code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'levit' def __init__( self : int , _lowerCamelCase : List[Any]=224 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : Tuple=[128, 256, 384] , _lowerCamelCase : List[str]=[4, 8, 12] , _lowerCamelCase : Optional[int]=[4, 4, 4] , _lowerCamelCase : Union[str, Any]=[16, 16, 16] , _lowerCamelCase : int=0 , _lowerCamelCase : Union[str, Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=[2, 2, 2] , _lowerCamelCase : Optional[Any]=0.02 , **_lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : List[Any] = image_size A_ : List[str] = num_channels A_ : Tuple = kernel_size A_ : Optional[int] = stride A_ : Dict = padding A_ : Tuple = hidden_sizes A_ : Tuple = num_attention_heads A_ : int = depths A_ : Any = key_dim A_ : Any = drop_path_rate A_ : Tuple = patch_size A_ : Union[str, Any] = attention_ratio A_ : str = mlp_ratio A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : int ): """simple docstring""" return 1E-4
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict=None ) -> Optional[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' A_ : Optional[Any] = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' A_ : str = nn.Parameter(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int ) -> Dict: # set torch weights for 1-to-1 comparison A_ : Dict = np.asarray(weights[0] ) A_ : Optional[int] = np.asarray(weights[1] ) A_ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ) -> Dict: # set torch weights for 1-to-1 comparison A_ : Optional[int] = np.asarray(weights[0] ) A_ : Union[str, Any] = np.asarray(weights[1] ) A_ : Optional[Any] = np.asarray(weights[2] ) A_ : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def snake_case__ ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ) -> int: # layernorm 1 A_ : Optional[Any] = weights[0][0][0] A_ : Optional[int] = np.asarray(layer_norm_a[0] ) A_ : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output A_ : Dict = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs A_ : Any = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: A_ : List[str] = intermediate_weights[2] # layernorm 2 A_ : Tuple = np.asarray(intermediate_weights[0][0] ) A_ : Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense A_ : Optional[int] = np.asarray(intermediate_weights[1][0] ) A_ : int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out A_ : Tuple = np.asarray(intermediate_weights[4][0] ) A_ : Optional[int] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ) -> str: # reformer model A_ : List[Any] = torch_model.reformer # word embeds A_ : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): A_ : int = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A_ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' A_ : Optional[int] = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) A_ : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A_ : List[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm A_ : Optional[Any] = np.asarray(weights[7][0] ) A_ : Tuple = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings A_ : Optional[int] = np.asarray(weights[9][0] ) A_ : Optional[int] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> Tuple: # Initialise PyTorch model A_ : Union[str, Any] = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A_ : Tuple = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , '''rb''' ) as f: A_ : Tuple = pickle.load(lowerCamelCase__ )['''weights'''] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = LEDTokenizer _lowerCAmelCase = LEDTokenizerFast _lowerCAmelCase = True def _a ( self : str ): """simple docstring""" super().setUp() A_ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] A_ : Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A_ : Any = {'''unk_token''': '''<unk>'''} A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def _a ( self : Dict , **_lowerCamelCase : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : List[Any] , **_lowerCamelCase : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Union[str, Any] , _lowerCamelCase : int ): """simple docstring""" return "lower newer", "lower newer" @cached_property def _a ( self : Optional[int] ): """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def _a ( self : List[str] ): """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def _a ( self : Optional[int] ): """simple docstring""" A_ : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A_ : Any = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Dict = tokenizer(_lowerCamelCase , max_length=len(_lowerCamelCase ) , padding=_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A_ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_torch def _a ( self : List[Any] ): """simple docstring""" A_ : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _lowerCamelCase ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertNotIn('''labels''' , _lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''' , _lowerCamelCase ) @require_torch def _a ( self : str ): """simple docstring""" A_ : List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[Any] = tokenizer(text_target=_lowerCamelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def _a ( self : Optional[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Tuple = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _a ( self : List[str] ): """simple docstring""" A_ : int = ['''A long paragraph for summarization.'''] A_ : Dict = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : str = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) A_ : Dict = tokenizer(text_target=_lowerCamelCase , return_tensors='''pt''' ) A_ : Optional[Any] = inputs['''input_ids'''] A_ : List[str] = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _a ( self : List[str] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : str = ['''Summary of the text.''', '''Another summary.'''] A_ : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A_ : int = tokenizer(_lowerCamelCase , padding=_lowerCamelCase ) A_ : Dict = [[0] * len(_lowerCamelCase ) for x in encoded_output['''input_ids''']] A_ : List[str] = tokenizer.pad(_lowerCamelCase ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : int = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : int = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Tuple = '''A, <mask> AllenNLP sentence.''' A_ : List[Any] = tokenizer_r.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) A_ : Dict = tokenizer_p.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) A_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) A_ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowerCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _lowerCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
4
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black snake_case__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case__ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" A_ : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) A_ : Dict = self.transformer_dir shutil.copy( os.path.join(_lowerCamelCase , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def _a ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=None ): """simple docstring""" A_ : int = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: A_ : Optional[int] = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result A_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) A_ : Optional[int] = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) A_ : Optional[Any] = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_lowerCamelCase , '''w''' , newline='''\n''' ) as f: f.write(_lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase ) with open(_lowerCamelCase , '''r''' ) as f: self.assertTrue(f.read() , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) # Copy consistency with a really long name A_ : List[Any] = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub('''Bert''' , _lowerCamelCase , _lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _lowerCamelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) def _a ( self : str ): """simple docstring""" A_ : List[Any] = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] A_ : List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) A_ : int = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ : Optional[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) A_ ,A_ : Optional[Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) self.assertFalse(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) A_ ,A_ : Optional[Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCamelCase ) A_ : Any = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) A_ : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ : str = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ ,A_ : Dict = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_lowerCamelCase , _lowerCamelCase )
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int = 1_0_0_0 ) -> int: A_ ,A_ : int = 1, 1 A_ : Dict = 2 while True: A_ : List[Any] = 0 A_ : str = fa + fa A_ ,A_ : str = fa, f index += 1 for _ in str(lowerCamelCase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case__ = """scheduler_config.json""" class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 5 @dataclass class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = SCHEDULER_CONFIG_NAME _lowerCAmelCase = ['dtype'] _lowerCAmelCase = [] _lowerCAmelCase = True @classmethod def _a ( cls : Union[str, Any] , _lowerCamelCase : Dict[str, Any] = None , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Union[str, Any]=False , **_lowerCamelCase : str , ): """simple docstring""" A_ ,A_ : List[Any] = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase , ) A_ ,A_ : Tuple = cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase ) if hasattr(_lowerCamelCase , '''create_state''' ) and getattr(_lowerCamelCase , '''has_state''' , _lowerCamelCase ): A_ : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _a ( self : Optional[int] , _lowerCamelCase : Union[str, os.PathLike] , _lowerCamelCase : bool = False , **_lowerCamelCase : List[str] ): """simple docstring""" self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : Optional[Any] ): """simple docstring""" return self._get_compatibles() @classmethod def _a ( cls : Union[str, Any] ): """simple docstring""" A_ : Any = list(set([cls.__name__] + cls._compatibles ) ) A_ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) A_ : Any = [ getattr(_lowerCamelCase , _lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase ) ] return compatible_classes def snake_case__ ( lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : Tuple[int] ) -> jnp.ndarray: assert len(lowerCamelCase__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCamelCase__ ) - x.ndim) ) , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : List[str]=0.999 , lowerCamelCase__ : List[str]=jnp.floataa ) -> jnp.ndarray: def alpha_bar(lowerCamelCase__ : int ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 A_ : Optional[int] = [] for i in range(lowerCamelCase__ ): A_ : int = i / num_diffusion_timesteps A_ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCamelCase__ ) / alpha_bar(lowerCamelCase__ ) , lowerCamelCase__ ) ) return jnp.array(lowerCamelCase__ , dtype=lowerCamelCase__ ) @flax.struct.dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @classmethod def _a ( cls : List[str] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : str = scheduler.config if config.trained_betas is not None: A_ : Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": A_ : Optional[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : Optional[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : List[str] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) A_ : Dict = 1.0 - betas A_ : Any = jnp.cumprod(_lowerCamelCase , axis=0 ) return cls( alphas=_lowerCamelCase , betas=_lowerCamelCase , alphas_cumprod=_lowerCamelCase , ) def snake_case__ ( lowerCamelCase__ : CommonSchedulerState , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray ) -> Tuple: A_ : Union[str, Any] = state.alphas_cumprod A_ : List[str] = alphas_cumprod[timesteps] ** 0.5 A_ : Union[str, Any] = sqrt_alpha_prod.flatten() A_ : int = broadcast_to_shape_from_left(lowerCamelCase__ , original_samples.shape ) A_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ : Tuple = sqrt_one_minus_alpha_prod.flatten() A_ : List[str] = broadcast_to_shape_from_left(lowerCamelCase__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def snake_case__ ( lowerCamelCase__ : CommonSchedulerState , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray ) -> Tuple: A_ ,A_ : List[Any] = get_sqrt_alpha_prod(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def snake_case__ ( lowerCamelCase__ : CommonSchedulerState , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray , lowerCamelCase__ : jnp.ndarray ) -> Dict: A_ ,A_ : List[str] = get_sqrt_alpha_prod(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Any=7 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=30 , _lowerCamelCase : Dict=400 , _lowerCamelCase : Dict=True , _lowerCamelCase : str=None , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]=1 / 255 , _lowerCamelCase : Any=True , _lowerCamelCase : str=[0.5, 0.5, 0.5] , _lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , _lowerCamelCase : Any=True , ): """simple docstring""" A_ : Any = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} A_ : Any = parent A_ : int = batch_size A_ : str = num_channels A_ : str = min_resolution A_ : Dict = max_resolution A_ : List[Any] = do_resize A_ : str = size A_ : str = do_rescale A_ : List[Any] = rescale_factor A_ : List[str] = do_normalize A_ : Dict = image_mean A_ : int = image_std A_ : int = do_pad def _a ( self : Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _a ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False ): """simple docstring""" if not batched: A_ : str = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ ,A_ : Optional[int] = image.size else: A_ ,A_ : int = image.shape[1], image.shape[2] if w < h: A_ : Optional[int] = int(self.size['''shortest_edge'''] * h / w ) A_ : Any = self.size['''shortest_edge'''] elif w > h: A_ : Dict = self.size['''shortest_edge'''] A_ : List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: A_ : int = self.size['''shortest_edge'''] A_ : List[Any] = self.size['''shortest_edge'''] else: A_ : List[Any] = [] for image in image_inputs: A_ ,A_ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = DetrImageProcessor if is_vision_available() else None def _a ( self : Optional[Any] ): """simple docstring""" A_ : Any = DetrImageProcessingTester(self ) @property def _a ( self : Tuple ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''rescale_factor''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) def _a ( self : int ): """simple docstring""" A_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) A_ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ ,A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) A_ : Tuple = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values A_ ,A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Dict = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values A_ ,A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: A_ : Union[str, Any] = json.loads(f.read() ) A_ : Any = {'''image_id''': 39769, '''annotations''': target} # encode them A_ : Union[str, Any] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) A_ : List[str] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values A_ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) A_ : int = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1E-4 ) ) # verify area A_ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes A_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) A_ : Dict = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1E-3 ) ) # verify image_id A_ : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd A_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels A_ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify orig_size A_ : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size A_ : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) ) @slow def _a ( self : Any ): """simple docstring""" A_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: A_ : Tuple = json.loads(f.read() ) A_ : Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} A_ : Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them A_ : str = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) A_ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values A_ : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) A_ : Optional[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1E-4 ) ) # verify area A_ : Dict = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes A_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) A_ : Any = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1E-3 ) ) # verify image_id A_ : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd A_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels A_ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify masks A_ : int = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase ) # verify orig_size A_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size A_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): A_ : Optional[int] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Dict = '''sshleifer/tiny-gpt2''' A_ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : Union[str, Any] = PyTorchBenchmark(_lowerCamelCase ) A_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = '''sgugger/tiny-distilbert-classification''' A_ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , ) A_ : List[str] = PyTorchBenchmark(_lowerCamelCase ) A_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' A_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : List[Any] = PyTorchBenchmark(_lowerCamelCase ) A_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = '''sshleifer/tiny-gpt2''' A_ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : int = PyTorchBenchmark(_lowerCamelCase ) A_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : Tuple ): """simple docstring""" A_ : int = '''sshleifer/tiny-gpt2''' A_ : Dict = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` A_ : List[str] = None A_ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : Optional[int] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) A_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' A_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : List[Any] = PyTorchBenchmark(_lowerCamelCase ) A_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[int] = '''sshleifer/tiny-gpt2''' A_ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , ) A_ : int = PyTorchBenchmark(_lowerCamelCase ) A_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = '''sshleifer/tiny-gpt2''' A_ : int = AutoConfig.from_pretrained(_lowerCamelCase ) A_ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : str = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) A_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : int = '''sshleifer/tinier_bart''' A_ : str = AutoConfig.from_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : Any = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) A_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' A_ : Optional[int] = AutoConfig.from_pretrained(_lowerCamelCase ) A_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : List[str] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) A_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = '''sshleifer/tinier_bart''' A_ : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase ) A_ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) A_ : List[Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) A_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a ( self : int ): """simple docstring""" A_ : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCamelCase , '''env.csv''' ) , multi_process=_lowerCamelCase , ) A_ : int = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''env.csv''' ) ).exists() ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Any = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : Dict ): self.assertTrue(hasattr(_lowerCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A_ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , '''log.txt''' ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , ) A_ : str = PyTorchBenchmark(_lowerCamelCase ) A_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''log.txt''' ) ).exists() )
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
'''simple docstring''' from maths.prime_check import is_prime def snake_case__ ( lowerCamelCase__ : int ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Dict = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase__ ) if is_prime(lowerCamelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" A_ : int = tempfile.mkdtemp() # fmt: off A_ : Optional[int] = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A_ : Dict = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Tuple = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A_ : Any = {'''unk_token''': '''<unk>'''} A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : Optional[int] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **_lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Optional[Any] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **_lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Optional[Any] ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Dict = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_tokenizer() A_ : List[str] = self.get_rust_tokenizer() A_ : Optional[int] = self.get_image_processor() A_ : Tuple = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Dict = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : str ): """simple docstring""" A_ : Tuple = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : List[str] = self.get_image_processor(do_normalize=_lowerCamelCase ) A_ : Dict = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Tuple = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : Optional[Any] = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : Dict = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : Optional[int] = processor(text=_lowerCamelCase , return_tensors='''np''' ) A_ : int = tokenizer(_lowerCamelCase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Tuple = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : Optional[Any] = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Tuple = '''google/owlvit-base-patch32''' A_ : Tuple = OwlViTProcessor.from_pretrained(_lowerCamelCase ) A_ : int = ['''cat''', '''nasa badge'''] A_ : int = processor(text=_lowerCamelCase ) A_ : Optional[Any] = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : int = '''google/owlvit-base-patch32''' A_ : Any = OwlViTProcessor.from_pretrained(_lowerCamelCase ) A_ : Tuple = [['''cat''', '''nasa badge'''], ['''person''']] A_ : int = processor(text=_lowerCamelCase ) A_ : Optional[int] = 16 A_ : int = len(_lowerCamelCase ) A_ : str = max([len(_lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : str ): """simple docstring""" A_ : List[Any] = '''google/owlvit-base-patch32''' A_ : List[str] = OwlViTProcessor.from_pretrained(_lowerCamelCase ) A_ : int = ['''cat''', '''nasa badge'''] A_ : Optional[int] = processor(text=_lowerCamelCase ) A_ : str = 16 A_ : int = inputs['''input_ids'''] A_ : List[str] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _a ( self : Any ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Tuple = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = self.prepare_image_inputs() A_ : Optional[Any] = self.prepare_image_inputs() A_ : Optional[int] = processor(images=_lowerCamelCase , query_images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : Any ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : str = OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Any = processor.batch_decode(_lowerCamelCase ) A_ : List[str] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
4
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['keras_nlp'] def __init__( self : Optional[Any] , *_lowerCamelCase : Dict , **_lowerCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''keras_nlp'''] )
4
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
1
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None def snake_case__ ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple=0.999 , lowerCamelCase__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A_ : List[Any] = [] for i in range(lowerCamelCase__ ): A_ : Tuple = i / num_diffusion_timesteps A_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 1 @register_to_config def __init__( self : Any , _lowerCamelCase : int = 1000 , _lowerCamelCase : float = 0.00_01 , _lowerCamelCase : float = 0.02 , _lowerCamelCase : str = "linear" , _lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCamelCase : bool = True , _lowerCamelCase : bool = True , _lowerCamelCase : int = 0 , _lowerCamelCase : str = "epsilon" , _lowerCamelCase : float = 1.0 , **_lowerCamelCase : Tuple , ): """simple docstring""" if kwargs.get('''set_alpha_to_one''' , _lowerCamelCase ) is not None: A_ : Optional[Any] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCamelCase , standard_warn=_lowerCamelCase ) A_ : Union[str, Any] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: A_ : List[Any] = torch.tensor(_lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": A_ : List[Any] = torch.linspace(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : List[str] = betas_for_alpha_bar(_lowerCamelCase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) A_ : Tuple = 1.0 - self.betas A_ : Optional[int] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. A_ : List[str] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution A_ : Union[str, Any] = 1.0 # setable values A_ : Optional[int] = None A_ : List[Any] = torch.from_numpy(np.arange(0 , _lowerCamelCase ).copy().astype(np.intaa ) ) def _a ( self : Any , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : Optional[int] = None ): """simple docstring""" return sample def _a ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Union[str, torch.device] = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' f' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' f' maximal {self.config.num_train_timesteps} timesteps.' ) A_ : List[str] = num_inference_steps A_ : Any = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : Union[str, Any] = (np.arange(0 , _lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) A_ : List[Any] = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) self.timesteps += self.config.steps_offset def _a ( self : Tuple , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : float = 0.0 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : bool = True , ): """simple docstring""" A_ : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process A_ : int = self.alphas_cumprod[timestep] A_ : Optional[Any] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) A_ : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": A_ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 A_ : Dict = model_output elif self.config.prediction_type == "sample": A_ : Tuple = model_output A_ : List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": A_ : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output A_ : Union[str, Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: A_ : List[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A_ : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A_ : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase ) def __len__( self : Any ): """simple docstring""" return self.config.num_train_timesteps
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ (a__ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _lowerCamelCase : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError()
4
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: A_ : Dict = tau * frequency / samplerate A_ : Union[str, Any] = sin(lowerCamelCase__ ) A_ : str = cos(lowerCamelCase__ ) A_ : Optional[int] = _sin / (2 * q_factor) A_ : Dict = (1 - _cos) / 2 A_ : Optional[int] = 1 - _cos A_ : List[Any] = 1 + alpha A_ : str = -2 * _cos A_ : Optional[int] = 1 - alpha A_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: A_ : Union[str, Any] = tau * frequency / samplerate A_ : str = sin(lowerCamelCase__ ) A_ : str = cos(lowerCamelCase__ ) A_ : Union[str, Any] = _sin / (2 * q_factor) A_ : str = (1 + _cos) / 2 A_ : Optional[int] = -1 - _cos A_ : Optional[Any] = 1 + alpha A_ : int = -2 * _cos A_ : Tuple = 1 - alpha A_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: A_ : Optional[Any] = tau * frequency / samplerate A_ : List[str] = sin(lowerCamelCase__ ) A_ : str = cos(lowerCamelCase__ ) A_ : Optional[Any] = _sin / (2 * q_factor) A_ : List[str] = _sin / 2 A_ : Optional[int] = 0 A_ : List[str] = -ba A_ : Optional[Any] = 1 + alpha A_ : Optional[int] = -2 * _cos A_ : Tuple = 1 - alpha A_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: A_ : Dict = tau * frequency / samplerate A_ : List[Any] = sin(lowerCamelCase__ ) A_ : str = cos(lowerCamelCase__ ) A_ : Optional[int] = _sin / (2 * q_factor) A_ : Optional[Any] = 1 - alpha A_ : List[str] = -2 * _cos A_ : Tuple = 1 + alpha A_ : Any = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , lowerCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: A_ : str = tau * frequency / samplerate A_ : str = sin(lowerCamelCase__ ) A_ : Union[str, Any] = cos(lowerCamelCase__ ) A_ : Any = _sin / (2 * q_factor) A_ : Tuple = 1_0 ** (gain_db / 4_0) A_ : List[str] = 1 + alpha * big_a A_ : str = -2 * _cos A_ : Optional[int] = 1 - alpha * big_a A_ : List[Any] = 1 + alpha / big_a A_ : Dict = -2 * _cos A_ : Optional[Any] = 1 - alpha / big_a A_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , lowerCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: A_ : Any = tau * frequency / samplerate A_ : Any = sin(lowerCamelCase__ ) A_ : Any = cos(lowerCamelCase__ ) A_ : str = _sin / (2 * q_factor) A_ : Tuple = 1_0 ** (gain_db / 4_0) A_ : List[Any] = (big_a + 1) - (big_a - 1) * _cos A_ : int = (big_a + 1) + (big_a - 1) * _cos A_ : Dict = (big_a - 1) - (big_a + 1) * _cos A_ : str = (big_a - 1) + (big_a + 1) * _cos A_ : List[str] = 2 * sqrt(lowerCamelCase__ ) * alpha A_ : Optional[Any] = big_a * (pmc + aaa) A_ : Any = 2 * big_a * mpc A_ : int = big_a * (pmc - aaa) A_ : Optional[int] = ppmc + aaa A_ : int = -2 * pmpc A_ : Tuple = ppmc - aaa A_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , lowerCamelCase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: A_ : Any = tau * frequency / samplerate A_ : int = sin(lowerCamelCase__ ) A_ : str = cos(lowerCamelCase__ ) A_ : Tuple = _sin / (2 * q_factor) A_ : Any = 1_0 ** (gain_db / 4_0) A_ : List[str] = (big_a + 1) - (big_a - 1) * _cos A_ : Any = (big_a + 1) + (big_a - 1) * _cos A_ : Tuple = (big_a - 1) - (big_a + 1) * _cos A_ : Optional[int] = (big_a - 1) + (big_a + 1) * _cos A_ : Any = 2 * sqrt(lowerCamelCase__ ) * alpha A_ : Optional[int] = big_a * (ppmc + aaa) A_ : Optional[Any] = -2 * big_a * pmpc A_ : Union[str, Any] = big_a * (ppmc - aaa) A_ : Tuple = pmc + aaa A_ : List[str] = 2 * mpc A_ : Optional[Any] = pmc - aaa A_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
4
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake snake_case__ = numpy.array([0, 0]) snake_case__ = numpy.array([0.5, 0.8_6_6_0_2_5_4]) snake_case__ = numpy.array([1, 0]) snake_case__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case__ ( lowerCamelCase__ : list[numpy.ndarray] , lowerCamelCase__ : int ) -> list[numpy.ndarray]: A_ : Any = initial_vectors for _ in range(lowerCamelCase__ ): A_ : List[Any] = iteration_step(lowerCamelCase__ ) return vectors def snake_case__ ( lowerCamelCase__ : list[numpy.ndarray] ) -> list[numpy.ndarray]: A_ : str = [] for i, start_vector in enumerate(vectors[:-1] ): A_ : Optional[Any] = vectors[i + 1] new_vectors.append(lowerCamelCase__ ) A_ : str = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case__ ( lowerCamelCase__ : numpy.ndarray , lowerCamelCase__ : float ) -> numpy.ndarray: A_ : str = numpy.radians(lowerCamelCase__ ) A_ ,A_ : Tuple = numpy.cos(lowerCamelCase__ ), numpy.sin(lowerCamelCase__ ) A_ : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : list[numpy.ndarray] ) -> None: A_ : Optional[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() A_ ,A_ : Union[str, Any] = zip(*lowerCamelCase__ ) plt.plot(lowerCamelCase__ , lowerCamelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping snake_case__ = tuple[int, int] class UpperCamelCase_ : """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : set[int] , _lowerCamelCase : Mapping[EdgeT, int] ): """simple docstring""" A_ : set[int] = vertices A_ : dict[EdgeT, int] = { (min(_lowerCamelCase ), max(_lowerCamelCase )): weight for edge, weight in edges.items() } def _a ( self : Any , _lowerCamelCase : EdgeT , _lowerCamelCase : int ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A_ : List[Any] = weight def _a ( self : Dict ): """simple docstring""" A_ : Graph = Graph({min(self.vertices )} , {} ) A_ : EdgeT A_ : int A_ : EdgeT A_ : int while len(subgraph.vertices ) < len(self.vertices ): A_ : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A_ : Optional[Any] = edge A_ : Union[str, Any] = weight subgraph.add_edge(_lowerCamelCase , _lowerCamelCase ) return subgraph def snake_case__ ( lowerCamelCase__ : str = "p107_network.txt" ) -> int: A_ : str = os.path.abspath(os.path.dirname(lowerCamelCase__ ) ) A_ : str = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) A_ : dict[EdgeT, int] = {} A_ : list[str] A_ : int A_ : int with open(lowerCamelCase__ ) as f: A_ : Any = f.read().strip().split('''\n''' ) A_ : Tuple = [line.split(''',''' ) for line in data] for edgea in range(1 , len(lowerCamelCase__ ) ): for edgea in range(lowerCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": A_ : Union[str, Any] = int(adjaceny_matrix[edgea][edgea] ) A_ : Graph = Graph(set(range(len(lowerCamelCase__ ) ) ) , lowerCamelCase__ ) A_ : Graph = graph.prims_algorithm() A_ : int = sum(graph.edges.values() ) A_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> List[Any]: if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) snake_case__ = parser.parse_args() snake_case__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'rwkv' _lowerCAmelCase = {'max_position_embeddings': 'context_length'} def __init__( self : Tuple , _lowerCamelCase : str=50277 , _lowerCamelCase : Tuple=1024 , _lowerCamelCase : Optional[int]=4096 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=1E-5 , _lowerCamelCase : Optional[Any]=0 , _lowerCamelCase : Dict=0 , _lowerCamelCase : Dict=6 , _lowerCamelCase : List[Any]=False , _lowerCamelCase : List[Any]=True , **_lowerCamelCase : List[str] , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : List[Any] = context_length A_ : Optional[int] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size A_ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size A_ : str = layer_norm_epsilon A_ : Dict = rescale_every A_ : Union[str, Any] = use_cache A_ : Dict = bos_token_id A_ : Dict = eos_token_id super().__init__( tie_word_embeddings=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
4
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : List[Any] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: A_ : Tuple = 6 A_ : Any = 1_2_8 A_ : str = (2, 2, 1_8, 2) A_ : Dict = (4, 8, 1_6, 3_2) elif "large" in model_name: A_ : Union[str, Any] = 1_2 A_ : Optional[Any] = 1_9_2 A_ : Dict = (2, 2, 1_8, 2) A_ : Optional[Any] = (6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) A_ : List[Any] = window_size A_ : List[str] = embed_dim A_ : List[str] = depths A_ : List[Any] = num_heads return config def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: if "encoder.mask_token" in name: A_ : Optional[int] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: A_ : int = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: A_ : List[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: A_ : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A_ : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A_ : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A_ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A_ : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A_ : int = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": A_ : List[str] = '''layernorm.weight''' if name == "encoder.norm.bias": A_ : Union[str, Any] = '''layernorm.bias''' if "decoder" in name: pass else: A_ : List[Any] = '''swin.''' + name return name def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): A_ : List[str] = orig_state_dict.pop(lowerCamelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: A_ : Dict = key.split('''.''' ) A_ : Tuple = int(key_split[2] ) A_ : int = int(key_split[4] ) A_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A_ : Optional[int] = val[:dim, :] A_ : str = val[ dim : dim * 2, : ] A_ : List[Any] = val[-dim:, :] else: A_ : Union[str, Any] = val[ :dim ] A_ : Any = val[ dim : dim * 2 ] A_ : Tuple = val[ -dim: ] else: A_ : Any = val return orig_state_dict def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ) -> Any: A_ : List[str] = torch.load(lowerCamelCase__ , map_location='''cpu''' )['''model'''] A_ : Optional[Any] = get_swin_config(lowerCamelCase__ ) A_ : Any = SwinForMaskedImageModeling(lowerCamelCase__ ) model.eval() A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) A_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : str = ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) A_ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) A_ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ) with torch.no_grad(): A_ : int = model(**lowerCamelCase__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
4
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'dpr' def __init__( self : int , _lowerCamelCase : int=30522 , _lowerCamelCase : Optional[int]=768 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : List[Any]=12 , _lowerCamelCase : Union[str, Any]=3072 , _lowerCamelCase : int="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : int=2 , _lowerCamelCase : Tuple=0.02 , _lowerCamelCase : Tuple=1E-12 , _lowerCamelCase : Dict=0 , _lowerCamelCase : List[str]="absolute" , _lowerCamelCase : int = 0 , **_lowerCamelCase : int , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : Union[str, Any] = vocab_size A_ : Tuple = hidden_size A_ : Tuple = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = hidden_act A_ : Union[str, Any] = intermediate_size A_ : Optional[Any] = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : int = type_vocab_size A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = layer_norm_eps A_ : Dict = projection_dim A_ : Any = position_embedding_type
4
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = RoCBertTokenizer _lowerCAmelCase = None _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def _a ( self : Optional[Any] ): """simple docstring""" super().setUp() A_ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A_ : Optional[int] = {} A_ : int = {} for i, value in enumerate(_lowerCamelCase ): A_ : Tuple = i A_ : Optional[int] = i A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_lowerCamelCase , _lowerCamelCase , ensure_ascii=_lowerCamelCase ) def _a ( self : Any ): """simple docstring""" A_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A_ : List[str] = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_lowerCamelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _a ( self : Dict ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Any ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _a ( self : Any ): """simple docstring""" A_ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : str = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Any ): """simple docstring""" A_ : Tuple = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=_lowerCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _a ( self : Any ): """simple docstring""" A_ : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A_ : Union[str, Any] = {} for i, token in enumerate(_lowerCamelCase ): A_ : Dict = i A_ : List[str] = RoCBertWordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _a ( self : int ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _a ( self : Tuple ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _a ( self : Tuple ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _a ( self : int ): """simple docstring""" A_ : Any = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A_ : List[Any] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def _a ( self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A_ : Dict = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) A_ : int = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , '''do_lower_case''' ) else False A_ : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _a ( self : int ): """simple docstring""" A_ : Tuple = ['''的''', '''人''', '''有'''] A_ : Optional[int] = ''''''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : List[str] = True A_ : List[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : str = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : str = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : Dict = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = False A_ : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : int = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : List[Any] = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A_ : Optional[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A_ : Tuple = tokenizer.encode('''你好''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.encode('''你是谁''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A_ : Dict = '''你好,你是谁''' A_ : List[Any] = tokenizer.tokenize(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) A_ : int = tokenizer.convert_tokens_to_shape_ids(_lowerCamelCase ) A_ : Any = tokenizer.convert_tokens_to_pronunciation_ids(_lowerCamelCase ) A_ : Any = tokenizer.prepare_for_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = tokenizer.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str=13 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : Any=3 , _lowerCamelCase : int=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=32 , _lowerCamelCase : int=2 , _lowerCamelCase : int=4 , _lowerCamelCase : List[str]=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Tuple=10 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Optional[Any]=0.6 , _lowerCamelCase : Union[str, Any]=None , ): """simple docstring""" A_ : Optional[int] = parent A_ : Any = batch_size A_ : Any = image_size A_ : Union[str, Any] = patch_size A_ : Tuple = num_channels A_ : Tuple = is_training A_ : Union[str, Any] = use_labels A_ : Optional[int] = hidden_size A_ : Tuple = num_hidden_layers A_ : str = num_attention_heads A_ : Dict = intermediate_size A_ : List[Any] = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Tuple = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : List[Any] = mask_ratio A_ : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ : List[str] = (image_size // patch_size) ** 2 A_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self : str ): """simple docstring""" A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : List[Any] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _a ( self : Optional[int] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Union[str, Any] = TFViTMAEModel(config=_lowerCamelCase ) A_ : List[Any] = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Any = TFViTMAEForPreTraining(_lowerCamelCase ) A_ : List[str] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected sequence length = num_patches A_ : int = (self.image_size // self.patch_size) ** 2 A_ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ : str = 1 A_ : Dict = TFViTMAEForPreTraining(_lowerCamelCase ) A_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(_lowerCamelCase , training=_lowerCamelCase ) A_ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self : int ): """simple docstring""" A_ : Tuple = self.prepare_config_and_inputs() ((A_) ,(A_) ,(A_)) : List[str] = config_and_inputs A_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowerCAmelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Dict ): """simple docstring""" A_ : List[str] = TFViTMAEModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : Optional[Any] ): """simple docstring""" A_ ,A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , tf.keras.layers.Layer ) ) def _a ( self : Any ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : int = model_class(_lowerCamelCase ) A_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[Any] = [*signature.parameters.keys()] A_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : str ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Any ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" np.random.seed(2 ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = int((config.image_size // config.patch_size) ** 2 ) A_ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , noise=_lowerCamelCase ) A_ : List[str] = copy.deepcopy(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : Any = model(**_lowerCamelCase , noise=_lowerCamelCase ) A_ : Optional[Any] = outputs_dict[0].numpy() A_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _a ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = int((config.image_size // config.patch_size) ** 2 ) A_ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCamelCase : Optional[Any] ): A_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCamelCase ): A_ : Dict = v.numpy() else: A_ : Union[str, Any] = np.array(_lowerCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = prepare_numpy_arrays(_lowerCamelCase ) A_ : str = model(_lowerCamelCase , noise=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" np.random.seed(2 ) A_ : List[Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) A_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : List[Any] = tf.constant(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ : str = tf_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" np.random.seed(2 ) A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCamelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(_lowerCamelCase , _lowerCamelCase ),) if isinstance(_lowerCamelCase , _lowerCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCamelCase , '''_keras_serializable''' , _lowerCamelCase ) } A_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) A_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : Any = tf.convert_to_tensor(_lowerCamelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: A_ : Optional[Any] = main_layer_class(_lowerCamelCase ) A_ : List[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } A_ : Tuple = tf.keras.Model(_lowerCamelCase , outputs=main_layer(_lowerCamelCase ) ) A_ : Dict = model(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , '''keras_model.h5''' ) model.save(_lowerCamelCase ) A_ : Any = tf.keras.models.load_model( _lowerCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCamelCase , tf.keras.Model ) A_ : Optional[int] = model(_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self : str ): """simple docstring""" np.random.seed(2 ) A_ ,A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) A_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ : Any = model_class(_lowerCamelCase ) A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": A_ : Dict = outputs.last_hidden_state.numpy() A_ : List[Any] = 0 else: A_ : Any = outputs.logits.numpy() A_ : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase , saved_model=_lowerCamelCase ) A_ : List[Any] = model_class.from_pretrained(_lowerCamelCase ) A_ : Any = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": A_ : List[Any] = after_outputs['''last_hidden_state'''].numpy() A_ : Optional[Any] = 0 else: A_ : Dict = after_outputs['''logits'''].numpy() A_ : Dict = 0 A_ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1E-5 ) def _a ( self : Optional[Any] ): """simple docstring""" np.random.seed(2 ) A_ ,A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = int((config.image_size // config.patch_size) ** 2 ) A_ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : str = model(_lowerCamelCase , noise=_lowerCamelCase ) A_ : Optional[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCamelCase ) A_ : Optional[int] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config A_ : Any = model_class.from_config(model.config ) A_ : int = new_model(_lowerCamelCase ) # Build model new_model.set_weights(model.get_weights() ) A_ : Dict = new_model(_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _a ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _a ( self : List[Any] ): """simple docstring""" pass @slow def _a ( self : Optional[Any] ): """simple docstring""" A_ : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> List[str]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : int ): """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _a ( self : Optional[Any] ): """simple docstring""" np.random.seed(2 ) A_ : List[str] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) A_ : str = self.default_image_processor A_ : Dict = prepare_img() A_ : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ : Tuple = ViTMAEConfig() A_ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass A_ : Union[str, Any] = model(**_lowerCamelCase , noise=_lowerCamelCase ) # verify the logits A_ : Dict = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Dict = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1E-4 )
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict=False ) -> List[str]: try: A_ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: A_ : List[str] = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value snake_case__ = parse_flag_from_env("""RUN_SLOW""", default=False) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Dict: return unittest.skip('''Test was skipped''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict ) -> str: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any ) -> Optional[int]: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> Optional[int]: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> int: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> Dict: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> str: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict ) -> Optional[int]: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any ) -> List[Any]: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any ) -> str: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict ) -> Tuple: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : List[str] ) -> List[str]: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> int: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : int=None ) -> Optional[Any]: if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version('''>=''' , lowerCamelCase__ ) , f'test requires torch version >= {version}' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : List[str] ) -> Optional[int]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Tuple: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> List[str]: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(lowerCamelCase__ ) snake_case__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case__ ( lowerCamelCase__ : List[Any] ) -> Union[str, Any]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(lowerCamelCase__ ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" _lowerCAmelCase = True @classmethod def _a ( cls : Dict ): """simple docstring""" A_ : int = tempfile.mkdtemp() @classmethod def _a ( cls : Dict ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _a ( self : str ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_lowerCamelCase ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Any , _lowerCamelCase : Union[mock.Mock, List[mock.Mock]] ): """simple docstring""" A_ : List[Any] = mocks if isinstance(_lowerCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Dict: A_ : Optional[int] = AcceleratorState() A_ : Tuple = tensor[None].clone().to(state.device ) A_ : Tuple = gather(lowerCamelCase__ ).cpu() A_ : int = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class UpperCamelCase_ : """simple docstring""" def __init__( self : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): """simple docstring""" A_ : Any = returncode A_ : str = stdout A_ : Union[str, Any] = stderr async def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] ) -> Optional[Any]: while True: A_ : List[Any] = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : int=False , lowerCamelCase__ : str=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(lowerCamelCase__ ) ) A_ : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A_ : Union[str, Any] = [] A_ : str = [] def tee(lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]="" ): A_ : int = line.decode('''utf-8''' ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : str=1_8_0 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : List[str]=True ) -> _RunOutput: A_ : str = asyncio.get_event_loop() A_ : Dict = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) A_ : Optional[int] = ''' '''.join(lowerCamelCase__ ) if result.returncode > 0: A_ : Tuple = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class UpperCamelCase_ (a__ ): """simple docstring""" pass def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any]=False ) -> int: try: A_ : List[Any] = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , '''decode''' ): A_ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
4
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['onnx'] def __init__( self : List[Any] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''onnx'''] ) @classmethod def _a ( cls : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''onnx'''] ) @classmethod def _a ( cls : Optional[Any] , *_lowerCamelCase : str , **_lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''onnx'''] )
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
'''simple docstring''' from __future__ import annotations snake_case__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase_ : """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : dict[str, list[str]] , _lowerCamelCase : str ): """simple docstring""" A_ : List[Any] = graph # mapping node to its parent in resulting breadth first tree A_ : dict[str, str | None] = {} A_ : str = source_vertex def _a ( self : Optional[Any] ): """simple docstring""" A_ : Tuple = {self.source_vertex} A_ : Any = None A_ : List[Any] = [self.source_vertex] # first in first out queue while queue: A_ : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCamelCase ) A_ : Any = vertex queue.append(_lowerCamelCase ) def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex A_ : Any = self.parent.get(_lowerCamelCase ) if target_vertex_parent is None: A_ : Union[str, Any] = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_lowerCamelCase ) return self.shortest_path(_lowerCamelCase ) + f'->{target_vertex}' if __name__ == "__main__": snake_case__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , '''num_heads''' ) ) class UpperCamelCase_ : """simple docstring""" def __init__( self : int , _lowerCamelCase : int , _lowerCamelCase : List[str]=13 , _lowerCamelCase : str=64 , _lowerCamelCase : str=3 , _lowerCamelCase : Optional[Any]=[16, 48, 96] , _lowerCamelCase : Dict=[1, 3, 6] , _lowerCamelCase : Tuple=[1, 2, 10] , _lowerCamelCase : List[str]=[7, 3, 3] , _lowerCamelCase : Any=[4, 2, 2] , _lowerCamelCase : str=[2, 1, 1] , _lowerCamelCase : List[str]=[2, 2, 2] , _lowerCamelCase : List[Any]=[False, False, True] , _lowerCamelCase : Any=[0.0, 0.0, 0.0] , _lowerCamelCase : int=0.02 , _lowerCamelCase : Tuple=1E-12 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int=2 , ): """simple docstring""" A_ : Any = parent A_ : List[Any] = batch_size A_ : List[str] = image_size A_ : str = patch_sizes A_ : Union[str, Any] = patch_stride A_ : int = patch_padding A_ : int = is_training A_ : List[str] = use_labels A_ : List[str] = num_labels A_ : List[Any] = num_channels A_ : str = embed_dim A_ : Optional[int] = num_heads A_ : Optional[Any] = stride_kv A_ : str = depth A_ : Any = cls_token A_ : int = attention_drop_rate A_ : str = initializer_range A_ : int = layer_norm_eps def _a ( self : Any ): """simple docstring""" A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self : List[str] ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _a ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : List[str] = CvtModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) A_ : Union[str, Any] = (self.image_size, self.image_size) A_ ,A_ : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): A_ : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) A_ : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _a ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[Any] = self.num_labels A_ : Tuple = CvtForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict ): """simple docstring""" A_ : int = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = CvtModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='''Cvt does not output attentions''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def _a ( self : Optional[int] ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): A_ : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.hidden_states A_ : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _a ( self : int ): """simple docstring""" pass @slow def _a ( self : str ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = CvtModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Any: A_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[str] ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self : str ): """simple docstring""" A_ : int = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : str = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : str = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'naver-clova-ix/donut-base-finetuned-docvqa' _lowerCAmelCase = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) _lowerCAmelCase = 'document_qa' _lowerCAmelCase = AutoProcessor _lowerCAmelCase = VisionEncoderDecoderModel _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['text'] def __init__( self : Optional[int] , *_lowerCamelCase : Any , **_lowerCamelCase : Dict ): """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : str , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" A_ : Tuple = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' A_ : List[str] = task_prompt.replace('''{user_input}''' , _lowerCamelCase ) A_ : str = self.pre_processor.tokenizer( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors='''pt''' ).input_ids A_ : Optional[Any] = self.pre_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowerCamelCase , ).sequences def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Optional[int] = self.pre_processor.batch_decode(_lowerCamelCase )[0] A_ : int = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) A_ : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) A_ : str = re.sub(R'''<.*?>''' , '''''' , _lowerCamelCase , count=1 ).strip() # remove first task start token A_ : Any = self.pre_processor.tokenajson(_lowerCamelCase ) return sequence["answer"]
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' from __future__ import annotations import math def snake_case__ ( lowerCamelCase__ : float , lowerCamelCase__ : int ) -> float: A_ : Union[str, Any] = u for i in range(1 , lowerCamelCase__ ): A_ : int = temp * (u - i) return temp def snake_case__ ( ) -> None: A_ : Optional[Any] = int(input('''enter the numbers of values: ''' ) ) A_ : list[list[float]] = [] for _ in range(lowerCamelCase__ ): y.append([] ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): y[i].append(lowerCamelCase__ ) A_ : Optional[int] = 0 print('''enter the values of parameters in a list: ''' ) A_ : Union[str, Any] = list(map(lowerCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(lowerCamelCase__ ): A_ : List[Any] = float(input() ) A_ : List[Any] = int(input('''enter the value to interpolate: ''' ) ) A_ : List[str] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCamelCase__ ): for j in range(n - i ): A_ : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] A_ : Tuple = y[0][0] for i in range(1 , lowerCamelCase__ ): summ += (ucal(lowerCamelCase__ , lowerCamelCase__ ) * y[0][i]) / math.factorial(lowerCamelCase__ ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = LEDConfig _lowerCAmelCase = {} _lowerCAmelCase = 'gelu' def __init__( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=13 , _lowerCamelCase : Dict=7 , _lowerCamelCase : Dict=True , _lowerCamelCase : int=False , _lowerCamelCase : Optional[Any]=99 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[int]=37 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : List[str]=20 , _lowerCamelCase : int=2 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Any=4 , ): """simple docstring""" A_ : List[Any] = parent A_ : Tuple = batch_size A_ : List[Any] = seq_length A_ : List[Any] = is_training A_ : str = use_labels A_ : List[str] = vocab_size A_ : Union[str, Any] = hidden_size A_ : List[str] = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = eos_token_id A_ : str = pad_token_id A_ : Tuple = bos_token_id A_ : List[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after A_ : Optional[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests A_ : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A_ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A_ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) A_ : Dict = prepare_led_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = tf.concat( [tf.zeros_like(_lowerCamelCase )[:, :-1], tf.ones_like(_lowerCamelCase )[:, -1:]] , axis=-1 , ) A_ : Optional[int] = global_attention_mask return config, inputs_dict def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Optional[int] = TFLEDModel(config=_lowerCamelCase ).get_decoder() A_ : str = inputs_dict['''input_ids'''] A_ : Optional[Any] = input_ids[:1, :] A_ : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] A_ : List[Any] = 1 # first forward pass A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) A_ ,A_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) A_ : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A_ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A_ : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] A_ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1E-3 ) def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=None , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , ) -> Dict: if attention_mask is None: A_ : List[str] = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A_ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCAmelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCAmelCase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : List[Any] ): """simple docstring""" A_ : Tuple = TFLEDModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ ,A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = tf.zeros_like(inputs_dict['''attention_mask'''] ) A_ : str = 2 A_ : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) A_ : str = True A_ : Dict = self.model_tester.seq_length A_ : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_lowerCamelCase : Union[str, Any] ): A_ : str = outputs.decoder_attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_lowerCamelCase : Union[str, Any] ): A_ : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] A_ : Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: A_ : Optional[int] = True A_ : str = False A_ : Optional[Any] = False A_ : List[Any] = model_class(_lowerCamelCase ) A_ : str = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = len(_lowerCamelCase ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) if self.is_encoder_decoder: A_ : str = model_class(_lowerCamelCase ) A_ : Dict = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_decoder_attentions_output(_lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ : List[Any] = True A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : Dict = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) # Check attention is always last and order is fine A_ : Tuple = True A_ : Dict = True A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : List[str] = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , _lowerCamelCase ) check_encoder_attentions_output(_lowerCamelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def _a ( self : int ): """simple docstring""" pass def _a ( self : Optional[int] ): """simple docstring""" pass def snake_case__ ( lowerCamelCase__ : List[str] ) -> Dict: return tf.constant(lowerCamelCase__ , dtype=tf.intaa ) snake_case__ = 1e-4 @slow @require_tf class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here A_ : Any = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) A_ : List[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) A_ : List[Any] = prepare_led_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase ) A_ : Tuple = model(**_lowerCamelCase )[0] A_ : Dict = (1, 1024, 768) self.assertEqual(output.shape , _lowerCamelCase ) # change to expected output here A_ : Optional[Any] = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1E-3 ) def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here A_ : Optional[Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) A_ : List[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) A_ : Union[str, Any] = prepare_led_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase ) A_ : Any = model(**_lowerCamelCase )[0] A_ : Optional[int] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _lowerCamelCase ) # change to expected output here A_ : int = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1E-3 , rtol=1E-3 )
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings snake_case__ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = field(default=a__, metadata={'help': 'Whether to use SortishSampler or not.'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) }, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) }, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' }, ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = super().to_dict() for k, v in d.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = v.to_dict() return d
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=13 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : List[Any]=224 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : Union[str, Any]=400 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} A_ : str = parent A_ : Any = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Union[str, Any] = min_resolution A_ : Dict = max_resolution A_ : Any = do_resize A_ : str = size A_ : int = do_normalize A_ : Optional[int] = image_mean A_ : List[str] = image_std def _a ( self : Tuple ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = EfficientFormerImageProcessorTester(self ) @property def _a ( self : Any ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def _a ( self : int ): """simple docstring""" A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Optional[int] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _a ( self : Any ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _a ( self : Optional[int] ): """simple docstring""" A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Optional[Any] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return lst A_ : Any = 1 while i < len(lowerCamelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: A_ ,A_ : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: A_ : List[Any] = 1 return lst if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
4
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } snake_case__ = {"""mobilebert-uncased""": 5_12} snake_case__ = {} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = MobileBertTokenizer def __init__( self : Tuple , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=True , _lowerCamelCase : List[str]="[UNK]" , _lowerCamelCase : Optional[int]="[SEP]" , _lowerCamelCase : Any="[PAD]" , _lowerCamelCase : Any="[CLS]" , _lowerCamelCase : Union[str, Any]="[MASK]" , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[Any]=None , **_lowerCamelCase : int , ): """simple docstring""" super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): A_ : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) A_ : Union[str, Any] = do_lower_case A_ : Optional[int] = strip_accents A_ : Tuple = tokenize_chinese_chars A_ : Any = normalizer_class(**_lowerCamelCase ) A_ : Optional[int] = do_lower_case def _a ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=None ): """simple docstring""" A_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Any , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[Any] = [self.sep_token_id] A_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : int = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
4
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['flax', 'transformers'] def __init__( self : int , *_lowerCamelCase : Tuple , **_lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : List[Any] , *_lowerCamelCase : Any , **_lowerCamelCase : str ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : List[str] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['flax', 'transformers'] def __init__( self : Dict , *_lowerCamelCase : List[Any] , **_lowerCamelCase : Any ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : Any , *_lowerCamelCase : str , **_lowerCamelCase : str ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : List[Any] , *_lowerCamelCase : str , **_lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['flax', 'transformers'] def __init__( self : Dict , *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : str ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : List[str] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : Tuple , *_lowerCamelCase : List[str] , **_lowerCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCamelCase_ (metaclass=a__ ): """simple docstring""" _lowerCAmelCase = ['flax', 'transformers'] def __init__( self : List[Any] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : List[Any] , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : int ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _a ( cls : Optional[Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] )
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> float: A_ : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def snake_case__ ( ) -> Optional[Any]: print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
1
'''simple docstring''' from typing import List import numpy as np def snake_case__ ( lowerCamelCase__ : dict ) -> int: A_ : Tuple = {key: len(lowerCamelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCamelCase__ , lowerCamelCase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) A_ : Optional[Any] = max(lists_lengths.values() , default=0 ) return max(1 , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : int ) -> List[range]: A_ : str = [] for group_idx in range(lowerCamelCase__ ): A_ : List[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break A_ : Union[str, Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 A_ : int = range(lowerCamelCase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowerCamelCase__ ) return shards_indices_per_group def snake_case__ ( lowerCamelCase__ : dict , lowerCamelCase__ : int ) -> List[dict]: A_ : Optional[int] = _number_of_shards_in_gen_kwargs(lowerCamelCase__ ) if num_shards == 1: return [dict(lowerCamelCase__ )] else: A_ : List[Any] = _distribute_shards(num_shards=lowerCamelCase__ , max_num_jobs=lowerCamelCase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowerCamelCase__ ) ) ] def snake_case__ ( lowerCamelCase__ : List[dict] ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowerCamelCase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def snake_case__ ( lowerCamelCase__ : np.random.Generator , lowerCamelCase__ : dict ) -> dict: A_ : Union[str, Any] = {len(lowerCamelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCamelCase__ , lowerCamelCase__ )} A_ : Tuple = {} for size in list_sizes: A_ : str = list(range(lowerCamelCase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes A_ : Optional[Any] = dict(lowerCamelCase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : int = [value[i] for i in indices_per_size[len(lowerCamelCase__ )]] return shuffled_kwargs
4
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
1
'''simple docstring''' from __future__ import annotations from statistics import mean def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : Any = [0] * no_of_processes A_ : Optional[int] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase__ ): A_ : Optional[Any] = burst_time[i] A_ : list[int] = [] A_ : Any = 0 A_ : Optional[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: A_ : List[Any] = [] A_ : Optional[Any] = -1 for i in range(lowerCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A_ : str = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: A_ : Tuple = i total_time += burst_time[target_process] completed += 1 A_ : List[Any] = 0 A_ : Any = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] ) -> list[int]: A_ : Any = [0] * no_of_processes for i in range(lowerCamelCase__ ): A_ : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") snake_case__ = 4 snake_case__ = [2, 5, 3, 7] snake_case__ = [0, 0, 0, 0] snake_case__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) snake_case__ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): snake_case__ = True from torch.cuda.amp import autocast snake_case__ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Whether to log verbose messages or not.'}, ) _lowerCAmelCase = field( default=2.0, metadata={'help': 'Maximum temperature for gumbel softmax.'} ) _lowerCAmelCase = field( default=0.5, metadata={'help': 'Minimum temperature for gumbel softmax.'} ) _lowerCAmelCase = field( default=0.99_99_95, metadata={'help': 'Decay of gumbel temperature during training.'} ) def snake_case__ ( lowerCamelCase__ : ModelArguments , lowerCamelCase__ : TrainingArguments ) -> str: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) A_ : Any = logging.WARNING if model_args.verbose_logging: A_ : Optional[int] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A_ : List[Any] = logging.INFO logger.setLevel(lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field( default=a__, metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase = field( default='train', metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' }, ) _lowerCAmelCase = field( default='validation', metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) }, ) _lowerCAmelCase = field( default='file', metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''}, ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _lowerCAmelCase = field( default=1, metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' }, ) _lowerCAmelCase = field( default=a__, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) _lowerCAmelCase = field( default=20.0, metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = "longest" _lowerCAmelCase = None _lowerCAmelCase = None def __call__( self : Tuple , _lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" A_ : str = self.feature_extractor.pad( _lowerCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) A_ : Dict = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) A_ : Optional[Any] = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A_ : int = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) A_ : int = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A_ : Dict = 1 A_ : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A_ : List[str] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_lowerCamelCase , min_masks=2 , ) return batch class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : Tuple , *_lowerCamelCase : Any , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Optional[int]=1.0 , **_lowerCamelCase : Any ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = 0 A_ : Tuple = max_gumbel_temp A_ : Union[str, Any] = min_gumbel_temp A_ : Any = gumbel_temp_decay def _a ( self : Tuple , _lowerCamelCase : nn.Module , _lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() A_ : int = self._prepare_inputs(_lowerCamelCase ) if self.use_amp: with autocast(): A_ : Optional[int] = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) else: A_ : Tuple = self.compute_loss(_lowerCamelCase , _lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A_ : Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A_ : Union[str, Any] = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: A_ : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def snake_case__ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A_ ,A_ ,A_ : Optional[Any] = parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase__ , lowerCamelCase__ ) # Downloading and loading a dataset from the hub. A_ : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A_ : Dict = DatasetDict() A_ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) A_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A_ : List[Any] = DatasetDict() A_ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) A_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase__ ) def prepare_dataset(lowerCamelCase__ : List[str] ): # check that all files have the correct sampling rate A_ ,A_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A_ : Union[str, Any] = datasets.map( lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long A_ : List[str] = vectorized_datasets.filter( lambda lowerCamelCase__ : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase__ : Optional[int] ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A_ : Optional[int] = vectorized_datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A_ : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) A_ : Optional[int] = WavaVecaForPreTraining(lowerCamelCase__ ) A_ : str = DataCollatorForWavaVecaPretraining(model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) A_ : Optional[int] = WavaVecaPreTrainer( model=lowerCamelCase__ , data_collator=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=lowerCamelCase__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
1
'''simple docstring''' import os def snake_case__ ( ) -> List[str]: A_ : Optional[Any] = os.path.join(os.path.dirname(lowerCamelCase__ ) , '''num.txt''' ) with open(lowerCamelCase__ ) as file_hand: return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def snake_case__ ( lowerCamelCase__ : int ) -> List[str]: A_ : Tuple = {} A_ : Optional[Any] = tokenizer(example['''content'''] , truncation=lowerCamelCase__ )['''input_ids'''] A_ : Optional[Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output snake_case__ = HfArgumentParser(PretokenizationArguments) snake_case__ = parser.parse_args() if args.num_workers is None: snake_case__ = multiprocessing.cpu_count() snake_case__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) snake_case__ = time.time() snake_case__ = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') snake_case__ = time.time() snake_case__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') snake_case__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
4
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'bit' _lowerCAmelCase = ['preactivation', 'bottleneck'] _lowerCAmelCase = ['SAME', 'VALID'] def __init__( self : List[Any] , _lowerCamelCase : Dict=3 , _lowerCamelCase : str=64 , _lowerCamelCase : str=[256, 512, 1024, 2048] , _lowerCamelCase : str=[3, 4, 6, 3] , _lowerCamelCase : str="preactivation" , _lowerCamelCase : Dict="relu" , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Optional[int]=32 , _lowerCamelCase : int=1 , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A_ : Optional[int] = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) A_ : str = num_channels A_ : Any = embedding_size A_ : Dict = hidden_sizes A_ : Tuple = depths A_ : int = layer_type A_ : Union[str, Any] = hidden_act A_ : Any = global_padding A_ : Union[str, Any] = num_groups A_ : Union[str, Any] = drop_path_rate A_ : Tuple = embedding_dynamic_padding A_ : Optional[int] = output_stride A_ : Union[str, Any] = width_factor A_ : Optional[int] = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
4
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ = """ import os """ snake_case__ = """ def foo(): import os return False """ snake_case__ = """ def foo(): def bar(): if True: import os return False return bar() """ snake_case__ = """ import os try: import bar except ImportError: raise ValueError() """ snake_case__ = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ snake_case__ = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ snake_case__ = """ import os try: import bar except ImportError as e: raise ValueError() """ snake_case__ = """ import os try: import bar except: raise ValueError() """ snake_case__ = """ import os try: import bar import baz except ImportError: raise ValueError() """ snake_case__ = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ snake_case__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str ) -> List[Any]: A_ : Dict = os.path.join(lowerCamelCase__ , '''test_file.py''' ) with open(lowerCamelCase__ , '''w''' ) as _tmp_file: _tmp_file.write(lowerCamelCase__ ) A_ : Union[str, Any] = get_imports(lowerCamelCase__ ) assert parsed_imports == ["os"]
4
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record snake_case__ = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ snake_case__ = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ snake_case__ = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> Union[str, Any]: return float((preds == labels).mean() ) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict="binary" ) -> Union[str, Any]: A_ : Tuple = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) A_ : Dict = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : int ) -> Tuple: A_ : List[Any] = {} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' A_ : Tuple = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A_ : Dict = [(pred, label)] A_ ,A_ : Any = [], [] for question, preds_labels in question_map.items(): A_ ,A_ : Tuple = zip(*lowerCamelCase__ ) A_ : Any = fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average='''macro''' ) fas.append(lowerCamelCase__ ) A_ : int = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) A_ : Any = float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) A_ : Tuple = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) A_ : Optional[Any] = float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def _a ( self : int ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def _a ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : Dict ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(_lowerCamelCase , _lowerCamelCase , fa_avg='''macro''' ) elif self.config_name == "record": A_ : str = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] A_ : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_lowerCamelCase , _lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowerCamelCase , _lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case__ = datasets.load_iris() snake_case__ = np.array(data["""data"""]) snake_case__ = np.array(data["""target"""]) snake_case__ = data["""target_names"""] snake_case__ , snake_case__ , snake_case__ , snake_case__ = train_test_split(X, y) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : List[str] ) -> Optional[int]: return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int]=5 ) -> Optional[int]: A_ : Optional[int] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : str = [] for data_point in data: A_ : int = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : int = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Union[str, Any] = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : set ) -> int: A_ ,A_ : Optional[Any] = len(lowerCamelCase__ ), len(grid[0] ) if ( min(lowerCamelCase__ , lowerCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A_ : str = 0 count += depth_first_search(lowerCamelCase__ , row + 1 , lowerCamelCase__ , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , row - 1 , lowerCamelCase__ , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , lowerCamelCase__ , col + 1 , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , lowerCamelCase__ , col - 1 , lowerCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ = 16 snake_case__ = 32 def snake_case__ ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 1_6 ) -> Any: A_ : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A_ : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCamelCase__ : Dict ): # max_length=None => use the model max length (it's actually the default) A_ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : Tuple = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : str = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCamelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : int = 1_6 elif accelerator.mixed_precision != "no": A_ : Tuple = 8 else: A_ : List[Any] = None return tokenizer.pad( lowerCamelCase__ , padding='''longest''' , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. A_ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : Optional[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ = mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> List[str]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCamelCase__ ) == "1": A_ : str = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A_ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: A_ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Optional[Any] = config['''lr'''] A_ : List[Any] = int(config['''num_epochs'''] ) A_ : Union[str, Any] = int(config['''seed'''] ) A_ : int = int(config['''batch_size'''] ) set_seed(lowerCamelCase__ ) A_ ,A_ : str = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) A_ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A_ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ : Dict = batch_size // MAX_GPU_BATCH_SIZE A_ : Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A_ : List[str] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler A_ : Dict = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ ,A_ ,A_ ,A_ ,A_ : Dict = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A_ : Dict = os.path.split(lowerCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A_ : Tuple = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A_ : Dict = model(**lowerCamelCase__ ) A_ : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A_ : str = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A_ : str = model(**lowerCamelCase__ ) A_ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) A_ ,A_ : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) A_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(lowerCamelCase__ ), '''epoch''': epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def snake_case__ ( ) -> Optional[Any]: A_ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowerCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) A_ : Union[str, Any] = parser.parse_args() A_ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case__ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'maskformer' _lowerCAmelCase = {'hidden_size': 'mask_feature_size'} _lowerCAmelCase = ['resnet', 'swin'] _lowerCAmelCase = ['detr'] def __init__( self : Optional[int] , _lowerCamelCase : int = 256 , _lowerCamelCase : int = 256 , _lowerCamelCase : float = 0.1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : float = 0.02 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 20.0 , _lowerCamelCase : Optional[bool] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k A_ : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Union[str, Any] = backbone_config.pop('''model_type''' ) A_ : Dict = CONFIG_MAPPING[backbone_model_type] A_ : Any = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 A_ : List[Any] = DetrConfig() else: # verify that the decoder is supported A_ : Optional[int] = ( decoder_config.pop('''model_type''' ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Any = CONFIG_MAPPING[decoder_type] A_ : str = config_class.from_dict(_lowerCamelCase ) A_ : Any = backbone_config A_ : List[str] = decoder_config # main feature dimension for the model A_ : Union[str, Any] = fpn_feature_size A_ : Dict = mask_feature_size # initializer A_ : str = init_std A_ : List[str] = init_xavier_std # Hungarian matcher && loss A_ : Union[str, Any] = cross_entropy_weight A_ : Dict = dice_weight A_ : Union[str, Any] = mask_weight A_ : Optional[Any] = use_auxiliary_loss A_ : Optional[int] = no_object_weight A_ : Any = output_auxiliary_logits A_ : Optional[int] = self.decoder_config.encoder_attention_heads A_ : Any = self.decoder_config.num_hidden_layers super().__init__(**_lowerCamelCase ) @classmethod def _a ( cls : Any , _lowerCamelCase : PretrainedConfig , _lowerCamelCase : PretrainedConfig , **_lowerCamelCase : Optional[Any] ): """simple docstring""" return cls( backbone_config=_lowerCamelCase , decoder_config=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) A_ : int = self.backbone_config.to_dict() A_ : Optional[Any] = self.decoder_config.to_dict() A_ : List[str] = self.__class__.model_type return output
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
1
'''simple docstring''' import logging import os from .state import PartialState class UpperCamelCase_ (logging.LoggerAdapter ): """simple docstring""" @staticmethod def _a ( _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _a ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : str ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) A_ : Dict = kwargs.pop('''main_process_only''' , _lowerCamelCase ) A_ : List[str] = kwargs.pop('''in_order''' , _lowerCamelCase ) if self.isEnabledFor(_lowerCamelCase ): if self._should_log(_lowerCamelCase ): A_ ,A_ : Union[str, Any] = self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif in_order: A_ : Any = PartialState() for i in range(state.num_processes ): if i == state.process_index: A_ ,A_ : str = self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) state.wait_for_everyone() def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str = None ) -> str: if log_level is None: A_ : int = os.environ.get('''ACCELERATE_LOG_LEVEL''' , lowerCamelCase__ ) A_ : int = logging.getLogger(lowerCamelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCamelCase__ , {} )
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase_ : """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : int=3 , _lowerCamelCase : Dict=7 , _lowerCamelCase : str=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : str=32 , _lowerCamelCase : Dict=5 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : Dict=37 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Union[str, Any]=512 , _lowerCamelCase : Optional[Any]=16 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : Any=3 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Any=None , ): """simple docstring""" A_ : List[Any] = parent A_ : Optional[int] = batch_size A_ : Optional[int] = seq_length A_ : Dict = is_training A_ : Optional[int] = use_input_mask A_ : Any = use_token_type_ids A_ : Any = use_labels A_ : Optional[int] = vocab_size A_ : Optional[Any] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : str = num_attention_heads A_ : List[Any] = intermediate_size A_ : str = hidden_act A_ : Any = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Optional[int] = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : int = num_choices A_ : Optional[int] = scope def _a ( self : List[str] ): """simple docstring""" A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None A_ : Dict = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[Any] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_lowerCamelCase , ) def _a ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = FalconModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) A_ : Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , ): """simple docstring""" A_ : Union[str, Any] = True A_ : Any = FalconModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , ): """simple docstring""" A_ : str = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Any , ): """simple docstring""" A_ : List[Any] = True A_ : Optional[int] = True A_ : List[str] = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass A_ : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase , ) A_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] A_ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] # select random slice A_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) def _a ( self : int ): """simple docstring""" A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) : str = config_and_inputs A_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = (FalconForCausalLM,) if is_torch_available() else () _lowerCAmelCase = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : str = FalconModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ ,*A_ : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A_ : Dict = alibi self.model_tester.create_and_check_model(_lowerCamelCase , *_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = 3 A_ : Any = input_dict['''input_ids'''] A_ : Tuple = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Dict = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : int = '''single_label_classification''' A_ : Dict = input_dict['''input_ids'''] A_ : Dict = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : List[str] = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ ,A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = input_dict['''input_ids'''] A_ : List[Any] = FalconForCausalLM(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) A_ : Union[str, Any] = input_ids.shape[0] A_ : Tuple = model._convert_to_rw_cache(result.past_key_values ) A_ : List[str] = model._convert_cache_to_standard_format(_lowerCamelCase , _lowerCamelCase ) for layer in range(len(_lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _a ( self : Optional[int] ): """simple docstring""" A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = 3 A_ : str = '''multi_label_classification''' A_ : Union[str, Any] = input_dict['''input_ids'''] A_ : List[Any] = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : List[str] = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ): """simple docstring""" for model_class in self.all_generative_model_classes: A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowerCamelCase , '''use_cache''' ): return A_ : Tuple = model_class(_lowerCamelCase ).to(_lowerCamelCase ) if "use_cache" not in inputs: A_ : str = True A_ : Tuple = model(**_lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A_ : List[Any] = ( getattr(_lowerCamelCase , '''decoder_layers''' , _lowerCamelCase ) or getattr(_lowerCamelCase , '''num_decoder_layers''' , _lowerCamelCase ) or config.num_hidden_layers ) A_ : List[Any] = getattr(_lowerCamelCase , '''num_kv_heads''' , config.num_attention_heads ) A_ : Dict = getattr(_lowerCamelCase , '''d_model''' , config.hidden_size ) A_ : Optional[int] = embed_dim // num_attention_heads A_ : List[Any] = outputs['''past_key_values'''] self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) A_ ,A_ : int = inputs['''input_ids'''].shape for i in range(_lowerCamelCase ): if config.new_decoder_architecture: A_ : int = config.num_attention_heads elif config.multi_query: A_ : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : int ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) A_ : Tuple = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(_lowerCamelCase ) A_ : List[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) A_ : Optional[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) A_ : Tuple = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=19 ) A_ : int = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A_ : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) A_ : str = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(_lowerCamelCase ) A_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def _a ( self : Optional[int] ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A_ : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) A_ : Optional[Any] = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(device=_lowerCamelCase ) A_ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # Test results are the same with and without cache A_ : str = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 , use_cache=_lowerCamelCase ) A_ : int = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 , use_cache=_lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' from ... import PretrainedConfig snake_case__ = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _lowerCAmelCase = 'nezha' def __init__( self : Tuple , _lowerCamelCase : int=21128 , _lowerCamelCase : Optional[Any]=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : int=3072 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : List[Any]=512 , _lowerCamelCase : Optional[Any]=64 , _lowerCamelCase : Any=2 , _lowerCamelCase : int=0.02 , _lowerCamelCase : List[Any]=1E-12 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Dict=2 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Union[str, Any]=True , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : Dict = vocab_size A_ : int = hidden_size A_ : str = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : List[Any] = hidden_act A_ : Optional[Any] = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[int] = max_position_embeddings A_ : List[str] = max_relative_position A_ : Union[str, Any] = type_vocab_size A_ : Dict = initializer_range A_ : Tuple = layer_norm_eps A_ : Optional[Any] = classifier_dropout A_ : int = use_cache
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig snake_case__ = logging.get_logger(__name__) snake_case__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'dpt' def __init__( self : int , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Optional[int]=12 , _lowerCamelCase : Tuple=3072 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Any=0.02 , _lowerCamelCase : str=1E-12 , _lowerCamelCase : Dict=384 , _lowerCamelCase : int=16 , _lowerCamelCase : str=3 , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Any=[2, 5, 8, 11] , _lowerCamelCase : Dict="project" , _lowerCamelCase : Dict=[4, 2, 1, 0.5] , _lowerCamelCase : Tuple=[96, 192, 384, 768] , _lowerCamelCase : Dict=256 , _lowerCamelCase : Tuple=-1 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple=0.4 , _lowerCamelCase : str=255 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Dict=[1, 1024, 24, 24] , _lowerCamelCase : List[Any]=[0, 1] , _lowerCamelCase : str=None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Union[str, Any] = hidden_size A_ : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) A_ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } A_ : List[str] = BitConfig(**_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) A_ : Optional[Any] = BitConfig(**_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A_ : Any = backbone_featmap_shape A_ : int = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: A_ : Tuple = None A_ : Dict = None A_ : Optional[Any] = [] A_ : Optional[int] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Any = intermediate_size A_ : Tuple = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Union[str, Any] = initializer_range A_ : int = layer_norm_eps A_ : Tuple = image_size A_ : Optional[Any] = patch_size A_ : Dict = num_channels A_ : str = qkv_bias A_ : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) A_ : Any = readout_type A_ : Any = reassemble_factors A_ : Any = neck_hidden_sizes A_ : str = fusion_hidden_size A_ : List[str] = head_in_index A_ : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A_ : int = use_auxiliary_head A_ : Optional[int] = auxiliary_loss_weight A_ : Tuple = semantic_loss_ignore_index A_ : List[Any] = semantic_classifier_dropout def _a ( self : str ): """simple docstring""" A_ : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A_ : Any = self.backbone_config.to_dict() A_ : Any = self.__class__.model_type return output
4
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) snake_case__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : str , _lowerCamelCase : str , _lowerCamelCase : bool , _lowerCamelCase : str = None , _lowerCamelCase : list = None ): """simple docstring""" A_ : Union[str, Any] = None A_ : Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) A_ : int = os.path.abspath('''examples''' ) for item in os.listdir(_lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: A_ : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCamelCase , feature_script=_lowerCamelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): A_ : Tuple = compare_against_test( os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Tuple = '''\n'''.join(_lowerCamelCase ) if special_strings is not None: for string in special_strings: A_ : Optional[int] = diff.replace(_lowerCamelCase , '''''' ) self.assertEqual(_lowerCamelCase , '''''' ) def _a ( self : Tuple ): """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , _lowerCamelCase ) self.one_complete_example('''complete_nlp_example.py''' , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) A_ : Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.one_complete_example('''complete_cv_example.py''' , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '1'} ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = False @classmethod def _a ( cls : int ): """simple docstring""" super().setUpClass() A_ : Optional[Any] = tempfile.mkdtemp() A_ : Any = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) A_ : List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _a ( cls : Optional[Any] ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _a ( self : str ): """simple docstring""" A_ : int = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() A_ : List[str] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() A_ : List[str] = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase ) self.assertNotIn('''epoch 0:''' , _lowerCamelCase ) self.assertIn('''epoch 1:''' , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() A_ : int = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase ) if torch.cuda.is_available(): A_ : str = torch.cuda.device_count() else: A_ : Tuple = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , _lowerCamelCase ) self.assertIn('''epoch 1:''' , _lowerCamelCase ) else: self.assertIn('''epoch 0:''' , _lowerCamelCase ) self.assertIn('''epoch 1:''' , _lowerCamelCase ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): A_ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase ) A_ : int = re.findall('''({.+})''' , _lowerCamelCase ) A_ : List[Any] = [r for r in results if '''accuracy''' in r][-1] A_ : int = ast.literal_eval(_lowerCamelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _a ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: A_ : Union[str, Any] = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''tracking''' ) ) ) def _a ( self : Dict ): """simple docstring""" A_ : List[Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def _a ( self : Dict ): """simple docstring""" A_ : Tuple = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case__ = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case__ ( lowerCamelCase__ : Any ) -> Union[str, Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main A_ : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
4
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Optional[int] , _lowerCamelCase : Optional[DatasetInfo] = None , _lowerCamelCase : Optional[str] = None , **_lowerCamelCase : Dict , ): """simple docstring""" super().__init__(self , **_lowerCamelCase ) A_ : Any = repo_info A_ : Optional[int] = token A_ : List[Any] = None def _a ( self : List[str] ): """simple docstring""" if self.dir_cache is None: A_ : Tuple = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes A_ : int = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _a ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str = "rb" , **_lowerCamelCase : Dict , ): """simple docstring""" if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' ) A_ : Tuple = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _a ( self : Optional[int] , _lowerCamelCase : Union[str, Any] , **_lowerCamelCase : int ): """simple docstring""" self._get_dirs() A_ : int = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any]=False , **_lowerCamelCase : List[str] ): """simple docstring""" self._get_dirs() A_ : str = PurePosixPath(path.strip('''/''' ) ) A_ : Any = {} for p, f in self.dir_cache.items(): A_ : Union[str, Any] = PurePosixPath(p.strip('''/''' ) ) A_ : Optional[Any] = p.parent if root == path: A_ : Union[str, Any] = f A_ : str = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
4
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCamelCase_ (ctypes.Structure ): """simple docstring""" _lowerCAmelCase = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case__ ( ) -> Tuple: if os.name == "nt": A_ : str = CursorInfo() A_ : int = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) A_ : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def snake_case__ ( ) -> int: if os.name == "nt": A_ : Tuple = CursorInfo() A_ : List[str] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) A_ : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def snake_case__ ( ) -> Dict: try: hide_cursor() yield finally: show_cursor()
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = DebertaTokenizer _lowerCAmelCase = True _lowerCAmelCase = DebertaTokenizerFast def _a ( self : int ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A_ : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A_ : Dict = {'''unk_token''': '''[UNK]'''} A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def _a ( self : Dict , **_lowerCamelCase : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Dict = '''lower newer''' A_ : Any = '''lower newer''' return input_text, output_text def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = self.get_tokenizer() A_ : List[Any] = '''lower newer''' A_ : List[str] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A_ : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Any = tokens + [tokenizer.unk_token] A_ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : int = tokenizer('''Hello''' , '''World''' ) A_ : Optional[int] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , _lowerCamelCase ) @slow def _a ( self : Tuple ): """simple docstring""" A_ : List[str] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A_ : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) A_ : Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) A_ : int = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _a ( self : Dict ): """simple docstring""" A_ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A_ : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A_ : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A_ : Union[str, Any] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase ) A_ : Optional[int] = [tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) for seq in encoding['''input_ids''']] # fmt: off A_ : List[str] = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A_ : Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , _lowerCamelCase ) for expected, decoded in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(_lowerCamelCase , _lowerCamelCase )
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = """▁""" snake_case__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = BertGenerationTokenizer _lowerCAmelCase = False _lowerCAmelCase = True def _a ( self : Dict ): """simple docstring""" super().setUp() A_ : Optional[int] = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Tuple ): """simple docstring""" A_ : str = '''<s>''' A_ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_lowerCamelCase ) , 1002 ) def _a ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a ( self : Tuple ): """simple docstring""" A_ : int = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) A_ : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , ) A_ : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A_ : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A_ : List[Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _a ( self : List[str] ): """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def _a ( self : str ): """simple docstring""" A_ : List[str] = '''Hello World!''' A_ : Any = [18536, 2260, 101] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def _a ( self : int ): """simple docstring""" A_ : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) A_ : List[str] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def _a ( self : Optional[int] ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A_ : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] A_ : Dict = ''' '''.join(_lowerCamelCase ) A_ : List[Any] = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) A_ : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase ) A_ : List[Any] = BertGenerationConfig() A_ : List[Any] = BertGenerationEncoder(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = {'''input_ids''': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
4
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=0.01 , _lowerCamelCase : List[str]=1000 ): """simple docstring""" A_ : Optional[Any] = p_stop A_ : Dict = max_length def __iter__( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = 0 A_ : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 A_ : Tuple = random.random() < self.p_stop class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : str=False , _lowerCamelCase : List[Any]=True ): """simple docstring""" A_ : Dict = [ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] A_ : int = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) A_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. A_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) A_ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def _a ( self : str ): """simple docstring""" A_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) A_ : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. A_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) A_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) A_ : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. A_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Tuple = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) A_ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Any = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Any = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) A_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) A_ : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) A_ : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) A_ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. A_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) A_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) A_ : int = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) A_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. A_ : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) A_ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) A_ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. A_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : str = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) A_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : Union[str, Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] A_ : Union[str, Any] = [BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _a ( self : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Any=False , _lowerCamelCase : int=2 , _lowerCamelCase : Union[str, Any]=False ): """simple docstring""" random.seed(_lowerCamelCase ) A_ : Dict = list(_lowerCamelCase ) A_ : Dict = [ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] A_ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) A_ : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size A_ : int = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) A_ : Union[str, Any] = [] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = 42 A_ : Optional[int] = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset A_ : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowerCamelCase ) A_ : int = SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : int = DataLoader(list(range(16 ) ) , batch_size=4 ) A_ : Tuple = skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Optional[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _a ( self : Tuple ): """simple docstring""" Accelerator() A_ : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
4
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
1
'''simple docstring''' def snake_case__ ( ) -> int: return 1 def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : int = 2_0_0 ) -> int: return two_pound(lowerCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'upernet' def __init__( self : int , _lowerCamelCase : str=None , _lowerCamelCase : Union[str, Any]=512 , _lowerCamelCase : Optional[int]=0.02 , _lowerCamelCase : str=[1, 2, 3, 6] , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=0.4 , _lowerCamelCase : List[str]=384 , _lowerCamelCase : Tuple=256 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : Tuple=False , _lowerCamelCase : int=255 , **_lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**_lowerCamelCase ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Optional[Any] = backbone_config.get('''model_type''' ) A_ : List[Any] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(_lowerCamelCase ) A_ : int = backbone_config A_ : str = hidden_size A_ : List[str] = initializer_range A_ : Union[str, Any] = pool_scales A_ : List[Any] = use_auxiliary_head A_ : Dict = auxiliary_loss_weight A_ : Tuple = auxiliary_in_channels A_ : List[str] = auxiliary_channels A_ : str = auxiliary_num_convs A_ : List[Any] = auxiliary_concat_input A_ : Optional[int] = loss_ignore_index def _a ( self : Any ): """simple docstring""" A_ : List[str] = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.backbone_config.to_dict() A_ : Tuple = self.__class__.model_type return output
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
1
'''simple docstring''' snake_case__ = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) snake_case__ = frozenset(["""prompt""", """negative_prompt"""]) snake_case__ = frozenset([]) snake_case__ = frozenset(["""image"""]) snake_case__ = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) snake_case__ = frozenset(["""image"""]) snake_case__ = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) snake_case__ = frozenset(["""prompt""", """image""", """negative_prompt"""]) snake_case__ = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) snake_case__ = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) snake_case__ = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) snake_case__ = frozenset(["""image""", """mask_image"""]) snake_case__ = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) snake_case__ = frozenset(["""example_image""", """image""", """mask_image"""]) snake_case__ = frozenset(["""class_labels"""]) snake_case__ = frozenset(["""class_labels"""]) snake_case__ = frozenset(["""batch_size"""]) snake_case__ = frozenset([]) snake_case__ = frozenset(["""batch_size"""]) snake_case__ = frozenset([]) snake_case__ = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) snake_case__ = frozenset(["""prompt""", """negative_prompt"""]) snake_case__ = frozenset(["""input_tokens"""]) snake_case__ = frozenset(["""input_tokens"""])
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase__ : str ) -> Any: A_ : Dict = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) A_ : int = MaskFormerConfig(backbone_config=lowerCamelCase__ ) A_ : int = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok A_ : str = 8_4_7 A_ : int = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok A_ : str = 1_5_0 A_ : List[Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok A_ : List[str] = 1_7_1 A_ : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO A_ : int = 1_3_3 A_ : Optional[int] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok A_ : Optional[int] = 1_9 A_ : List[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok A_ : Optional[Any] = 6_5 A_ : Dict = '''mapillary-vistas-id2label.json''' A_ : str = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) A_ : Tuple = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} return config def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: A_ : Optional[int] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case__ ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict ) -> int: A_ : str = dct.pop(lowerCamelCase__ ) A_ : Dict = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> int: A_ : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ : Any = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) A_ : Dict = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : Tuple = in_proj_weight[:dim, :] A_ : Any = in_proj_bias[: dim] A_ : str = in_proj_weight[ dim : dim * 2, : ] A_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] A_ : str = in_proj_weight[ -dim :, : ] A_ : str = in_proj_bias[-dim :] # fmt: on def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) -> Union[str, Any]: # fmt: off A_ : List[Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A_ : List[Any] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) A_ : Tuple = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[int] = in_proj_weight[: hidden_size, :] A_ : str = in_proj_bias[:config.hidden_size] A_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] A_ : str = in_proj_bias[hidden_size : hidden_size * 2] A_ : Dict = in_proj_weight[-hidden_size :, :] A_ : Tuple = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A_ : str = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[: hidden_size, :] A_ : Optional[Any] = in_proj_bias[:config.hidden_size] A_ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] A_ : Dict = in_proj_bias[hidden_size : hidden_size * 2] A_ : Dict = in_proj_weight[-hidden_size :, :] A_ : Any = in_proj_bias[-hidden_size :] # fmt: on def snake_case__ ( ) -> torch.Tensor: A_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : Any = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : bool = False ) -> Tuple: A_ : Tuple = get_maskformer_config(lowerCamelCase__ ) # load original state_dict with open(lowerCamelCase__ , '''rb''' ) as f: A_ : List[Any] = pickle.load(lowerCamelCase__ ) A_ : List[str] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A_ : Union[str, Any] = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_swin_q_k_v(lowerCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): A_ : List[str] = torch.from_numpy(lowerCamelCase__ ) # load 🤗 model A_ : List[str] = MaskFormerForInstanceSegmentation(lowerCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase__ , param.shape ) A_ ,A_ : Dict = model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase__ ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results A_ : Tuple = prepare_img() if "vistas" in model_name: A_ : Any = 6_5 elif "cityscapes" in model_name: A_ : Dict = 6_5_5_3_5 else: A_ : Dict = 2_5_5 A_ : Dict = True if '''ade''' in model_name else False A_ : List[Any] = MaskFormerImageProcessor(ignore_index=lowerCamelCase__ , reduce_labels=lowerCamelCase__ ) A_ : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors='''pt''' ) A_ : List[str] = model(**lowerCamelCase__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A_ : str = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def snake_case__ ( lowerCamelCase__ : int ) -> str: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) A_ : Tuple = precision A_ : Dict = ceil(precision / 1_4 ) A_ : Any = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() A_ : Dict = 1 A_ : Tuple = 1_3_5_9_1_4_0_9 A_ : Tuple = Decimal(lowerCamelCase__ ) for k in range(1 , lowerCamelCase__ ): A_ : Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case__ = 50 print(F'The first {n} digits of pi is: {pi(n)}')
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' import argparse from collections import defaultdict import yaml snake_case__ = """docs/source/en/_toctree.yml""" def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> List[str]: A_ : List[str] = defaultdict(lowerCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 A_ : Tuple = [key for key, value in counts.items() if value > 1] A_ : Union[str, Any] = [] for duplicate_key in duplicates: A_ : Tuple = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(lowerCamelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : s["title"].lower() ) def snake_case__ ( lowerCamelCase__ : Optional[Any]=False ) -> Any: with open(lowerCamelCase__ , encoding='''utf-8''' ) as f: A_ : str = yaml.safe_load(f.read() ) # Get to the API doc A_ : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 A_ : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc A_ : Dict = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A_ : str = api_doc[model_idx]['''sections'''] A_ : Any = [(idx, section) for idx, section in enumerate(lowerCamelCase__ ) if '''sections''' in section] A_ : int = False for idx, modality_doc in modalities_docs: A_ : List[Any] = modality_doc['''sections'''] A_ : Any = clean_model_doc_toc(lowerCamelCase__ ) if old_modality_doc != new_modality_doc: A_ : Tuple = True if overwrite: A_ : List[str] = new_modality_doc if diff: if overwrite: A_ : str = model_doc A_ : List[Any] = api_doc with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowerCamelCase__ , allow_unicode=lowerCamelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' import warnings from .generation import TFGenerationMixin class UpperCamelCase_ (a__ ): """simple docstring""" warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.', a__, )
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel snake_case__ = False snake_case__ = True snake_case__ = False if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") snake_case__ = parser.parse_args() snake_case__ = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } snake_case__ = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } snake_case__ = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: snake_case__ = reader.read() snake_case__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): snake_case__ = UNetaDModel(**config) else: snake_case__ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel snake_case__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) snake_case__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: snake_case__ = config[key] del config[key] snake_case__ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] snake_case__ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: snake_case__ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) snake_case__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue snake_case__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: snake_case__ = param_value snake_case__ = True if not has_changed: snake_case__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
'''simple docstring''' snake_case__ = {str(digit): digit**5 for digit in range(10)} def snake_case__ ( lowerCamelCase__ : int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def snake_case__ ( ) -> int: return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) A_ : Tuple = Vector() def _a ( self : Any ): """simple docstring""" A_ : int = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowerCamelCase ) , '''(0,0,0,0,0,1)''' ) def _a ( self : int ): """simple docstring""" A_ : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowerCamelCase ) , 4 ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : str = Vector([1, 2] ) A_ : int = Vector([1, 2, 3, 4, 5] ) A_ : List[str] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) A_ : List[str] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = Vector([1, 2, 3] ) A_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = Vector([1, 2, 3] ) A_ : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _a ( self : Dict ): """simple docstring""" A_ : Tuple = Vector([1, 2, 3] ) A_ : int = Vector([2, -1, 4] ) # for test of dot product A_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def _a ( self : Tuple ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def _a ( self : List[str] ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def _a ( self : List[Any] ): """simple docstring""" A_ : Tuple = Vector([1, 2, 3] ) A_ : Tuple = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase ) ) , '''(3,4,7)''' ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = Vector([1, 0, 0, 0, 0, 0] ) A_ : Tuple = x.copy() self.assertEqual(str(_lowerCamelCase ) , str(_lowerCamelCase ) ) def _a ( self : Tuple ): """simple docstring""" A_ : List[str] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowerCamelCase ) , '''(0,1,0)''' ) def _a ( self : Any ): """simple docstring""" A_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) A_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) A_ : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : List[str] ): """simple docstring""" A_ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) A_ : List[str] = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def _a ( self : List[str] ): """simple docstring""" A_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(_lowerCamelCase ) ) def _a ( self : Dict ): """simple docstring""" A_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _a ( self : List[str] ): """simple docstring""" A_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) A_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) A_ : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def _a ( self : int ): """simple docstring""" self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case__ = random.Random() if is_torch_available(): import torch def snake_case__ ( lowerCamelCase__ : int , lowerCamelCase__ : Any=1.0 , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Any]=None ) -> int: if rng is None: A_ : List[Any] = global_rng A_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=7 , _lowerCamelCase : List[Any]=400 , _lowerCamelCase : Dict=2000 , _lowerCamelCase : Dict=1 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : int=16000 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int=True , ): """simple docstring""" A_ : List[Any] = parent A_ : int = batch_size A_ : List[Any] = min_seq_length A_ : List[Any] = max_seq_length A_ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : Union[str, Any] = feature_size A_ : Tuple = padding_value A_ : Any = sampling_rate A_ : List[Any] = return_attention_mask A_ : int = do_normalize def _a ( self : List[Any] ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self : List[Any] , _lowerCamelCase : str=False , _lowerCamelCase : Dict=False ): """simple docstring""" def _flatten(_lowerCamelCase : str ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: A_ : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A_ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : Optional[Any] = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ASTFeatureExtractor def _a ( self : int ): """simple docstring""" A_ : Any = ASTFeatureExtractionTester(self ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ : List[Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input A_ : Optional[int] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values A_ : int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) # Test batched A_ : str = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values A_ : Tuple = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ : int = np.asarray(_lowerCamelCase ) A_ : int = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values A_ : List[Any] = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) @require_torch def _a ( self : str ): """simple docstring""" import torch A_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Dict = np.random.rand(100 ).astype(np.floataa ) A_ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ : Optional[int] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A_ : int = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" from datasets import load_dataset A_ : Any = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech A_ : Any = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on A_ : Union[str, Any] = self._load_datasamples(1 ) A_ : Tuple = ASTFeatureExtractor() A_ : Union[str, Any] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1E-4 ) )
4
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" A_ : List[str] = torch.nn.Linear(10 , 10 ) A_ : List[Any] = torch.optim.SGD(model.parameters() , 0.1 ) A_ : List[Any] = Accelerator() A_ : int = accelerator.prepare(_lowerCamelCase ) try: pickle.loads(pickle.dumps(_lowerCamelCase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
4
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ = sys.version_info >= (3, 10) def snake_case__ ( lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 4_2 _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'titi' _lowerCAmelCase = 'toto' _lowerCAmelCase = 4_2 @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" def _a ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[1, 2, 3] ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field() _lowerCAmelCase = field() _lowerCAmelCase = field() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = field() _lowerCAmelCase = None _lowerCAmelCase = field(default='toto', metadata={'help': 'help message'} ) _lowerCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = None @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = field(default=a__, metadata={'help': 'help message'} ) _lowerCAmelCase = None _lowerCAmelCase = list_field(default=[] ) _lowerCAmelCase = list_field(default=[] ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : argparse.ArgumentParser , _lowerCamelCase : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : Union[str, Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} A_ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowerCamelCase ) and yy.get('''choices''' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) , yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--bar''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--baz''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--flag''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((A_) ,) : List[str] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Any = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowerCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Union[str, Any] = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[str] = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : int = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Tuple = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) A_ : List[str] = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a ( self : Optional[int] ): """simple docstring""" @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = "toto" A_ : List[str] = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) A_ : List[str] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) A_ : int = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def _a ( self : Dict ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--bar''' , default=_lowerCamelCase , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowerCamelCase ) A_ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : int = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Dict = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('''--required_str''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowerCamelCase , ) expected.add_argument('''--opt''' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowerCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } A_ : Optional[int] = parser.parse_dict(_lowerCamelCase )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Tuple = os.path.join(_lowerCamelCase , '''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] A_ : Optional[Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : int = os.path.join(_lowerCamelCase , '''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
4
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig snake_case__ = logging.get_logger(__name__) # General docstring snake_case__ = """RegNetConfig""" # Base docstring snake_case__ = """facebook/regnet-y-040""" snake_case__ = [1, 10_88, 7, 7] # Image classification docstring snake_case__ = """facebook/regnet-y-040""" snake_case__ = """tabby, tabby cat""" snake_case__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[str] = "relu" , ): """simple docstring""" super().__init__() A_ : Tuple = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , groups=_lowerCamelCase , bias=_lowerCamelCase , ) A_ : str = nn.BatchNormad(_lowerCamelCase ) A_ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def _a ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = self.convolution(_lowerCamelCase ) A_ : Optional[int] = self.normalization(_lowerCamelCase ) A_ : Optional[Any] = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : RegNetConfig ): """simple docstring""" super().__init__() A_ : List[Any] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) A_ : Any = config.num_channels def _a ( self : Dict , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Optional[int] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) A_ : Dict = self.embedder(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 2 ): """simple docstring""" super().__init__() A_ : Union[str, Any] = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) A_ : Optional[int] = nn.BatchNormad(_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : Tensor ): """simple docstring""" A_ : Tuple = self.convolution(_lowerCamelCase ) A_ : List[str] = self.normalization(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : int ): """simple docstring""" super().__init__() A_ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) A_ : Union[str, Any] = nn.Sequential( nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def _a ( self : List[str] , _lowerCamelCase : List[str] ): """simple docstring""" A_ : Any = self.pooler(_lowerCamelCase ) A_ : Union[str, Any] = self.attention(_lowerCamelCase ) A_ : List[str] = hidden_state * attention return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 ): """simple docstring""" super().__init__() A_ : int = in_channels != out_channels or stride != 1 A_ : Dict = max(1 , out_channels // config.groups_width ) A_ : int = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) A_ : Tuple = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) A_ : Any = ACTaFN[config.hidden_act] def _a ( self : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : int = hidden_state A_ : Any = self.layer(_lowerCamelCase ) A_ : str = self.shortcut(_lowerCamelCase ) hidden_state += residual A_ : Optional[int] = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Dict , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 ): """simple docstring""" super().__init__() A_ : Any = in_channels != out_channels or stride != 1 A_ : Tuple = max(1 , out_channels // config.groups_width ) A_ : Tuple = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) A_ : Dict = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetSELayer(_lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) A_ : Dict = ACTaFN[config.hidden_act] def _a ( self : List[str] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Any = hidden_state A_ : Optional[int] = self.layer(_lowerCamelCase ) A_ : int = self.shortcut(_lowerCamelCase ) hidden_state += residual A_ : Union[str, Any] = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : str , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 2 , _lowerCamelCase : int = 2 , ): """simple docstring""" super().__init__() A_ : Union[str, Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer A_ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , ) , *[layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for _ in range(depth - 1 )] , ) def _a ( self : Union[str, Any] , _lowerCamelCase : Dict ): """simple docstring""" A_ : List[Any] = self.layers(_lowerCamelCase ) return hidden_state class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : RegNetConfig ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) A_ : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def _a ( self : Optional[int] , _lowerCamelCase : Tensor , _lowerCamelCase : bool = False , _lowerCamelCase : bool = True ): """simple docstring""" A_ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[int] = hidden_states + (hidden_state,) A_ : Optional[Any] = stage_module(_lowerCamelCase ) if output_hidden_states: A_ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = RegNetConfig _lowerCAmelCase = 'regnet' _lowerCAmelCase = 'pixel_values' _lowerCAmelCase = True def _a ( self : Dict , _lowerCamelCase : Tuple ): """simple docstring""" if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _a ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[str]=False ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = value snake_case__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ snake_case__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.', a__, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : str ): """simple docstring""" super().__init__(_lowerCamelCase ) A_ : List[str] = config A_ : Optional[Any] = RegNetEmbeddings(_lowerCamelCase ) A_ : Union[str, Any] = RegNetEncoder(_lowerCamelCase ) A_ : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self : Tuple , _lowerCamelCase : Tensor , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[bool] = None ): """simple docstring""" A_ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict A_ : Union[str, Any] = self.embedder(_lowerCamelCase ) A_ : Dict = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) A_ : Optional[Any] = encoder_outputs[0] A_ : Union[str, Any] = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', a__, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase_ (a__ ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : Optional[int] ): """simple docstring""" super().__init__(_lowerCamelCase ) A_ : Union[str, Any] = config.num_labels A_ : List[Any] = RegNetModel(_lowerCamelCase ) # classification head A_ : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self : Any , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[torch.LongTensor] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[bool] = None , ): """simple docstring""" A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : Any = self.regnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) A_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] A_ : Optional[Any] = self.classifier(_lowerCamelCase ) A_ : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A_ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A_ : List[Any] = '''single_label_classification''' else: A_ : str = '''multi_label_classification''' if self.config.problem_type == "regression": A_ : Dict = MSELoss() if self.num_labels == 1: A_ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: A_ : List[str] = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": A_ : List[Any] = CrossEntropyLoss() A_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A_ : Tuple = BCEWithLogitsLoss() A_ : Optional[int] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: A_ : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states )
4
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 snake_case__ = get_tests_dir("""fixtures""") class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = mock.Mock() A_ : List[str] = 500 A_ : Tuple = {} A_ : int = HTTPError A_ : Optional[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: A_ : List[Any] = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self : Tuple ): """simple docstring""" A_ : Tuple = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Any = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A_ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_lowerCamelCase ) @is_staging_test class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls : Tuple ): """simple docstring""" A_ : int = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _a ( self : List[Any] ): """simple docstring""" A_ : Dict = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A_ : Optional[int] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''test-image-processor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = ViTImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def _a ( self : Optional[Any] ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A_ : Any = CustomImageProcessor.from_pretrained(_lowerCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A_ : str = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
4
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case__ = """ Human: <<task>> Assistant: """ snake_case__ = """huggingface-tools/default-prompts""" snake_case__ = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def snake_case__ ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , lowerCamelCase__ ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( lowerCamelCase__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(lowerCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
4
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=13 , _lowerCamelCase : List[str]=7 , _lowerCamelCase : Any=True , _lowerCamelCase : Dict=True , _lowerCamelCase : Any=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : int=5 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Dict=37 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=512 , _lowerCamelCase : int=16 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=4 , ): """simple docstring""" A_ : List[Any] = parent A_ : List[str] = batch_size A_ : Any = seq_length A_ : str = is_training A_ : int = use_attention_mask A_ : Optional[int] = use_token_type_ids A_ : Tuple = use_labels A_ : Any = vocab_size A_ : Any = hidden_size A_ : Tuple = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : str = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Dict = type_sequence_label_size A_ : Tuple = initializer_range A_ : List[str] = num_choices def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_attention_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Dict = None if self.use_token_type_ids: A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : Any ): """simple docstring""" A_ : int = self.prepare_config_and_inputs() A_ ,A_ ,A_ ,A_ : Dict = config_and_inputs A_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : str ): """simple docstring""" A_ : List[Any] = FlaxRoFormerModelTester(self ) @slow def _a ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: A_ : int = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_lowerCamelCase ) A_ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : Optional[int] ): """simple docstring""" A_ : int = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) A_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) A_ : Optional[Any] = model(_lowerCamelCase )[0] A_ : Optional[Any] = 50000 A_ : Dict = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Any = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
4
'''simple docstring''' from collections.abc import Sequence def snake_case__ ( lowerCamelCase__ : Sequence[float] , lowerCamelCase__ : bool = False ) -> float: if not arr: return 0 A_ : Union[str, Any] = 0 if allow_empty_subarrays else float('''-inf''' ) A_ : str = 0.0 for num in arr: A_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num ) A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
4
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) -> int: # Initialise PyTorch model A_ : int = AlbertConfig.from_json_file(lowerCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A_ : List[Any] = AlbertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'speech_to_text_2' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=10000 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : int=2048 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=0.0 , _lowerCamelCase : int=True , _lowerCamelCase : int="relu" , _lowerCamelCase : Any=256 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=1 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Tuple=1024 , **_lowerCamelCase : int , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Tuple = d_model A_ : List[str] = decoder_ffn_dim A_ : str = decoder_layers A_ : Any = decoder_attention_heads A_ : int = dropout A_ : str = attention_dropout A_ : Optional[int] = activation_dropout A_ : str = activation_function A_ : List[Any] = init_std A_ : Union[str, Any] = decoder_layerdrop A_ : Any = use_cache A_ : Optional[Any] = decoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Optional[Any] = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
4
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 class UpperCamelCase_ (a__, a__ ): """simple docstring""" @register_to_config def __init__( self : Any , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 3 , _lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , _lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , _lowerCamelCase : Tuple[int] = (64,) , _lowerCamelCase : int = 1 , _lowerCamelCase : str = "silu" , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 32 , _lowerCamelCase : int = 256 , _lowerCamelCase : int = 32 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : float = 0.1_82_15 , _lowerCamelCase : str = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder A_ : Optional[Any] = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) A_ : int = vq_embed_dim if vq_embed_dim is not None else latent_channels A_ : Tuple = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1 ) A_ : Dict = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase ) A_ : str = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1 ) # pass init params to Decoder A_ : List[Any] = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def _a ( self : List[Any] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True ): """simple docstring""" A_ : Any = self.encoder(_lowerCamelCase ) A_ : str = self.quant_conv(_lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase ) @apply_forward_hook def _a ( self : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = False , _lowerCamelCase : bool = True ): """simple docstring""" if not force_not_quantize: A_ ,A_ ,A_ : Union[str, Any] = self.quantize(_lowerCamelCase ) else: A_ : Tuple = h A_ : int = self.post_quant_conv(_lowerCamelCase ) A_ : List[Any] = self.decoder(_lowerCamelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase ) def _a ( self : Optional[Any] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True ): """simple docstring""" A_ : List[str] = sample A_ : Dict = self.encode(_lowerCamelCase ).latents A_ : Optional[Any] = self.decode(_lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase )
4
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str]=3 , _lowerCamelCase : Any=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : int=10 , _lowerCamelCase : Union[str, Any]=[8, 16, 32, 64] , _lowerCamelCase : Dict=[1, 1, 2, 1] , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any="relu" , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCamelCase : Union[str, Any]=[2, 3, 4] , _lowerCamelCase : Tuple=1 , ): """simple docstring""" A_ : List[str] = parent A_ : List[str] = batch_size A_ : Union[str, Any] = image_size A_ : Tuple = num_channels A_ : Any = embeddings_size A_ : int = hidden_sizes A_ : Optional[Any] = depths A_ : List[Any] = is_training A_ : Optional[int] = use_labels A_ : int = hidden_act A_ : Tuple = num_labels A_ : Union[str, Any] = scope A_ : List[Any] = len(_lowerCamelCase ) A_ : Union[str, Any] = out_features A_ : List[Any] = out_indices A_ : Dict = num_groups def _a ( self : Optional[int] ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : Any = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Any = BitModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[Any] = BitForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ : Optional[Any] = None A_ : int = BitBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ ,A_ ,A_ : Union[str, Any] = config_and_inputs A_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCAmelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(_lowerCamelCase ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self : int ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Tuple = layer_type A_ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = BitModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> Optional[int]: A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) A_ : Union[str, Any] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : int = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (BitBackbone,) if is_torch_available() else () _lowerCAmelCase = BitConfig _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = BitModelTester(self )
4
1
'''simple docstring''' from collections.abc import Callable import numpy as np def snake_case__ ( lowerCamelCase__ : Callable , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> np.array: A_ : str = int(np.ceil((x_end - xa) / step_size ) ) A_ : List[str] = np.zeros((n + 1,) ) A_ : List[str] = ya A_ : Union[str, Any] = xa for k in range(lowerCamelCase__ ): A_ : Union[str, Any] = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] ) A_ : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(lowerCamelCase__ , y[k] ) + ode_func(x + step_size , lowerCamelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' import pprint import requests snake_case__ = """https://zenquotes.io/api""" def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def snake_case__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
4
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : str ) -> float: def get_matched_characters(lowerCamelCase__ : str , lowerCamelCase__ : str ) -> str: A_ : Any = [] A_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): A_ : Union[str, Any] = int(max(0 , i - limit ) ) A_ : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase__ ) A_ : List[str] = f'{_stra[0:_stra.index(lowerCamelCase__ )]} {_stra[_stra.index(lowerCamelCase__ ) + 1:]}' return "".join(lowerCamelCase__ ) # matching characters A_ : Any = get_matched_characters(lowerCamelCase__ , lowerCamelCase__ ) A_ : Tuple = get_matched_characters(lowerCamelCase__ , lowerCamelCase__ ) A_ : str = len(lowerCamelCase__ ) # transposition A_ : Any = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase__ , lowerCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: A_ : Optional[Any] = 0.0 else: A_ : List[Any] = ( 1 / 3 * ( match_count / len(lowerCamelCase__ ) + match_count / len(lowerCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters A_ : Optional[int] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
4
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = order # a_{0} ... a_{k} A_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ : str = [0.0] * self.order # y[n-1] ... y[n-k] A_ : Optional[Any] = [0.0] * self.order def _a ( self : Dict , _lowerCamelCase : list[float] , _lowerCamelCase : list[float] ): """simple docstring""" if len(_lowerCamelCase ) < self.order: A_ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: A_ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: A_ : Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowerCamelCase )}' ) raise ValueError(_lowerCamelCase ) A_ : Tuple = a_coeffs A_ : str = b_coeffs def _a ( self : Tuple , _lowerCamelCase : float ): """simple docstring""" A_ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ : Optional[Any] = self.input_history[:-1] A_ : List[str] = self.output_history[:-1] A_ : Tuple = sample A_ : Tuple = result return result
4
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def snake_case__ ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: A_ : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase_ (a__, a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = StableDiffusionLatentUpscalePipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } _lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase = frozenset([] ) _lowerCAmelCase = True @property def _a ( self : str ): """simple docstring""" A_ : Any = 1 A_ : Dict = 4 A_ : Union[str, Any] = (16, 16) A_ : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase ) return image def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_lowerCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_lowerCamelCase , only_cross_attention=_lowerCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) A_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) A_ : List[str] = EulerDiscreteScheduler(prediction_type='''sample''' ) A_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) A_ : List[Any] = CLIPTextModel(_lowerCamelCase ) A_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : List[str] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Dict=0 ): """simple docstring""" if str(_lowerCamelCase ).startswith('''mps''' ): A_ : Dict = torch.manual_seed(_lowerCamelCase ) else: A_ : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _a ( self : Any ): """simple docstring""" A_ : Union[str, Any] = '''cpu''' A_ : str = self.get_dummy_components() A_ : int = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : int = self.get_dummy_inputs(_lowerCamelCase ) A_ : List[Any] = pipe(**_lowerCamelCase ).images A_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) A_ : Tuple = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) A_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1E-3 ) def _a ( self : Tuple ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _a ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _a ( self : List[Any] ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _a ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _a ( self : Any ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _a ( self : Any ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def _a ( self : Any ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _a ( self : List[Any] ): """simple docstring""" A_ : Tuple = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] A_ : Dict = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) A_ : int = 2 A_ : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A_ : List[str] = getattr(_lowerCamelCase , scheduler_enum.name ) A_ : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) A_ : Optional[Any] = pipe(**_lowerCamelCase )[0] outputs.append(_lowerCamelCase ) assert check_same_shape(_lowerCamelCase ) @require_torch_gpu @slow class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : int ): """simple docstring""" A_ : Tuple = torch.manual_seed(33 ) A_ : List[Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) A_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) A_ : List[str] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' A_ : Union[str, Any] = pipe(_lowerCamelCase , generator=_lowerCamelCase , output_type='''latent''' ).images A_ : Dict = upscaler( prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCamelCase , output_type='''np''' , ).images[0] A_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _a ( self : List[Any] ): """simple docstring""" A_ : int = torch.manual_seed(33 ) A_ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) A_ : str = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' A_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) A_ : Dict = upscaler( prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCamelCase , output_type='''np''' , ).images[0] A_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
4
'''simple docstring''' class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = val A_ : Tuple = None A_ : Any = None def _a ( self : Tuple , _lowerCamelCase : List[Any] ): """simple docstring""" if self.val: if val < self.val: if self.left is None: A_ : int = Node(_lowerCamelCase ) else: self.left.insert(_lowerCamelCase ) elif val > self.val: if self.right is None: A_ : List[str] = Node(_lowerCamelCase ) else: self.right.insert(_lowerCamelCase ) else: A_ : Any = val def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ) -> str: # Recursive traversal if root: inorder(root.left , lowerCamelCase__ ) res.append(root.val ) inorder(root.right , lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: # Build BST if len(lowerCamelCase__ ) == 0: return arr A_ : Dict = Node(arr[0] ) for i in range(1 , len(lowerCamelCase__ ) ): root.insert(arr[i] ) # Traverse BST in order. A_ : Tuple = [] inorder(lowerCamelCase__ , lowerCamelCase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
1
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") snake_case__ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) _lowerCAmelCase = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = field(default=a__, metadata={'help': 'The input training data file (a text file).'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) _lowerCAmelCase = field( default=a__, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _lowerCAmelCase = field( default=a__, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) }, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) _lowerCAmelCase = field( default=a__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def _a ( self : str ): """simple docstring""" if self.train_file is not None: A_ : Any = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: A_ : str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = True _lowerCAmelCase = None _lowerCAmelCase = None def __call__( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : int = '''label''' if '''label''' in features[0].keys() else '''labels''' A_ : Any = [feature.pop(_lowerCamelCase ) for feature in features] A_ : Dict = len(_lowerCamelCase ) A_ : Dict = len(features[0]['''input_ids'''] ) A_ : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_lowerCamelCase )] for feature in features ] A_ : Optional[int] = list(chain(*_lowerCamelCase ) ) A_ : Optional[int] = self.tokenizer.pad( _lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten A_ : str = {k: v.view(_lowerCamelCase , _lowerCamelCase , -1 ) for k, v in batch.items()} # Add back labels A_ : Optional[Any] = torch.tensor(_lowerCamelCase , dtype=torch.intaa ) return batch def snake_case__ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: A_ : Optional[Any] = {} if data_args.train_file is not None: A_ : Any = data_args.train_file if data_args.validation_file is not None: A_ : Tuple = data_args.validation_file A_ : Optional[int] = data_args.train_file.split('''.''' )[-1] A_ : str = load_dataset( lowerCamelCase__ , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. A_ : List[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A_ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A_ : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. A_ : str = [f'ending{i}' for i in range(4 )] A_ : Union[str, Any] = '''sent1''' A_ : List[Any] = '''sent2''' if data_args.max_seq_length is None: A_ : int = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) A_ : Tuple = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A_ : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : str ): A_ : Tuple = [[context] * 4 for context in examples[context_name]] A_ : Union[str, Any] = examples[question_header_name] A_ : Optional[Any] = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out A_ : int = list(chain(*lowerCamelCase__ ) ) A_ : int = list(chain(*lowerCamelCase__ ) ) # Tokenize A_ : Tuple = tokenizer( lowerCamelCase__ , lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) A_ : Tuple = raw_datasets['''train'''] if data_args.max_train_samples is not None: A_ : Union[str, Any] = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) A_ : Any = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): A_ : Optional[Any] = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) A_ : int = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: A_ : Optional[Any] = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) A_ : Any = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): A_ : List[str] = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator A_ : Optional[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : List[str] ): A_ ,A_ : Any = eval_predictions A_ : str = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer A_ : Any = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: A_ : Tuple = None if training_args.resume_from_checkpoint is not None: A_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ : Any = last_checkpoint A_ : List[str] = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload A_ : str = train_result.metrics A_ : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) A_ : Dict = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('''train''' , lowerCamelCase__ ) trainer.save_metrics('''train''' , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A_ : Union[str, Any] = trainer.evaluate() A_ : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) A_ : Union[str, Any] = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('''eval''' , lowerCamelCase__ ) trainer.save_metrics('''eval''' , lowerCamelCase__ ) A_ : Optional[int] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Dict ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
4
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
4
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str]=13 , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : str=True , _lowerCamelCase : List[str]=99 , _lowerCamelCase : int=32 , _lowerCamelCase : Optional[int]=5 , _lowerCamelCase : Dict=4 , _lowerCamelCase : str=37 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Tuple=512 , _lowerCamelCase : str=16 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : str=3 , _lowerCamelCase : str=4 , _lowerCamelCase : int=None , ): """simple docstring""" A_ : Union[str, Any] = parent A_ : Union[str, Any] = batch_size A_ : Union[str, Any] = seq_length A_ : Any = is_training A_ : Optional[int] = use_input_mask A_ : str = use_token_type_ids A_ : Any = use_labels A_ : List[Any] = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : Dict = intermediate_size A_ : Any = hidden_act A_ : Tuple = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Dict = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : int = initializer_range A_ : Optional[int] = num_labels A_ : Tuple = num_choices A_ : Optional[Any] = scope def _a ( self : Optional[int] ): """simple docstring""" A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : List[str] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Tuple = None A_ : List[str] = None A_ : int = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Any = ids_tensor([self.batch_size] , self.num_choices ) A_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : str ): """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Union[str, Any] = NystromformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Optional[int] = NystromformerForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): """simple docstring""" A_ : Optional[Any] = NystromformerForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): """simple docstring""" A_ : List[Any] = self.num_labels A_ : Tuple = NystromformerForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = self.num_labels A_ : int = NystromformerForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = self.num_choices A_ : Optional[int] = NystromformerForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) : Tuple = config_and_inputs A_ : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : str ): """simple docstring""" A_ : List[Any] = NystromformerModelTester(self ) A_ : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Any = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def _a ( self : Dict ): """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = NystromformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) A_ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): A_ : str = model(_lowerCamelCase )[0] A_ : int = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Union[str, Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = '''the [MASK] of Belgium is Brussels''' A_ : Union[str, Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) A_ : Dict = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) A_ : Optional[int] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) with torch.no_grad(): A_ : Optional[int] = model(encoding.input_ids ).logits A_ : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_lowerCamelCase ) , '''capital''' )
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'resnet' _lowerCAmelCase = ['basic', 'bottleneck'] def __init__( self : Union[str, Any] , _lowerCamelCase : List[str]=3 , _lowerCamelCase : str=64 , _lowerCamelCase : str=[256, 512, 1024, 2048] , _lowerCamelCase : Optional[Any]=[3, 4, 6, 3] , _lowerCamelCase : Any="bottleneck" , _lowerCamelCase : List[Any]="relu" , _lowerCamelCase : List[Any]=False , _lowerCamelCase : str=None , _lowerCamelCase : List[str]=None , **_lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A_ : int = num_channels A_ : Dict = embedding_size A_ : Union[str, Any] = hidden_sizes A_ : Dict = depths A_ : str = layer_type A_ : int = hidden_act A_ : str = downsample_in_first_stage A_ : Dict = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Any = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : int ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-3
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]=100 , _lowerCamelCase : Tuple=13 , _lowerCamelCase : List[str]=30 , _lowerCamelCase : Dict=2 , _lowerCamelCase : str=3 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=5 , _lowerCamelCase : Any=4 , _lowerCamelCase : Dict=37 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Any=10 , _lowerCamelCase : Optional[int]=0.02 , _lowerCamelCase : Optional[Any]=3 , ): """simple docstring""" A_ : Any = parent A_ : Dict = vocab_size A_ : Tuple = batch_size A_ : Dict = image_size A_ : Tuple = patch_size A_ : Any = num_channels A_ : Dict = is_training A_ : Dict = use_labels A_ : List[Any] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Dict = intermediate_size A_ : Optional[int] = hidden_act A_ : Any = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[Any] = type_sequence_label_size A_ : Any = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Tuple = (image_size // patch_size) ** 2 A_ : str = num_patches + 1 def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[str] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _a ( self : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Any = FlaxBeitModel(config=_lowerCamelCase ) A_ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Union[str, Any] = FlaxBeitForMaskedImageModeling(config=_lowerCamelCase ) A_ : List[str] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Optional[int] = self.type_sequence_label_size A_ : Optional[int] = FlaxBeitForImageClassification(config=_lowerCamelCase ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : str = 1 A_ : Tuple = FlaxBeitForImageClassification(_lowerCamelCase ) A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Tuple = model(_lowerCamelCase ) def _a ( self : Any ): """simple docstring""" A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) , ) : Dict = config_and_inputs A_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = FlaxBeitModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ): """simple docstring""" A_ ,A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(_lowerCamelCase ) A_ : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self : Optional[int] ): """simple docstring""" A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase : Optional[Any] , **_lowerCamelCase : int ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): A_ : List[Any] = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A_ : int = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self : int ): """simple docstring""" for model_class_name in self.all_model_classes: A_ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) A_ : Union[str, Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_lowerCamelCase ) def snake_case__ ( ) -> str: A_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Any ): """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _a ( self : str ): """simple docstring""" A_ : str = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) A_ : str = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos A_ : Any = np.ones((1, 196) , dtype=_lowerCamelCase ) # forward pass A_ : int = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) A_ : Dict = outputs.logits # verify the logits A_ : List[str] = (1, 196, 8192) self.assertEqual(logits.shape , _lowerCamelCase ) A_ : List[Any] = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1E-2 ) ) @slow def _a ( self : Tuple ): """simple docstring""" A_ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) A_ : List[str] = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) # forward pass A_ : Union[str, Any] = model(**_lowerCamelCase ) A_ : Any = outputs.logits # verify the logits A_ : int = (1, 1000) self.assertEqual(logits.shape , _lowerCamelCase ) A_ : List[str] = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) A_ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _a ( self : Tuple ): """simple docstring""" A_ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) A_ : int = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) # forward pass A_ : Tuple = model(**_lowerCamelCase ) A_ : Optional[int] = outputs.logits # verify the logits A_ : List[Any] = (1, 21841) self.assertEqual(logits.shape , _lowerCamelCase ) A_ : int = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) A_ : int = 2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
4
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ = logging.getLogger(__name__) @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None @dataclass(frozen=a__ ) class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) A_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : List[str] = label_list[2], label_list[1] A_ : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ : str = cached_features_file + '''.lock''' with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) A_ : List[str] = torch.load(_lowerCamelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) A_ : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) A_ : Optional[int] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.features[i] def _a ( self : str ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase_ : """simple docstring""" _lowerCAmelCase = 42 def __init__( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : str , _lowerCamelCase : Optional[int] = 128 , _lowerCamelCase : Dict=False , _lowerCamelCase : bool = False , ): """simple docstring""" A_ : Optional[int] = hans_processors[task]() A_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ ,A_ : Union[str, Any] = label_list[2], label_list[1] A_ : Tuple = label_list A_ : Optional[int] = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) A_ : Tuple = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _a ( self : Any ): """simple docstring""" return self.dataset def __len__( self : Dict ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _lowerCamelCase : List[str] ): """simple docstring""" return self.features[i] def _a ( self : Tuple ): """simple docstring""" return self.label_list class UpperCamelCase_ (a__ ): """simple docstring""" def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _a ( self : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _a ( self : Any ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def _a ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Tuple = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue A_ : str = '''%s-%s''' % (set_type, line[0]) A_ : Optional[Any] = line[5] A_ : Union[str, Any] = line[6] A_ : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] A_ : str = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def snake_case__ ( lowerCamelCase__ : List[InputExample] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : PreTrainedTokenizer , ) -> int: A_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase__ )} A_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) A_ : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , ) A_ : List[str] = label_map[example.label] if example.label in label_map else 0 A_ : Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase__ , label=lowerCamelCase__ , pairID=lowerCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features snake_case__ = { """hans""": 3, } snake_case__ = { """hans""": HansProcessor, }
4
1
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = BertTokenizer _lowerCAmelCase = BertTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def _a ( self : List[str] ): """simple docstring""" super().setUp() A_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _a ( self : Optional[Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = '''UNwant\u00E9d,running''' A_ : Any = '''unwanted, running''' return input_text, output_text def _a ( self : List[str] ): """simple docstring""" A_ : List[Any] = self.tokenizer_class(self.vocab_file ) A_ : Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [9, 6, 7, 12, 10, 11] ) def _a ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return A_ : str = self.get_tokenizer() A_ : Any = self.get_rust_tokenizer() A_ : Union[str, Any] = '''UNwant\u00E9d,running''' A_ : Any = tokenizer.tokenize(_lowerCamelCase ) A_ : Any = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = self.get_rust_tokenizer() A_ : List[str] = tokenizer.encode(_lowerCamelCase ) A_ : int = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # With lower casing A_ : int = self.get_tokenizer(do_lower_case=_lowerCamelCase ) A_ : Optional[int] = self.get_rust_tokenizer(do_lower_case=_lowerCamelCase ) A_ : List[Any] = '''UNwant\u00E9d,running''' A_ : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) A_ : Union[str, Any] = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Any = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : str = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = self.get_rust_tokenizer() A_ : List[str] = tokenizer.encode(_lowerCamelCase ) A_ : Dict = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Any ): """simple docstring""" A_ : str = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _a ( self : Any ): """simple docstring""" A_ : Optional[int] = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : str ): """simple docstring""" A_ : str = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = BasicTokenizer(do_lower_case=_lowerCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Tuple = BasicTokenizer() A_ : str = '''a\n\'ll !!to?\'d of, can\'t.''' A_ : Optional[Any] = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self : List[str] ): """simple docstring""" A_ : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A_ : str = {} for i, token in enumerate(_lowerCamelCase ): A_ : Optional[Any] = i A_ : int = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _a ( self : Optional[int] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _a ( self : Dict ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _a ( self : Optional[Any] ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Optional[int] = self.get_tokenizer() A_ : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def _a ( self : Any ): """simple docstring""" A_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) A_ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) A_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _a ( self : int ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : int = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : List[str] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A_ : Optional[int] = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) A_ : Tuple = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , '''do_lower_case''' ) else False A_ : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _a ( self : List[Any] ): """simple docstring""" A_ : Tuple = ['''的''', '''人''', '''有'''] A_ : Union[str, Any] = ''''''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : Optional[Any] = True A_ : List[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : List[Any] = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : List[Any] = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Any = False A_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : List[str] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ : Tuple = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Any = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ : List[str] = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A_ : List[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
4
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : int=2 , _lowerCamelCase : Any=8 , _lowerCamelCase : Tuple=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Dict=36 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Dict=512 , _lowerCamelCase : str=16 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : Tuple=3 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : List[Any]=None , ): """simple docstring""" A_ : Optional[Any] = parent A_ : Dict = batch_size A_ : str = seq_length A_ : Any = is_training A_ : List[Any] = use_input_mask A_ : Union[str, Any] = use_token_type_ids A_ : Optional[int] = use_labels A_ : Any = vocab_size A_ : List[str] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : List[str] = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : int = type_vocab_size A_ : List[str] = type_sequence_label_size A_ : Tuple = initializer_range A_ : int = num_labels A_ : Optional[Any] = num_choices A_ : Union[str, Any] = scope def _a ( self : str ): """simple docstring""" A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_input_mask: A_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : List[Any] = None A_ : Union[str, Any] = None A_ : Tuple = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : str ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self : Any ): """simple docstring""" A_ : List[Any] = self.get_config() A_ : str = 300 return config def _a ( self : Dict ): """simple docstring""" ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) : List[Any] = self.prepare_config_and_inputs() A_ : List[str] = True A_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a ( self : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Dict ): """simple docstring""" A_ : List[str] = MraModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Any = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , ): """simple docstring""" A_ : Dict = True A_ : str = MraModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) A_ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int ): """simple docstring""" A_ : List[Any] = MraForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Optional[int] = MraForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : int ): """simple docstring""" A_ : Optional[Any] = self.num_labels A_ : Any = MraForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : int = self.num_labels A_ : Optional[int] = MraForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = self.num_choices A_ : str = MraForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) : Optional[Any] = config_and_inputs A_ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = () def _a ( self : str ): """simple docstring""" A_ : List[str] = MraModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Any ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : List[Any] = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _a ( self : Dict ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def _a ( self : int ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = MraModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def _a ( self : Union[str, Any] ): """simple docstring""" return @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A_ : str = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) A_ : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ : List[str] = model(_lowerCamelCase )[0] A_ : List[str] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def _a ( self : Tuple ): """simple docstring""" A_ : Dict = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) A_ : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ : Tuple = model(_lowerCamelCase )[0] A_ : List[str] = 50265 A_ : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Optional[int] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" A_ : int = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) A_ : Optional[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A_ : str = model(_lowerCamelCase )[0] A_ : Dict = 50265 A_ : Any = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : str = "geglu" , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = True , _lowerCamelCase : str = "layer_norm" , _lowerCamelCase : bool = False , ): """simple docstring""" super().__init__() A_ : Union[str, Any] = only_cross_attention A_ : str = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' A_ : str = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A_ : List[str] = AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ : List[Any] = AdaLayerNormZero(_lowerCamelCase , _lowerCamelCase ) else: A_ : List[Any] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : int = Attention( query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A_ : str = ( AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) ) A_ : str = Attention( query_dim=_lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , upcast_attention=_lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: A_ : Optional[Any] = None A_ : List[Any] = None # 3. Feed-forward A_ : List[str] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : List[str] = FeedForward(_lowerCamelCase , dropout=_lowerCamelCase , activation_fn=_lowerCamelCase , final_dropout=_lowerCamelCase ) # let chunk size default to None A_ : Tuple = None A_ : str = 0 def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): """simple docstring""" A_ : List[str] = chunk_size A_ : Dict = dim def _a ( self : Any , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[torch.LongTensor] = None , _lowerCamelCase : Dict[str, Any] = None , _lowerCamelCase : Optional[torch.LongTensor] = None , ): """simple docstring""" if self.use_ada_layer_norm: A_ : Tuple = self.norma(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ ,A_ ,A_ ,A_ ,A_ : Dict = self.norma( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hidden_dtype=hidden_states.dtype ) else: A_ : Optional[int] = self.norma(_lowerCamelCase ) A_ : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} A_ : Union[str, Any] = self.attna( _lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) if self.use_ada_layer_norm_zero: A_ : Optional[int] = gate_msa.unsqueeze(1 ) * attn_output A_ : Tuple = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A_ : List[str] = ( self.norma(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else self.norma(_lowerCamelCase ) ) A_ : Dict = self.attna( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Optional[int] = attn_output + hidden_states # 3. Feed-forward A_ : List[str] = self.norma(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) A_ : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A_ : Tuple = torch.cat( [self.ff(_lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A_ : Any = self.ff(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : Optional[int] = gate_mlp.unsqueeze(1 ) * ff_output A_ : int = ff_output + hidden_states return hidden_states class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 4 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : str = "geglu" , _lowerCamelCase : bool = False , ): """simple docstring""" super().__init__() A_ : Optional[int] = int(dim * mult ) A_ : List[str] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A_ : Tuple = GELU(_lowerCamelCase , _lowerCamelCase ) if activation_fn == "gelu-approximate": A_ : Tuple = GELU(_lowerCamelCase , _lowerCamelCase , approximate='''tanh''' ) elif activation_fn == "geglu": A_ : Any = GEGLU(_lowerCamelCase , _lowerCamelCase ) elif activation_fn == "geglu-approximate": A_ : List[Any] = ApproximateGELU(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(_lowerCamelCase ) # project dropout self.net.append(nn.Dropout(_lowerCamelCase ) ) # project out self.net.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCamelCase ) ) def _a ( self : Dict , _lowerCamelCase : List[Any] ): """simple docstring""" for module in self.net: A_ : List[str] = module(_lowerCamelCase ) return hidden_states class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : str = "none" ): """simple docstring""" super().__init__() A_ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = approximate def _a ( self : Any , _lowerCamelCase : Dict ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_lowerCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _a ( self : List[Any] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : str = self.proj(_lowerCamelCase ) A_ : Any = self.gelu(_lowerCamelCase ) return hidden_states class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int ): """simple docstring""" super().__init__() A_ : List[str] = nn.Linear(_lowerCamelCase , dim_out * 2 ) def _a ( self : Optional[int] , _lowerCamelCase : List[Any] ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _a ( self : Any , _lowerCamelCase : Tuple ): """simple docstring""" A_ ,A_ : Tuple = self.proj(_lowerCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCamelCase ) class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : int ): """simple docstring""" super().__init__() A_ : str = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Tuple = self.proj(_lowerCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : str , _lowerCamelCase : int , _lowerCamelCase : List[str] ): """simple docstring""" super().__init__() A_ : List[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = nn.SiLU() A_ : List[Any] = nn.Linear(_lowerCamelCase , embedding_dim * 2 ) A_ : Union[str, Any] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) def _a ( self : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Any = self.linear(self.silu(self.emb(_lowerCamelCase ) ) ) A_ ,A_ : Optional[Any] = torch.chunk(_lowerCamelCase , 2 ) A_ : List[Any] = self.norm(_lowerCamelCase ) * (1 + scale) + shift return x class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" super().__init__() A_ : str = CombinedTimestepLabelEmbeddings(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = nn.SiLU() A_ : Any = nn.Linear(_lowerCamelCase , 6 * embedding_dim , bias=_lowerCamelCase ) A_ : List[str] = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase , eps=1E-6 ) def _a ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Dict=None ): """simple docstring""" A_ : List[str] = self.linear(self.silu(self.emb(_lowerCamelCase , _lowerCamelCase , hidden_dtype=_lowerCamelCase ) ) ) A_ ,A_ ,A_ ,A_ ,A_ ,A_ : Tuple = emb.chunk(6 , dim=1 ) A_ : Optional[Any] = self.norm(_lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class UpperCamelCase_ (nn.Module ): """simple docstring""" def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : float = 1E-5 ): """simple docstring""" super().__init__() A_ : str = num_groups A_ : int = eps if act_fn is None: A_ : int = None else: A_ : Optional[Any] = get_activation(_lowerCamelCase ) A_ : Union[str, Any] = nn.Linear(_lowerCamelCase , out_dim * 2 ) def _a ( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): """simple docstring""" if self.act: A_ : Union[str, Any] = self.act(_lowerCamelCase ) A_ : Union[str, Any] = self.linear(_lowerCamelCase ) A_ : List[Any] = emb[:, :, None, None] A_ ,A_ : Any = emb.chunk(2 , dim=1 ) A_ : Union[str, Any] = F.group_norm(_lowerCamelCase , self.num_groups , eps=self.eps ) A_ : Optional[int] = x * (1 + scale) + shift return x
4
'''simple docstring''' from __future__ import annotations def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> list[int]: A_ : int = 0 A_ : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ : Tuple = i + 1 else: A_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
4
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path snake_case__ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def snake_case__ ( lowerCamelCase__ : List[str]=True ) -> str: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a__ ) ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None def _a ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: A_ : List[Any] = dataset_module_factory(_lowerCamelCase , cache_dir=_lowerCamelCase ) A_ : Tuple = import_main_class(dataset_module.module_path , dataset=_lowerCamelCase ) A_ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name=_lowerCamelCase , hash=dataset_module.hash , ) A_ : List[str] = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCamelCase ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) A_ : Optional[int] = cached_path(_lowerCamelCase , cache_dir=_lowerCamelCase ) self.assertTrue(os.path.exists(_lowerCamelCase ) ) @pytest.mark.integration def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: A_ : Tuple = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' A_ : Optional[Any] = dataset_module_factory('''wikipedia''' , cache_dir=lowerCamelCase__ ) A_ : str = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : Union[str, Any] = None builder_instance.download_and_prepare() A_ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def snake_case__ ( lowerCamelCase__ : Any ) -> Dict: A_ : Dict = dataset_module_factory('''wikipedia''' , cache_dir=lowerCamelCase__ ) A_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) A_ : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert "train" in ds assert isinstance(ds['''train'''] , lowerCamelCase__ ) assert next(iter(ds['''train'''] ) )
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py snake_case__ = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ snake_case__ = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ snake_case__ = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _a ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : int=False ): """simple docstring""" A_ : Optional[Any] = compute_bleu( reference_corpus=_lowerCamelCase , translation_corpus=_lowerCamelCase , max_order=_lowerCamelCase , smooth=_lowerCamelCase ) ((A_) ,(A_) ,(A_) ,(A_) ,(A_) ,(A_)) : Optional[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer snake_case__ = logging.get_logger(__name__) snake_case__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } snake_case__ = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } snake_case__ = { """facebook/blenderbot_small-90M""": 5_12, } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = BlenderbotSmallTokenizer def __init__( self : Optional[Any] , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : Optional[Any]="<|endoftext|>" , _lowerCamelCase : str="<|endoftext|>" , _lowerCamelCase : List[Any]="<|endoftext|>" , _lowerCamelCase : Dict=False , _lowerCamelCase : Any=True , **_lowerCamelCase : Optional[int] , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=_lowerCamelCase , merges=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , ) , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , **_lowerCamelCase , ) A_ : int = add_prefix_space def _a ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=None ): """simple docstring""" A_ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : str = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
1