_ : Any = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ : Optional[int] = mid - 1 else: A_ : Dict = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
0
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = RoCBertTokenizer _lowerCAmelCase = None _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def _a ( self : Optional[Any] ): """simple docstring""" super().setUp() A_ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A_ : Optional[int] = {} A_ : int = {} for i, value in enumerate(_lowerCamelCase ): A_ : Tuple = i A_ : Optional[int] = i A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) def _a ( self : Any ): """simple docstring""" A_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A_ : List[str] = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_lowerCamelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _a ( self : Dict ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Any ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _a ( self : Any ): """simple docstring""" A_ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Any ): """simple docstring""" A_ : Tuple = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _a ( self : Any ): """simple docstring""" A_ : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A_ : Union[str, Any] = {} for i, token in enumerate(_lowerCamelCase ): A_ : Dict = i A_ : List[str] = RoCBertWordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _a ( self : int ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _a ( self : Tuple ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _a ( self : Tuple ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _a ( self : int ): """simple docstring""" A_ : Any = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A_ : List[Any] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def _a ( self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A_ : Dict = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) A_ : int = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , '''do_lower_case''' ) else False A_ : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _a ( self : int ): """simple docstring""" A_ : Tuple = ['''的''', '''人''', '''有'''] A_ : Optional[int] = ''''''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : List[str] = True A_ : List[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : str = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : str = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : Dict = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = False A_ : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : int = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : List[Any] = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A_ : Optional[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A_ : Tuple = tokenizer.encode('''你好''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.encode('''你是谁''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A_ : Dict = '''你好,你是谁''' A_ : List[Any] = tokenizer.tokenize(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) A_ : int = tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) A_ : Any = tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) A_ : Any = tokenizer.prepare_for_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = tokenizer.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
350
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ (a__ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _lowerCamelCase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError()
351
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str=False ) -> List[str]: A_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: A_ : Optional[Any] = '''''' else: A_ : Union[str, Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A_ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : int = in_proj_weight[ : config.hidden_size, : ] A_ : List[str] = in_proj_bias[: config.hidden_size] A_ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Dict = in_proj_bias[-config.hidden_size :] def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) -> Dict: A_ : Optional[Any] = dct.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( ) -> List[str]: A_ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : Any = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Any ) -> Optional[Any]: A_ : Any = DeiTConfig() # all deit models have fine-tuned heads A_ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ : List[Any] = 1_0_0_0 A_ : Union[str, Any] = '''huggingface/label-files''' A_ : Tuple = '''imagenet-1k-id2label.json''' A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) A_ : Tuple = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} A_ : str = int(deit_name[-6:-4] ) A_ : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): A_ : Optional[int] = 1_9_2 A_ : Dict = 7_6_8 A_ : List[str] = 1_2 A_ : Optional[int] = 3 elif deit_name[9:].startswith('''small''' ): A_ : Tuple = 3_8_4 A_ : int = 1_5_3_6 A_ : Dict = 1_2 A_ : Any = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): A_ : Tuple = 1_0_2_4 A_ : List[Any] = 4_0_9_6 A_ : Any = 2_4 A_ : Union[str, Any] = 1_6 # load original model from timm A_ : List[str] = timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : List[Any] = timm_model.state_dict() A_ : List[Any] = create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # load HuggingFace model A_ : Optional[Any] = DeiTForImageClassificationWithTeacher(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A_ : str = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ : Union[str, Any] = DeiTImageProcessor(size=lowerCamelCase__ , crop_size=config.image_size ) A_ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ) A_ : Tuple = encoding['''pixel_values'''] A_ : Dict = model(lowerCamelCase__ ) A_ : Tuple = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def snake_case__ ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=1_0_2_4 , lowerCamelCase__ : Union[str, Any]=1_0_2_4 , lowerCamelCase__ : Any=False , **lowerCamelCase__ : List[Any] ) -> List[Any]: A_ : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) A_ : Optional[Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='''train''' , **lowerCamelCase__ ) A_ : List[str] = tok.pad_token_id def get_lens(lowerCamelCase__ : str ): A_ : int = tqdm( DataLoader(lowerCamelCase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowerCamelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) A_ : str = [] for batch in dl: A_ : str = batch['''input_ids'''].ne(lowerCamelCase__ ).sum(1 ).tolist() A_ : str = batch['''labels'''].ne(lowerCamelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase__ , lowerCamelCase__ ): max_lens.append(max(lowerCamelCase__ , lowerCamelCase__ ) ) else: max_lens.extend(lowerCamelCase__ ) return max_lens A_ : Any = get_lens(lowerCamelCase__ ) A_ : Optional[Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='''val''' , **lowerCamelCase__ ) A_ : Any = get_lens(lowerCamelCase__ ) pickle_save(lowerCamelCase__ , train_ds.len_file ) pickle_save(lowerCamelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
354
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=13 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : List[Any]=224 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : Union[str, Any]=400 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} A_ : str = parent A_ : Any = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Union[str, Any] = min_resolution A_ : Dict = max_resolution A_ : Any = do_resize A_ : str = size A_ : int = do_normalize A_ : Optional[int] = image_mean A_ : List[str] = image_std def _a ( self : Tuple ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = EfficientFormerImageProcessorTester(self ) @property def _a ( self : Any ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def _a ( self : int ): """simple docstring""" A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Optional[int] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _a ( self : Any ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _a ( self : Optional[int] ): """simple docstring""" A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Optional[Any] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
355
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> List[Any]: if height >= 1: move_tower(height - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) move_disk(lowerCamelCase__ , lowerCamelCase__ ) move_tower(height - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int ) -> Optional[Any]: print('''moving disk from''' , lowerCamelCase__ , '''to''' , lowerCamelCase__ ) def snake_case__ ( ) -> Optional[Any]: A_ : Tuple = int(input('''Height of hanoi: ''' ).strip() ) move_tower(lowerCamelCase__ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = 4_2 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 4_2 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
358
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> str: A_ : Optional[int] = sorted(zip(lowerCamelCase__ , lowerCamelCase__ ) , key=lambda lowerCamelCase__ : x[0] / x[1] , reverse=lowerCamelCase__ ) A_ : int = [i[0] for i in r], [i[1] for i in r] A_ : Tuple = list(accumulate(lowerCamelCase__ ) ) A_ : str = bisect(lowerCamelCase__ , lowerCamelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
0