code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=50 ,a_=0.02 ,a_=True ,a_=None ,) -> Dict: _UpperCAmelCase : int = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : List[str] = scope def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : int = self.get_config() return config, input_ids, input_mask, token_labels def _snake_case ( self ) -> Optional[int]: return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=a_ ,initializer_range=self.initializer_range ,) def _snake_case ( self ) -> List[str]: ( _UpperCAmelCase ) : str = self.prepare_config_and_inputs() _UpperCAmelCase : Dict = True _UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,**a_ ,) -> Any: _UpperCAmelCase : Optional[int] = BertGenerationEncoder(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Optional[Any] = model(a_ ,attention_mask=a_ ) _UpperCAmelCase : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,**a_ ,) -> List[str]: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Optional[int] = BertGenerationEncoder(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Tuple = model( a_ ,attention_mask=a_ ,encoder_hidden_states=a_ ,encoder_attention_mask=a_ ,) _UpperCAmelCase : Dict = model( a_ ,attention_mask=a_ ,encoder_hidden_states=a_ ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,**a_ ,) -> List[str]: _UpperCAmelCase : str = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[str] = BertGenerationDecoder(config=a_ ).to(a_ ).eval() # first forward pass _UpperCAmelCase : List[str] = model( a_ ,attention_mask=a_ ,encoder_hidden_states=a_ ,encoder_attention_mask=a_ ,use_cache=a_ ,) _UpperCAmelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : str = torch.cat([input_ids, next_tokens] ,dim=-1 ) _UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] ,dim=-1 ) _UpperCAmelCase : Tuple = model( a_ ,attention_mask=a_ ,encoder_hidden_states=a_ ,encoder_attention_mask=a_ ,output_hidden_states=a_ ,)["""hidden_states"""][0] _UpperCAmelCase : Dict = model( a_ ,attention_mask=a_ ,encoder_hidden_states=a_ ,encoder_attention_mask=a_ ,past_key_values=a_ ,output_hidden_states=a_ ,)["""hidden_states"""][0] # select random slice _UpperCAmelCase : str = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _UpperCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ ,a_ ,atol=1E-3 ) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,*a_ ,) -> Dict: _UpperCAmelCase : List[str] = BertGenerationDecoder(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Tuple = model(a_ ,attention_mask=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Any = BertGenerationEncoderTester(self ) _UpperCAmelCase : Union[str, Any] = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] = """bert""" self.model_tester.create_and_check_model(a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a_ ) def _snake_case ( self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 ( _UpperCAmelCase ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase : int = None self.model_tester.create_and_check_model_as_decoder( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*a_ ) @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : int = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(a_ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _UpperCAmelCase : str = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): _UpperCAmelCase : Dict = model(a_ )[0] _UpperCAmelCase : Dict = torch.Size([1, 8, 1_024] ) self.assertEqual(output.shape ,a_ ) _UpperCAmelCase : Dict = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,a_ ,atol=1E-4 ) ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[Any] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _UpperCAmelCase : Optional[Any] = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): _UpperCAmelCase : Any = model(a_ )[0] _UpperCAmelCase : Union[str, Any] = torch.Size([1, 8, 50_358] ) self.assertEqual(output.shape ,a_ ) _UpperCAmelCase : Any = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,a_ ,atol=1E-4 ) )
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : Any = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if point: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for item in point: if not isinstance(lowerCAmelCase_ , (int, float) ): _UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F'''{type(lowerCAmelCase_ ).__name__}''' ) raise TypeError(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = F'''Expected a list of numbers as input, found {type(lowerCAmelCase_ ).__name__}''' raise TypeError(lowerCAmelCase_ ) else: raise ValueError("""Missing an input""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' try: with open(lowerCAmelCase_ , """rb""" ) as flax_state_f: _UpperCAmelCase : str = from_bytes(lowerCAmelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _UpperCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase_ : x.dtype == jnp.bfloataa , lowerCAmelCase_ ) ).values() if any(lowerCAmelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _UpperCAmelCase : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCAmelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase_ ) _UpperCAmelCase : int = """""" _UpperCAmelCase : Any = flatten_dict(lowerCAmelCase_ , sep=""".""" ) _UpperCAmelCase : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase : int = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _UpperCAmelCase : Dict = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : List[Any] = jnp.transpose(lowerCAmelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _UpperCAmelCase : int = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _UpperCAmelCase : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _UpperCAmelCase : Any = """.""".join(lowerCAmelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _UpperCAmelCase : int = np.asarray(lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , np.ndarray ) else flax_tensor _UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowerCAmelCase_ ) # remove from missing keys missing_keys.remove(lowerCAmelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase_ ) pt_model.load_state_dict(lowerCAmelCase_ ) # re-transform missing_keys to list _UpperCAmelCase : Tuple = list(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCAmelCase_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import copy import re class lowercase : """simple docstring""" UpperCAmelCase = """hp""" UpperCAmelCase = {} UpperCAmelCase = None @classmethod def _snake_case ( cls ,a_ ,a_ ) -> int: _UpperCAmelCase : List[str] = prefix _UpperCAmelCase : int = defaults cls.build_naming_info() @staticmethod def _snake_case ( a_ ,a_ ) -> List[Any]: if len(a_ ) == 0: return "" _UpperCAmelCase : Dict = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(a_ ) + 1 ): _UpperCAmelCase : Any = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _UpperCAmelCase : List[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(a_ ): _UpperCAmelCase : Optional[int] = """""" while integer != 0: _UpperCAmelCase : Union[str, Any] = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _UpperCAmelCase : Optional[int] = 0 while True: _UpperCAmelCase : Union[str, Any] = word + """#""" + int_to_alphabetic(a_ ) if sword in info["reverse_short_word"]: continue else: _UpperCAmelCase : List[Any] = sword break _UpperCAmelCase : int = short_word _UpperCAmelCase : Any = word return short_word @staticmethod def _snake_case ( a_ ,a_ ) -> int: _UpperCAmelCase : int = param_name.split("""_""" ) _UpperCAmelCase : Optional[Any] = [TrialShortNamer.shortname_for_word(a_ ,a_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _UpperCAmelCase : List[str] = ["""""", """_"""] for separator in separators: _UpperCAmelCase : Tuple = separator.join(a_ ) if shortname not in info["reverse_short_param"]: _UpperCAmelCase : Optional[int] = shortname _UpperCAmelCase : Optional[int] = param_name return shortname return param_name @staticmethod def _snake_case ( a_ ,a_ ) -> Tuple: _UpperCAmelCase : int = TrialShortNamer.shortname_for_key(a_ ,a_ ) _UpperCAmelCase : Optional[int] = short_name _UpperCAmelCase : str = param_name @classmethod def _snake_case ( cls ) -> Union[str, Any]: if cls.NAMING_INFO is not None: return _UpperCAmelCase : Tuple = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _UpperCAmelCase : Any = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(a_ ,a_ ) _UpperCAmelCase : Optional[Any] = info @classmethod def _snake_case ( cls ,a_ ) -> Any: cls.build_naming_info() assert cls.PREFIX is not None _UpperCAmelCase : Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k] if isinstance(a_ ,a_ ): _UpperCAmelCase : Optional[Any] = 1 if v else 0 _UpperCAmelCase : int = """""" if isinstance(a_ ,(int, float) ) else """-""" _UpperCAmelCase : Union[str, Any] = f'''{key}{sep}{v}''' name.append(a_ ) return "_".join(a_ ) @classmethod def _snake_case ( cls ,a_ ) -> str: _UpperCAmelCase : Union[str, Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": _UpperCAmelCase : Optional[Any] = [] else: _UpperCAmelCase : Optional[int] = repr.split("""_""" ) _UpperCAmelCase : List[Any] = {} for value in values: if "-" in value: _UpperCAmelCase : Union[str, Any] = value.split("""-""" ) else: _UpperCAmelCase : int = re.sub("""[0-9.]""" ,"""""" ,a_ ) _UpperCAmelCase : Union[str, Any] = float(re.sub("""[^0-9.]""" ,"""""" ,a_ ) ) _UpperCAmelCase : Union[str, Any] = cls.NAMING_INFO["""reverse_short_param"""][p_k] _UpperCAmelCase : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: _UpperCAmelCase : List[str] = cls.DEFAULTS[k] return parameters
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label _UpperCAmelCase : str = label_idx def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : str = mode.value _UpperCAmelCase : List[str] = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = [] with open(a_ ,encoding="""utf-8""" ) as f: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = [] else: _UpperCAmelCase : List[str] = line.split(""" """ ) words.append(splits[0] ) if len(a_ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(a_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _UpperCAmelCase : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(a_ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : Any = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ) -> Union[str, Any]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : str = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : List[str] = mode.value _UpperCAmelCase : int = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : List[str] = [] with open(a_ ,encoding="""utf-8""" ) as f: for sentence in parse_incr(a_ ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(a_ ) == len(a_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : Dict = 0 for sentence in parse_incr(a_ ): _UpperCAmelCase : Dict = preds_list[example_id] _UpperCAmelCase : Dict = """""" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(a_ ) example_id += 1 def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ = 100 )-> int: '''simple docstring''' _UpperCAmelCase : int = sum(i * i for i in range(1 , n + 1 ) ) _UpperCAmelCase : List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ = 10001 )-> int: '''simple docstring''' try: _UpperCAmelCase : Any = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _UpperCAmelCase : list[int] = [] _UpperCAmelCase : Any = 2 while len(lowerCAmelCase_ ) < nth: if is_prime(lowerCAmelCase_ ): primes.append(lowerCAmelCase_ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase_ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase = Features({"""text""": Value("""string""" )} ) UpperCAmelCase = Features({} ) UpperCAmelCase = """text""" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : x[0] / x[1] , reverse=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] _UpperCAmelCase : int = list(accumulate(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = bisect(lowerCAmelCase_ , lowerCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _snake_case ( self ) -> List[str]: return 32 @property def _snake_case ( self ) -> Optional[Any]: return 32 @property def _snake_case ( self ) -> Any: return self.time_input_dim @property def _snake_case ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _snake_case ( self ) -> Optional[int]: return 100 @property def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase : Any = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_005 ,) _UpperCAmelCase : List[Any] = MultilingualCLIP(a_ ) _UpperCAmelCase : List[str] = text_encoder.eval() return text_encoder @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _UpperCAmelCase : Optional[Any] = UNetaDConditionModel(**a_ ) return model @property def _snake_case ( self ) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = self.dummy_tokenizer _UpperCAmelCase : List[str] = self.dummy_unet _UpperCAmelCase : Union[str, Any] = self.dummy_movq _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _UpperCAmelCase : Optional[Any] = DDIMScheduler(**a_ ) _UpperCAmelCase : Union[str, Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _snake_case ( self ,a_ ,a_=0 ) -> int: _UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image _UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((256, 256) ) if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(a_ ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Tuple = """cpu""" _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**a_ ) _UpperCAmelCase : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = pipe(**self.get_dummy_inputs(a_ ) ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(a_ ) ,return_dict=a_ ,)[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Dict = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) _UpperCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _UpperCAmelCase : List[Any] = """A red cartoon frog, 4k""" _UpperCAmelCase : Optional[int] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(a_ ) _UpperCAmelCase : int = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" ,torch_dtype=torch.floataa ) _UpperCAmelCase : str = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe_prior( a_ ,generator=a_ ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() _UpperCAmelCase : int = pipeline( a_ ,image=a_ ,image_embeds=a_ ,negative_image_embeds=a_ ,generator=a_ ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type="""np""" ,) _UpperCAmelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_ ,a_ )
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' import pytest A_ : Optional[int] = """__dummy_dataset1__""" A_ : Any = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def snake_case_ ( )-> Tuple: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dataset_loading_script_name _UpperCAmelCase : Tuple = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = script_dir / F'''{script_name}.py''' with open(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ )
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if len(lowerCAmelCase_ ) == 0: return array _UpperCAmelCase : Union[str, Any] = min(lowerCAmelCase_ ), max(lowerCAmelCase_ ) # Compute the variables _UpperCAmelCase : Optional[int] = _max - _min + 1 _UpperCAmelCase : int = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _UpperCAmelCase : Optional[int] = i - _min _UpperCAmelCase : Tuple = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _UpperCAmelCase : Optional[Any] = 0 for i in range(lowerCAmelCase_ ): while holes_repeat[i] > 0: _UpperCAmelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] = input("""Enter numbers separated by comma:\n""") A_ : int = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowerCAmelCase_ ) env_command_parser(subparsers=lowerCAmelCase_ ) launch_command_parser(subparsers=lowerCAmelCase_ ) tpu_command_parser(subparsers=lowerCAmelCase_ ) test_command_parser(subparsers=lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Tuple = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase_ ) if __name__ == "__main__": main()
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } _UpperCAmelCase : int = Dataset.from_dict(lowerCAmelCase_ ) return dataset class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Dict = get_dataset() _UpperCAmelCase : Tuple = make_duplicate_clusters(a_ ,0.85 ) self.assertEqual(len(duplicate_clusters[0] ) ,2 ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = get_dataset() _UpperCAmelCase : Union[str, Any] = deduplicate_dataset(a_ ) self.assertEqual(len(a_ ) ,2 ) print(a_ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] ,2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] ,a_ )
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
from math import pi, sqrt def snake_case_ ( lowerCAmelCase_ )-> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(lowerCAmelCase_ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCAmelCase_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ ( )-> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(lowerCAmelCase_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : Union[str, Any] = 1.0 while num: A_ : Optional[Any] = float(input("""Gamma of: """)) print(f"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( _lowerCamelCase ): """simple docstring""" def __get__( self ,a_ ,a_=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) _UpperCAmelCase : Dict = """__cached_""" + self.fget.__name__ _UpperCAmelCase : str = getattr(a_ ,a_ ,a_ ) if cached is None: _UpperCAmelCase : Tuple = self.fget(a_ ) setattr(a_ ,a_ ,a_ ) return cached def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if is_torch_fx_proxy(lowerCAmelCase_ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' return _is_numpy(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.device ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' import torch if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) else: return False return isinstance(lowerCAmelCase_ , torch.dtype ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' import tensorflow as tf return isinstance(lowerCAmelCase_ , tf.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase_ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(lowerCAmelCase_ ) return type(lowerCAmelCase_ ) == tf.Tensor def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase_ , jnp.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_flax_available() else _is_jax(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_py_obj(lowerCAmelCase_ ) for o in obj] elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ).tolist() elif isinstance(lowerCAmelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return np.array(lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ) else: return obj class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(a_ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) _UpperCAmelCase : Tuple = getattr(self ,class_fields[0].name ) _UpperCAmelCase : Tuple = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(a_ ): if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = first_field.items() _UpperCAmelCase : int = True else: try: _UpperCAmelCase : Optional[int] = iter(a_ ) _UpperCAmelCase : Tuple = True except TypeError: _UpperCAmelCase : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(a_ ): if ( not isinstance(a_ ,(list, tuple) ) or not len(a_ ) == 2 or not isinstance(element[0] ,a_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _UpperCAmelCase : str = element[1] elif first_field is not None: _UpperCAmelCase : List[str] = first_field else: for field in class_fields: _UpperCAmelCase : Optional[Any] = getattr(self ,field.name ) if v is not None: _UpperCAmelCase : Any = v def __delitem__( self ,*a_ ,**a_ ) -> int: raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Union[str, Any]: raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> str: raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self ,a_ ) -> int: if isinstance(a_ ,a_ ): _UpperCAmelCase : Any = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self ,a_ ,a_ ) -> Union[str, Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(a_ ,a_ ) super().__setattr__(a_ ,a_ ) def __setitem__( self ,a_ ,a_ ) -> str: # Will raise a KeyException if needed super().__setitem__(a_ ,a_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(a_ ,a_ ) def _snake_case ( self ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class lowercase ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" @classmethod def _snake_case ( cls ,a_ ) -> Union[str, Any]: raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longest""" UpperCAmelCase = """max_length""" UpperCAmelCase = """do_not_pad""" class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pt""" UpperCAmelCase = """tf""" UpperCAmelCase = """np""" UpperCAmelCase = """jax""" class lowercase : """simple docstring""" def __init__( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[str] = context_managers _UpperCAmelCase : Union[str, Any] = ExitStack() def __enter__( self ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(a_ ) def __exit__( self ,*a_ ,**a_ ) -> List[str]: self.stack.__exit__(*a_ ,**a_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Optional[int] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : List[Any] = model_class.__name__ _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "" , lowerCAmelCase_ = "." )-> Tuple: '''simple docstring''' def _flatten_dict(lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_="." ): for k, v in d.items(): _UpperCAmelCase : List[Any] = str(lowerCAmelCase_ ) + delimiter + str(lowerCAmelCase_ ) if parent_key else k if v and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): yield from flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , delimiter=lowerCAmelCase_ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) @contextmanager def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = False )-> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.T if axes is None else array.permute(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.transpose(lowerCAmelCase_ , perm=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for transpose: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.reshape(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for reshape: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Dict: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for squeeze: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.expand_dims(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.unsqueeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.size(lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.numel() elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.size(lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(lowerCAmelCase_ , (tuple, list) ): _UpperCAmelCase : Optional[Any] = [F'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : List[Any] = F'''{repo_id}--{value}''' return auto_map def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' for base_class in inspect.getmro(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = base_class.__module__ _UpperCAmelCase : List[str] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' _UpperCAmelCase : Tuple = [int(lowerCAmelCase_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(lowerCAmelCase_ ) == 4 and all(0 <= int(lowerCAmelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": A_ : Any = input().strip() A_ : Union[str, Any] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ : List[Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowercase : """simple docstring""" UpperCAmelCase = PegasusConfig UpperCAmelCase = {} UpperCAmelCase = """gelu""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=False ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_=0.1 ,a_=0.1 ,a_=20 ,a_=2 ,a_=1 ,a_=0 ,) -> Optional[Any]: _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = eos_token_id _UpperCAmelCase : Any = pad_token_id _UpperCAmelCase : Tuple = bos_token_id def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) _UpperCAmelCase : Optional[int] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCAmelCase : int = np.concatenate([input_ids, eos_tensor] ,axis=1 ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) _UpperCAmelCase : Dict = prepare_pegasus_inputs_dict(a_ ,a_ ,a_ ) return config, inputs_dict def _snake_case ( self ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : int = 20 _UpperCAmelCase : List[str] = model_class_name(a_ ) _UpperCAmelCase : str = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] ,a_ ,a_ ) _UpperCAmelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) _UpperCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _UpperCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] ,a_ ,decoder_attention_mask=a_ ,past_key_values=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : int = model.decode( decoder_input_ids[:, -1:] ,a_ ,decoder_attention_mask=a_ ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=a_ ,) _UpperCAmelCase : Tuple = model.decode(a_ ,a_ ) _UpperCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = 20 _UpperCAmelCase : Dict = model_class_name(a_ ) _UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) _UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] ,a_ ,a_ ) _UpperCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,a_ ,decoder_attention_mask=a_ ,past_key_values=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] ,a_ ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : List[Any] = model.decode(a_ ,a_ ,decoder_attention_mask=a_ ) _UpperCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , )-> str: '''simple docstring''' if attention_mask is None: _UpperCAmelCase : Optional[int] = np.not_equal(lowerCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCAmelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = FlaxPegasusModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self ,config_class=a_ ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_ ,a_ ,a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_ ,a_ ,a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Any = self._prepare_for_class(a_ ,a_ ) _UpperCAmelCase : Union[str, Any] = model_class(a_ ) @jax.jit def encode_jitted(a_ ,a_=None ,**a_ ): return model.encode(input_ids=a_ ,attention_mask=a_ ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase : Tuple = encode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase : List[Any] = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ) for jitted_output, output in zip(a_ ,a_ ): self.assertEqual(jitted_output.shape ,output.shape ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Tuple = model_class(a_ ) _UpperCAmelCase : Any = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) _UpperCAmelCase : List[str] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a_ ,a_ ,a_ ): return model.decode( decoder_input_ids=a_ ,decoder_attention_mask=a_ ,encoder_outputs=a_ ,) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase : Dict = decode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase : Tuple = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ) for jitted_output, output in zip(a_ ,a_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=a_ ) _UpperCAmelCase : Dict = np.ones((1, 1) ) _UpperCAmelCase : int = model(a_ ) self.assertIsNotNone(a_ ) @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase : int = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase : Tuple = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase : Dict = tokenizer(a_ ,return_tensors="""np""" ,truncation=a_ ,max_length=512 ,padding=a_ ) _UpperCAmelCase : List[Any] = model.generate(**a_ ,num_beams=2 ).sequences _UpperCAmelCase : Optional[int] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) assert tgt_text == decoded
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """summarization""" UpperCAmelCase = ["""loss"""] UpperCAmelCase = ROUGE_KEYS UpperCAmelCase = """rouge2""" def __init__( self ,a_ ,**a_ ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCAmelCase : List[str] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(a_ ,num_labels=a_ ,mode=self.mode ,**a_ ) use_task_specific_params(self.model ,"""summarization""" ) save_git_info(self.hparams.output_dir ) _UpperCAmelCase : List[Any] = Path(self.output_dir ) / """metrics.json""" _UpperCAmelCase : str = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams ,self.hparams_save_path ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[str] = defaultdict(a_ ) _UpperCAmelCase : Optional[int] = self.config.model_type _UpperCAmelCase : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _UpperCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCAmelCase : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _UpperCAmelCase : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCAmelCase : List[str] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCAmelCase : Optional[Any] = get_git_info()["""repo_sha"""] _UpperCAmelCase : Any = hparams.num_workers _UpperCAmelCase : Dict = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,a_ ): _UpperCAmelCase : Union[str, Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCAmelCase : Optional[int] = self.decoder_start_token_id _UpperCAmelCase : List[str] = ( SeqaSeqDataset if hasattr(self.tokenizer ,"""prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCAmelCase : Optional[int] = self.hparams.eval_max_gen_length else: _UpperCAmelCase : List[Any] = self.model.config.max_length _UpperCAmelCase : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _snake_case ( self ,a_ ) -> Dict[str, List[str]]: _UpperCAmelCase : List[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(a_ ,Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / """tok_batch.json""" ) _UpperCAmelCase : Union[str, Any] = True return readable_batch def _snake_case ( self ,a_ ,**a_ ) -> Dict: return self.model(a_ ,**a_ ) def _snake_case ( self ,a_ ) -> Optional[Any]: _UpperCAmelCase : Tuple = self.tokenizer.batch_decode( a_ ,skip_special_tokens=a_ ,clean_up_tokenization_spaces=a_ ) return lmap(str.strip ,a_ ) def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : str = self.tokenizer.pad_token_id _UpperCAmelCase : List[Any] = batch["""input_ids"""], batch["""attention_mask"""] _UpperCAmelCase : int = batch["""labels"""] if isinstance(self.model ,a_ ): _UpperCAmelCase : Optional[int] = self.model._shift_right(a_ ) else: _UpperCAmelCase : Optional[Any] = shift_tokens_right(a_ ,a_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCAmelCase : Any = decoder_input_ids self.save_readable_batch(a_ ) _UpperCAmelCase : str = self(a_ ,attention_mask=a_ ,decoder_input_ids=a_ ,use_cache=a_ ) _UpperCAmelCase : Union[str, Any] = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCAmelCase : Tuple = nn.CrossEntropyLoss(ignore_index=a_ ) assert lm_logits.shape[-1] == self.vocab_size _UpperCAmelCase : List[Any] = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: _UpperCAmelCase : Dict = nn.functional.log_softmax(a_ ,dim=-1 ) _UpperCAmelCase : Optional[int] = label_smoothed_nll_loss( a_ ,a_ ,self.hparams.label_smoothing ,ignore_index=a_ ) return (loss,) @property def _snake_case ( self ) -> int: return self.tokenizer.pad_token_id def _snake_case ( self ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = self._step(a_ ) _UpperCAmelCase : List[str] = dict(zip(self.loss_names ,a_ ) ) # tokens per batch _UpperCAmelCase : List[Any] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _UpperCAmelCase : List[str] = batch["""input_ids"""].shape[0] _UpperCAmelCase : str = batch["""input_ids"""].eq(self.pad ).sum() _UpperCAmelCase : List[Any] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _snake_case ( self ,a_ ,a_ ) -> Dict: return self._generative_step(a_ ) def _snake_case ( self ,a_ ,a_="val" ) -> Dict: self.step_count += 1 _UpperCAmelCase : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCAmelCase : Any = losses["""loss"""] _UpperCAmelCase : List[str] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _UpperCAmelCase : Dict = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCAmelCase : torch.FloatTensor = torch.tensor(a_ ).type_as(a_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(a_ ) _UpperCAmelCase : str = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCAmelCase : Any = self.step_count self.metrics[prefix].append(a_ ) # callback writes this to self.metrics_save_path _UpperCAmelCase : Union[str, Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def _snake_case ( self ,a_ ,a_ ) -> Dict: return calculate_rouge(a_ ,a_ ) def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase : Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCAmelCase : Optional[Any] = self.model.generate( batch["""input_ids"""] ,attention_mask=batch["""attention_mask"""] ,use_cache=a_ ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) _UpperCAmelCase : Any = (time.time() - ta) / batch["""input_ids"""].shape[0] _UpperCAmelCase : List[str] = self.ids_to_clean_text(a_ ) _UpperCAmelCase : List[str] = self.ids_to_clean_text(batch["""labels"""] ) _UpperCAmelCase : int = self._step(a_ ) _UpperCAmelCase : str = dict(zip(self.loss_names ,a_ ) ) _UpperCAmelCase : Dict = self.calc_generative_metrics(a_ ,a_ ) _UpperCAmelCase : int = np.mean(lmap(a_ ,a_ ) ) base_metrics.update(gen_time=a_ ,gen_len=a_ ,preds=a_ ,target=a_ ,**a_ ) return base_metrics def _snake_case ( self ,a_ ,a_ ) -> List[str]: return self._generative_step(a_ ) def _snake_case ( self ,a_ ) -> str: return self.validation_epoch_end(a_ ,prefix="""test""" ) def _snake_case ( self ,a_ ) -> SeqaSeqDataset: _UpperCAmelCase : int = self.n_obs[type_path] _UpperCAmelCase : Dict = self.target_lens[type_path] _UpperCAmelCase : List[str] = self.dataset_class( self.tokenizer ,type_path=a_ ,n_obs=a_ ,max_target_length=a_ ,**self.dataset_kwargs ,) return dataset def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : int = self.get_dataset(a_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCAmelCase : Any = dataset.make_sortish_sampler(a_ ,distributed=self.hparams.gpus > 1 ) return DataLoader( a_ ,batch_size=a_ ,collate_fn=dataset.collate_fn ,shuffle=a_ ,num_workers=self.num_workers ,sampler=a_ ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCAmelCase : List[str] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( a_ ,batch_sampler=a_ ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( a_ ,batch_size=a_ ,collate_fn=dataset.collate_fn ,shuffle=a_ ,num_workers=self.num_workers ,sampler=a_ ,) def _snake_case ( self ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = self.get_dataloader("""train""" ,batch_size=self.hparams.train_batch_size ,shuffle=a_ ) return dataloader def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""val""" ,batch_size=self.hparams.eval_batch_size ) def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""test""" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def _snake_case ( a_ ,a_ ) -> Optional[Any]: BaseTransformer.add_model_specific_args(a_ ,a_ ) add_generic_args(a_ ,a_ ) parser.add_argument( """--max_source_length""" ,default=1_024 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--max_target_length""" ,default=56 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--val_max_target_length""" ,default=142 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--test_max_target_length""" ,default=142 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument("""--freeze_encoder""" ,action="""store_true""" ) parser.add_argument("""--freeze_embeds""" ,action="""store_true""" ) parser.add_argument("""--sortish_sampler""" ,action="""store_true""" ,default=a_ ) parser.add_argument("""--overwrite_output_dir""" ,action="""store_true""" ,default=a_ ) parser.add_argument("""--max_tokens_per_batch""" ,type=a_ ,default=a_ ) parser.add_argument("""--logger_name""" ,type=a_ ,choices=["""default""", """wandb""", """wandb_shared"""] ,default="""default""" ) parser.add_argument("""--n_train""" ,type=a_ ,default=-1 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" ,type=a_ ,default=500 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" ,type=a_ ,default=-1 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" ,type=a_ ,default="""summarization""" ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" ,type=a_ ,default=0.0 ,required=a_ ) parser.add_argument("""--src_lang""" ,type=a_ ,default="""""" ,required=a_ ) parser.add_argument("""--tgt_lang""" ,type=a_ ,default="""""" ,required=a_ ) parser.add_argument("""--eval_beams""" ,type=a_ ,default=a_ ,required=a_ ) parser.add_argument( """--val_metric""" ,type=a_ ,default=a_ ,required=a_ ,choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" ,type=a_ ,default=a_ ,help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" ,type=a_ ,default=1 ,required=a_ ,help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" ,type=a_ ,default=-1 ,required=a_ ,help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) ,) return parser class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """translation""" UpperCAmelCase = ["""loss"""] UpperCAmelCase = ["""bleu"""] UpperCAmelCase = """bleu""" def __init__( self ,a_ ,**a_ ) -> List[str]: super().__init__(a_ ,**a_ ) _UpperCAmelCase : Any = hparams.src_lang _UpperCAmelCase : Any = hparams.tgt_lang def _snake_case ( self ,a_ ,a_ ) -> dict: return calculate_bleu(a_ ,a_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase_ ) check_output_dir(lowerCAmelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCAmelCase : SummarizationModule = SummarizationModule(lowerCAmelCase_ ) else: _UpperCAmelCase : SummarizationModule = TranslationModule(lowerCAmelCase_ ) _UpperCAmelCase : Any = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _UpperCAmelCase : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : Tuple = os.environ.get("""WANDB_PROJECT""" , lowerCAmelCase_ ) _UpperCAmelCase : Tuple = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : Optional[Any] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCAmelCase : int = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCAmelCase : Dict = False _UpperCAmelCase : int = args.val_metric == """loss""" _UpperCAmelCase : pl.Trainer = generic_train( lowerCAmelCase_ , lowerCAmelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase_ ) , early_stopping_callback=lowerCAmelCase_ , logger=lowerCAmelCase_ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _UpperCAmelCase : int = """""" _UpperCAmelCase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) if checkpoints: _UpperCAmelCase : List[str] = checkpoints[-1] _UpperCAmelCase : Optional[int] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() A_ : str = pl.Trainer.add_argparse_args(parser) A_ : Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A_ : Union[str, Any] = parser.parse_args() main(args)
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=24 ,a_=2 ,a_=6 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=3 ,a_=None ,a_=1_000 ,) -> Any: _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : Dict = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : List[Any] = scope _UpperCAmelCase : str = range_bbox def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : str = bbox[i, j, 3] _UpperCAmelCase : List[str] = bbox[i, j, 1] _UpperCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Dict = bbox[i, j, 2] _UpperCAmelCase : Tuple = bbox[i, j, 0] _UpperCAmelCase : Optional[Any] = t _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[int]: _UpperCAmelCase : Optional[int] = LiltModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ) _UpperCAmelCase : Union[str, Any] = model(a_ ,bbox=a_ ,token_type_ids=a_ ) _UpperCAmelCase : Tuple = model(a_ ,bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> str: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Union[str, Any] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Tuple = model( a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Union[str, Any]: _UpperCAmelCase : str = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[Any] = model( a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,start_positions=a_ ,end_positions=a_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : List[Any] = config_and_inputs _UpperCAmelCase : str = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Tuple: return True def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = LiltModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*a_ ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def _snake_case ( self ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> str: _UpperCAmelCase : int = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(a_ ) _UpperCAmelCase : Tuple = torch.tensor([[1, 2]] ,device=a_ ) _UpperCAmelCase : Dict = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=a_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : str = model(input_ids=a_ ,bbox=a_ ) _UpperCAmelCase : Tuple = torch.Size([1, 2, 768] ) _UpperCAmelCase : List[str] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] ,device=a_ ,) self.assertTrue(outputs.last_hidden_state.shape ,a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,a_ ,atol=1E-3 ) )
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def snake_case_ ( )-> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Any = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) _UpperCAmelCase : Tuple = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : Dict = CLIPTextModel(a_ ) _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : List[str] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Union[str, Any]: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(a_ ) else: _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = 2 _UpperCAmelCase : List[str] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,) _UpperCAmelCase : Tuple = floats_tensor(control_image.shape ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : Dict = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _snake_case ( self ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _snake_case ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _snake_case ( self ) -> Any: torch.manual_seed(0 ) _UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(a_ ): if isinstance(a_ ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _UpperCAmelCase : int = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _UpperCAmelCase : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : List[Any] = CLIPTextModel(a_ ) _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : int = MultiControlNetModel([controlneta, controlneta] ) _UpperCAmelCase : Any = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Optional[Any]: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : Any = torch.manual_seed(a_ ) else: _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = 2 _UpperCAmelCase : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,), ] _UpperCAmelCase : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : Tuple = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) _UpperCAmelCase : Union[str, Any] = 10.0 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Any = self.get_dummy_inputs(a_ ) _UpperCAmelCase : Any = steps _UpperCAmelCase : Optional[Any] = scale _UpperCAmelCase : Any = pipe(**a_ )[0] _UpperCAmelCase : List[str] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : Any = steps _UpperCAmelCase : str = scale _UpperCAmelCase : Any = pipe(**a_ ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : str = steps _UpperCAmelCase : List[Any] = scale _UpperCAmelCase : List[str] = pipe(**a_ ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] _UpperCAmelCase : List[str] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : int = steps _UpperCAmelCase : Optional[int] = scale _UpperCAmelCase : Dict = pipe(**a_ ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _snake_case ( self ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _snake_case ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : str = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(a_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: _UpperCAmelCase : str = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _UpperCAmelCase : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ,controlnet=a_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase : int = """evil space-punk bird""" _UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) _UpperCAmelCase : Tuple = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) _UpperCAmelCase : Any = pipe( a_ ,a_ ,control_image=a_ ,generator=a_ ,output_type="""np""" ,num_inference_steps=50 ,strength=0.6 ,) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) _UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : Dict = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["""LayoutLMv3FeatureExtractor"""] A_ : Optional[int] = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if "resnet-50" in model_name: _UpperCAmelCase : str = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _UpperCAmelCase : List[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _UpperCAmelCase : Optional[Any] = DetrConfig(use_timm_backbone=lowerCAmelCase_ , backbone_config=lowerCAmelCase_ ) # set label attributes _UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: _UpperCAmelCase : Dict = 250 else: _UpperCAmelCase : Dict = 91 _UpperCAmelCase : List[Any] = """huggingface/label-files""" _UpperCAmelCase : str = """coco-detection-id2label.json""" _UpperCAmelCase : Any = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : str = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : int = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=False )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = """""" if is_panoptic: _UpperCAmelCase : Optional[int] = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[Any] = in_proj_weight[:256, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[:256] _UpperCAmelCase : List[str] = in_proj_weight[256:512, :] _UpperCAmelCase : Dict = in_proj_bias[256:512] _UpperCAmelCase : List[Any] = in_proj_weight[-256:, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Dict = in_proj_weight[:256, :] _UpperCAmelCase : Optional[int] = in_proj_bias[:256] _UpperCAmelCase : Dict = in_proj_weight[256:512, :] _UpperCAmelCase : List[Any] = in_proj_bias[256:512] _UpperCAmelCase : List[str] = in_proj_weight[-256:, :] _UpperCAmelCase : int = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase : List[str] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _UpperCAmelCase : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase : Dict = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase : int = in_proj_bias_cross_attn[:256] _UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase : Dict = in_proj_bias_cross_attn[256:512] _UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase : int = in_proj_bias_cross_attn[-256:] def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False )-> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = get_detr_config(lowerCAmelCase_ ) # load original model from torch hub _UpperCAmelCase : Optional[int] = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) _UpperCAmelCase : str = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase_ ).eval() _UpperCAmelCase : Optional[int] = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase_ ): if is_panoptic: _UpperCAmelCase : Dict = """detr.""" + src rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase_ , is_panoptic=lowerCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : Optional[int] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase : Optional[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : str = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Optional[int] = DetrForSegmentation(lowerCAmelCase_ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # verify our conversion on an image _UpperCAmelCase : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _UpperCAmelCase : Dict = DetrImageProcessor(format=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = processor(images=prepare_img() , return_tensors="""pt""" ) _UpperCAmelCase : List[Any] = encoding["""pixel_values"""] _UpperCAmelCase : Optional[int] = detr(lowerCAmelCase_ ) _UpperCAmelCase : int = model(lowerCAmelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") A_ : int = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' A_ : str = tuple[float, float, float] A_ : Any = tuple[float, float, float] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Vectorad: '''simple docstring''' _UpperCAmelCase : Optional[Any] = end_pointa[0] - end_pointa[0] _UpperCAmelCase : Any = end_pointa[1] - end_pointa[1] _UpperCAmelCase : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Vectorad: '''simple docstring''' _UpperCAmelCase : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i _UpperCAmelCase : Tuple = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _UpperCAmelCase : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> bool: '''simple docstring''' return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 )-> bool: '''simple docstring''' _UpperCAmelCase : List[str] = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' from math import factorial def snake_case_ ( lowerCAmelCase_ = 20 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase : int = n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[Any] = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 )-> Optional[int]: '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 _UpperCAmelCase : Dict = torch.tensor(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 _UpperCAmelCase : Any = model(lowerCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple _UpperCAmelCase : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCAmelCase : Tuple = logits[0, masked_index, :] _UpperCAmelCase : List[str] = logits.softmax(dim=0 ) _UpperCAmelCase : int = prob.topk(k=lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : List[str] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase_ ) )] ) _UpperCAmelCase : Tuple = tokenizer.mask_token _UpperCAmelCase : List[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): _UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(lowerCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(lowerCAmelCase_ ) , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase_ , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs A_ : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""") A_ : List[Any] = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() A_ : Any = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 1_6 A_ : Tuple = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 16 , lowerCAmelCase_ = "bert-base-cased" )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Optional[int] = config["""lr"""] _UpperCAmelCase : List[str] = int(config["""num_epochs"""] ) _UpperCAmelCase : Dict = int(config["""seed"""] ) _UpperCAmelCase : List[str] = int(config["""batch_size"""] ) _UpperCAmelCase : int = args.model_name_or_path set_seed(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) # Instantiate optimizer _UpperCAmelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Union[str, Any] = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : str = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase_ , ) else: _UpperCAmelCase : List[Any] = DummyScheduler(lowerCAmelCase_ , total_num_steps=lowerCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : Optional[int] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : Optional[Any] = 0 # Now we train the model _UpperCAmelCase : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) _UpperCAmelCase : str = 0 _UpperCAmelCase : str = {} for epoch in range(lowerCAmelCase_ , lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.loss _UpperCAmelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCAmelCase : Union[str, Any] = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase : Optional[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: _UpperCAmelCase : List[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: _UpperCAmelCase : str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase_ , default=3 , help="""Number of train epochs.""" , ) _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : Any = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Any = split_dict._to_yaml_list() assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(lowerCAmelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase : Any = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase_ ), SplitInfo(dataset_name="""my_dataset""" )] ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' import string def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _UpperCAmelCase : Optional[int] = """""" for symbol in message: if symbol in string.ascii_uppercase: _UpperCAmelCase : List[Any] = string.ascii_uppercase.find(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = num - key if num < 0: _UpperCAmelCase : List[Any] = num + len(string.ascii_uppercase ) _UpperCAmelCase : int = translated + string.ascii_uppercase[num] else: _UpperCAmelCase : Union[str, Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Dict = input("""Encrypted message: """ ) _UpperCAmelCase : Tuple = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A_ : Dict = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """AutoTokenizer""" UpperCAmelCase = ["""tokenizer"""] UpperCAmelCase = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self ,a_ ,a_=None ) -> Any: super().__init__(a_ ) _UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def _snake_case ( cls ,a_ ,a_="speaker_embeddings_path.json" ,**a_ ) -> Any: if speaker_embeddings_dict_path is not None: _UpperCAmelCase : Optional[Any] = get_file_from_repo( a_ ,a_ ,subfolder=kwargs.pop("""subfolder""" ,a_ ) ,cache_dir=kwargs.pop("""cache_dir""" ,a_ ) ,force_download=kwargs.pop("""force_download""" ,a_ ) ,proxies=kwargs.pop("""proxies""" ,a_ ) ,resume_download=kwargs.pop("""resume_download""" ,a_ ) ,local_files_only=kwargs.pop("""local_files_only""" ,a_ ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,a_ ) ,revision=kwargs.pop("""revision""" ,a_ ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(a_ ,a_ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _UpperCAmelCase : Optional[int] = None else: with open(a_ ) as speaker_embeddings_json: _UpperCAmelCase : Optional[int] = json.load(a_ ) else: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(a_ ,**a_ ) return cls(tokenizer=a_ ,speaker_embeddings=a_ ) def _snake_case ( self ,a_ ,a_="speaker_embeddings_path.json" ,a_="speaker_embeddings" ,a_ = False ,**a_ ,) -> Optional[Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(a_ ,a_ ,"""v2""" ) ,exist_ok=a_ ) _UpperCAmelCase : int = {} _UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase : List[Any] = self._load_voice_preset(a_ ) _UpperCAmelCase : List[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] ,a_ ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=a_ ,) _UpperCAmelCase : List[Any] = os.path.join(a_ ,f'''{prompt_key}_{key}.npy''' ) _UpperCAmelCase : int = tmp_dict with open(os.path.join(a_ ,a_ ) ,"""w""" ) as fp: json.dump(a_ ,a_ ) super().save_pretrained(a_ ,a_ ,**a_ ) def _snake_case ( self ,a_ = None ,**a_ ) -> Tuple: _UpperCAmelCase : int = self.speaker_embeddings[voice_preset] _UpperCAmelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _UpperCAmelCase : int = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" ,"""/""" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("""subfolder""" ,a_ ) ,cache_dir=kwargs.pop("""cache_dir""" ,a_ ) ,force_download=kwargs.pop("""force_download""" ,a_ ) ,proxies=kwargs.pop("""proxies""" ,a_ ) ,resume_download=kwargs.pop("""resume_download""" ,a_ ) ,local_files_only=kwargs.pop("""local_files_only""" ,a_ ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,a_ ) ,revision=kwargs.pop("""revision""" ,a_ ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _UpperCAmelCase : Tuple = np.load(a_ ) return voice_preset_dict def _snake_case ( self ,a_ = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self ,a_=None ,a_=None ,a_="pt" ,a_=256 ,a_=False ,a_=True ,a_=False ,**a_ ,) -> Tuple: if voice_preset is not None and not isinstance(a_ ,a_ ): if ( isinstance(a_ ,a_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase : int = self._load_voice_preset(a_ ) else: if isinstance(a_ ,a_ ) and not voice_preset.endswith(""".npz""" ): _UpperCAmelCase : Optional[Any] = voice_preset + """.npz""" _UpperCAmelCase : Optional[Any] = np.load(a_ ) if voice_preset is not None: self._validate_voice_preset_dict(a_ ,**a_ ) _UpperCAmelCase : int = BatchFeature(data=a_ ,tensor_type=a_ ) _UpperCAmelCase : Tuple = self.tokenizer( a_ ,return_tensors=a_ ,padding="""max_length""" ,max_length=a_ ,return_attention_mask=a_ ,return_token_type_ids=a_ ,add_special_tokens=a_ ,**a_ ,) if voice_preset is not None: _UpperCAmelCase : Dict = voice_preset return encoded_text
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """Wav2Vec2FeatureExtractor""" UpperCAmelCase = """AutoTokenizer""" def __init__( self ,a_ ,a_ ) -> Tuple: super().__init__(a_ ,a_ ) _UpperCAmelCase : Optional[int] = self.feature_extractor _UpperCAmelCase : List[str] = False @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> Dict: try: return super().from_pretrained(a_ ,**a_ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' ,a_ ,) _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : Tuple = WavaVecaCTCTokenizer.from_pretrained(a_ ,**a_ ) return cls(feature_extractor=a_ ,tokenizer=a_ ) def __call__( self ,*a_ ,**a_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a_ ,**a_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _UpperCAmelCase : Dict = kwargs.pop('raw_speech' ) else: _UpperCAmelCase : List[Any] = kwargs.pop('audio' ,a_ ) _UpperCAmelCase : List[Any] = kwargs.pop('sampling_rate' ,a_ ) _UpperCAmelCase : List[str] = kwargs.pop('text' ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _UpperCAmelCase : Union[str, Any] = self.feature_extractor(a_ ,*a_ ,sampling_rate=a_ ,**a_ ) if text is not None: _UpperCAmelCase : Dict = self.tokenizer(a_ ,**a_ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Optional[int] = encodings["""input_ids"""] return inputs def _snake_case ( self ,*a_ ,**a_ ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*a_ ,**a_ ) _UpperCAmelCase : List[Any] = kwargs.pop('input_features' ,a_ ) _UpperCAmelCase : int = kwargs.pop('labels' ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : Optional[Any] = args[0] _UpperCAmelCase : Optional[Any] = args[1:] if input_features is not None: _UpperCAmelCase : List[str] = self.feature_extractor.pad(a_ ,*a_ ,**a_ ) if labels is not None: _UpperCAmelCase : List[str] = self.tokenizer.pad(a_ ,**a_ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase : Tuple = labels["""input_ids"""] return input_features def _snake_case ( self ,*a_ ,**a_ ) -> Tuple: return self.tokenizer.batch_decode(*a_ ,**a_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Dict: return self.tokenizer.decode(*a_ ,**a_ ) @contextmanager def _snake_case ( self ) -> List[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = self.tokenizer yield _UpperCAmelCase : List[str] = self.feature_extractor _UpperCAmelCase : Any = False
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self ,a_ ,a_=7 ,a_=3 ,a_=18 ,a_=30 ,a_=400 ,a_=True ,a_=None ,a_=True ,) -> Any: _UpperCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase : Any = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Union[str, Any] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = do_normalize def _snake_case ( self ) -> Optional[int]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = ImageGPTImageProcessingTester(self ) @property def _snake_case ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> str: _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ ,"""clusters""" ) ) self.assertTrue(hasattr(a_ ,"""do_resize""" ) ) self.assertTrue(hasattr(a_ ,"""size""" ) ) self.assertTrue(hasattr(a_ ,"""do_normalize""" ) ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = os.path.join(a_ ,"""image_processor.json""" ) image_processor_first.to_json_file(a_ ) _UpperCAmelCase : Any = self.image_processing_class.from_json_file(a_ ).to_dict() _UpperCAmelCase : List[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a_ ) _UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(a_ ).to_dict() _UpperCAmelCase : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,a_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _snake_case ( self ) -> Dict: pass def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _UpperCAmelCase : int = Image.open(dataset[4]["""file"""] ) _UpperCAmelCase : Optional[Any] = Image.open(dataset[5]["""file"""] ) _UpperCAmelCase : Optional[int] = [imagea, imagea] return images @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _UpperCAmelCase : List[str] = prepare_images() # test non-batched _UpperCAmelCase : List[Any] = image_processing(images[0] ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1_024) ) _UpperCAmelCase : Dict = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,a_ ) # test batched _UpperCAmelCase : int = image_processing(a_ ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1_024) ) _UpperCAmelCase : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,a_ )
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = [] for i in range(self.num_layers ): _UpperCAmelCase : Optional[int] = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : Dict = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : Dict = resnets _UpperCAmelCase : Any = attentions if self.add_downsample: _UpperCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> Any: _UpperCAmelCase : Optional[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): _UpperCAmelCase : Any = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[str] = attn(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : Any = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = [] for i in range(self.num_layers ): _UpperCAmelCase : str = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[int] = resnets if self.add_downsample: _UpperCAmelCase : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_=True ) -> str: _UpperCAmelCase : str = () for resnet in self.resnets: _UpperCAmelCase : Optional[Any] = resnet(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : int = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : int = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[str] = resnets _UpperCAmelCase : Tuple = attentions if self.add_upsample: _UpperCAmelCase : int = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_ ,a_=True ) -> Optional[Any]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _UpperCAmelCase : Dict = res_hidden_states_tuple[-1] _UpperCAmelCase : str = res_hidden_states_tuple[:-1] _UpperCAmelCase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : List[str] = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : str = attn(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : Optional[int] = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Dict = resnets if self.add_upsample: _UpperCAmelCase : Dict = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> int: for resnet in self.resnets: # pop res hidden states _UpperCAmelCase : Any = res_hidden_states_tuple[-1] _UpperCAmelCase : List[str] = res_hidden_states_tuple[:-1] _UpperCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : Dict = resnet(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : str = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: # there is always at least one resnet _UpperCAmelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _UpperCAmelCase : List[Any] = [] for _ in range(self.num_layers ): _UpperCAmelCase : str = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[Any] = resnets _UpperCAmelCase : List[str] = attentions def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> List[Any]: _UpperCAmelCase : Any = self.resnets[0](a_ ,a_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _UpperCAmelCase : int = attn(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[Any] = resnet(a_ ,a_ ,deterministic=a_ ) return hidden_states
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Tuple = len(lowerCAmelCase_ ) print("""The following activities are selected:""" ) # The first activity is always selected _UpperCAmelCase : List[str] = 0 print(lowerCAmelCase_ , end=""",""" ) # Consider rest of the activities for j in range(lowerCAmelCase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase_ , end=""",""" ) _UpperCAmelCase : List[str] = j if __name__ == "__main__": import doctest doctest.testmod() A_ : Any = [1, 3, 0, 5, 8, 5] A_ : List[str] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A_ : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ = 101 ) -> List[str]: _UpperCAmelCase : Dict = length def __len__( self ) -> Any: return self.length def __getitem__( self ,a_ ) -> int: return i class lowercase : """simple docstring""" def __call__( self ,a_ ) -> Any: return {"input_ids": torch.tensor(a_ ), "labels": torch.tensor(a_ )} class lowercase ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase : Any = nn.Linear(120 ,80 ) def _snake_case ( self ,a_ ,a_=None ) -> Any: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_neuroncore def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Tuple = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : Any = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_multi_gpu def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : str = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : List[str] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A_ : str = HfArgumentParser((TrainingArguments,)) A_ : Any = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: A_ : List[Any] = DummyDataset(dataset_length) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = list(range(len(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} A_ : Dict = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A_ : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = 2 A_ : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Union[str, Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = None
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : List[str] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """mobilenet_v1""" def __init__( self ,a_=3 ,a_=224 ,a_=1.0 ,a_=8 ,a_="relu6" ,a_=True ,a_=0.999 ,a_=0.02 ,a_=0.001 ,**a_ ,) -> str: super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Union[str, Any] = depth_multiplier _UpperCAmelCase : Union[str, Any] = min_depth _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = tf_padding _UpperCAmelCase : Optional[int] = classifier_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _snake_case ( self ) -> float: return 1E-4
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> bool: '''simple docstring''' _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCAmelCase : Union[str, Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCAmelCase : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCAmelCase : Tuple = subset[i - 1][j] if arr[i - 1] <= j: _UpperCAmelCase : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A_ = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = 0 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : int = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : List[Any] = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : int = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Optional[int] = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("""image_processor_type""" ) _UpperCAmelCase : List[str] = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> List[Any]: with self.assertRaisesRegex( a_ ,"""clip-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""clip-base""" ) def _snake_case ( self ) -> List[str]: with self.assertRaisesRegex( a_ ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained(a_ ,revision="""aaaaaa""" ) def _snake_case ( self ) -> Optional[Any]: with self.assertRaisesRegex( a_ ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a_ ): _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ,trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def _snake_case ( self ) -> Any: try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ ,a_ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Dict = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Union[str, Any] = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> str: class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = True try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # If remote code is not set, the default is to use local _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(a_ ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=True ,a_=False ,a_=False ,a_=False ,a_=2 ,a_=99 ,a_=0 ,a_=32 ,a_=5 ,a_=4 ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=2 ,a_=4 ,a_="last" ,a_=True ,a_=None ,a_=0 ,) -> str: _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : List[Any] = use_input_lengths _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Optional[int] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Dict = causal _UpperCAmelCase : Union[str, Any] = asm _UpperCAmelCase : str = n_langs _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : List[Any] = n_special _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : int = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : Dict = summary_type _UpperCAmelCase : Dict = use_proj _UpperCAmelCase : str = scope _UpperCAmelCase : str = bos_token_id def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None if self.use_input_lengths: _UpperCAmelCase : Optional[int] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase : List[Any] = None if self.use_token_type_ids: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) _UpperCAmelCase : str = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size] ,2 ).float() _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> str: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Dict: _UpperCAmelCase : int = XLMModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ,lengths=a_ ,langs=a_ ) _UpperCAmelCase : int = model(a_ ,langs=a_ ) _UpperCAmelCase : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[int]: _UpperCAmelCase : Any = XLMWithLMHeadModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Dict: _UpperCAmelCase : str = XLMForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ) _UpperCAmelCase : List[str] = model(a_ ,start_positions=a_ ,end_positions=a_ ) _UpperCAmelCase : Any = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> int: _UpperCAmelCase : List[Any] = XLMForQuestionAnswering(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Optional[Any] = model(a_ ) _UpperCAmelCase : Tuple = model( a_ ,start_positions=a_ ,end_positions=a_ ,cls_index=a_ ,is_impossible=a_ ,p_mask=a_ ,) _UpperCAmelCase : Optional[int] = model( a_ ,start_positions=a_ ,end_positions=a_ ,cls_index=a_ ,is_impossible=a_ ,) (_UpperCAmelCase) : Tuple = result_with_labels.to_tuple() _UpperCAmelCase : Optional[Any] = model(a_ ,start_positions=a_ ,end_positions=a_ ) (_UpperCAmelCase) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> List[Any]: _UpperCAmelCase : Optional[Any] = XLMForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ) _UpperCAmelCase : Dict = model(a_ ,labels=a_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> List[Any]: _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Dict = XLMForTokenClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Dict = model(a_ ,attention_mask=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> str: _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Dict = XLMForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : Dict = model( a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _snake_case ( self ) -> int: _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : List[str] = config_and_inputs _UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self ,a_ ,a_ ,a_=False ) -> int: _UpperCAmelCase : Any = super()._prepare_for_class(a_ ,a_ ,return_labels=a_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=a_ ) _UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=a_ ) return inputs_dict def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[Any] = XLMModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ,emb_dim=37 ) def _snake_case ( self ) -> Any: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*a_ ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_=False ,a_=1 ) -> Optional[int]: self.assertIsInstance(a_ ,a_ ) self.assertListEqual( [isinstance(a_ ,a_ ) for iter_attentions in attentions] ,[True] * len(a_ ) ) self.assertEqual(len(a_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(a_ ): # adds PAD dummy token _UpperCAmelCase : Dict = min_length + idx + 1 _UpperCAmelCase : List[str] = min_length + idx + 1 _UpperCAmelCase : Optional[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(a_ ) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_=False ,a_=1 ) -> List[str]: self.assertIsInstance(a_ ,a_ ) self.assertListEqual( [isinstance(a_ ,a_ ) for iter_hidden_states in hidden_states] ,[True] * len(a_ ) ,) self.assertEqual(len(a_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(a_ ): # adds PAD dummy token _UpperCAmelCase : Tuple = min_length + idx + 1 _UpperCAmelCase : List[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(a_ ) ,) pass @slow def _snake_case ( self ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = XLMModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(a_ ) _UpperCAmelCase : Union[str, Any] = torch.tensor([[14, 447]] ,dtype=torch.long ,device=a_ ) # the president _UpperCAmelCase : Optional[int] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase : str = model.generate(a_ ,do_sample=a_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,a_ )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _UpperCAmelCase : int = precision _UpperCAmelCase : List[Any] = ceil(precision / 14 ) _UpperCAmelCase : Optional[int] = 426880 * Decimal(10005 ).sqrt() _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Union[str, Any] = 13591409 _UpperCAmelCase : List[Any] = Decimal(lowerCAmelCase_ ) for k in range(1 , lowerCAmelCase_ ): _UpperCAmelCase : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": A_ : Tuple = 5_0 print(f"""The first {n} digits of pi is: {pi(n)}""")
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Dict = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = PegasusTokenizer UpperCAmelCase = PegasusTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Any = PegasusTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _snake_case ( self ,**a_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> int: return ("This is a test", "This is a test") def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = """</s>""" _UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""</s>""" ) self.assertEqual(vocab_keys[-1] ,"""v""" ) self.assertEqual(len(a_ ) ,1_103 ) def _snake_case ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size ,1_103 ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _UpperCAmelCase : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] _UpperCAmelCase : str = py_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _UpperCAmelCase : Optional[int] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] _UpperCAmelCase : List[Any] = tokenizer([raw_input_str] ,return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 _UpperCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" _UpperCAmelCase : Dict = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] _UpperCAmelCase : List[str] = tokenizer([raw_input_str] ,return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 150, """short example"""] _UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : Optional[int] = self._large_tokenizer(a_ ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : int = self._large_tokenizer( text_target=a_ ,max_length=5 ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. @slow def _snake_case ( self ) -> int: # fmt: off _UpperCAmelCase : List[Any] = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name="""google/bigbird-pegasus-large-arxiv""" ,revision="""ba85d0851d708441f91440d509690f1ab6353415""" ,) @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = PegasusTokenizer UpperCAmelCase = PegasusTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[Any] = PegasusTokenizer(a_ ,offset=0 ,mask_token_sent=a_ ,mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _snake_case ( self ,**a_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> Union[str, Any]: return ("This is a test", "This is a test") def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _UpperCAmelCase : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] _UpperCAmelCase : Optional[int] = py_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 1_000, """short example"""] _UpperCAmelCase : Tuple = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : int = self._large_tokenizer(a_ ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : int = self._large_tokenizer( text_target=a_ ,max_length=5 ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _UpperCAmelCase : List[Any] = self._large_tokenizer(a_ ).input_ids self.assertListEqual( a_ ,[182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] ,)
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : List[Any] = name _UpperCAmelCase : Dict = value _UpperCAmelCase : Any = weight def __repr__( self ) -> Dict: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _snake_case ( self ) -> Any: return self.value def _snake_case ( self ) -> Tuple: return self.name def _snake_case ( self ) -> Optional[Any]: return self.weight def _snake_case ( self ) -> List[Any]: return self.value / self.weight def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Any = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = sorted(lowerCAmelCase_ , key=lowerCAmelCase_ , reverse=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[int] = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case_ ( )-> List[str]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 6_3_7_8_1_3_7.0 A_ : Dict = 6_3_5_6_7_5_2.3_1_4_2_4_5 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' from math import factorial, pi def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 30 )-> float: '''simple docstring''' if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) _UpperCAmelCase : List[Any] = float(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 30 )-> float: '''simple docstring''' if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) _UpperCAmelCase : Union[str, Any] = float(lowerCAmelCase_ ) _UpperCAmelCase : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return model @property def _snake_case ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase : str = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,cross_attention_dim=10 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") ,up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") ,) _UpperCAmelCase : Tuple = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return vqvae, unet @slow def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : List[Any] = AudioDiffusionPipeline(vqvae=a_ ,unet=self.dummy_unet ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Dict = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Optional[int] = pipe(generator=a_ ,steps=4 ) _UpperCAmelCase : Any = output.audios[0] _UpperCAmelCase : Optional[int] = output.images[0] _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Dict = pipe(generator=a_ ,steps=4 ,return_dict=a_ ) _UpperCAmelCase : List[str] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCAmelCase : str = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[Any] = np.frombuffer(image_from_tuple.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) _UpperCAmelCase : Any = DDIMScheduler() _UpperCAmelCase : Any = self.dummy_vqvae_and_unet _UpperCAmelCase : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCAmelCase : Optional[Any] = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : int = pipe(raw_audio=a_ ,generator=a_ ,start_step=5 ,steps=10 ) _UpperCAmelCase : List[Any] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCAmelCase : Optional[int] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Tuple = self.dummy_unet_condition _UpperCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=a_ ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = torch.rand((1, 1, 10) ) _UpperCAmelCase : Optional[Any] = pipe(generator=a_ ,encoding=a_ ) _UpperCAmelCase : Dict = output.images[0] _UpperCAmelCase : List[str] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = torch_device _UpperCAmelCase : List[Any] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _UpperCAmelCase : Union[str, Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Any = pipe(generator=a_ ) _UpperCAmelCase : str = output.audios[0] _UpperCAmelCase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCAmelCase : int = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
from collections.abc import Generator from math import sin def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' if len(lowerCAmelCase_ ) != 32: raise ValueError("""Input must be of length 32""" ) _UpperCAmelCase : Optional[int] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) _UpperCAmelCase : str = format(lowerCAmelCase_ , """08x""" )[-8:] _UpperCAmelCase : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : int = B"""""" for char in message: bit_string += format(lowerCAmelCase_ , """08b""" ).encode("""utf-8""" ) _UpperCAmelCase : str = format(len(lowerCAmelCase_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCAmelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ ( lowerCAmelCase_ )-> Generator[list[int], None, None]: '''simple docstring''' if len(lowerCAmelCase_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(lowerCAmelCase_ ) , 512 ): _UpperCAmelCase : List[Any] = bit_string[pos : pos + 512] _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) _UpperCAmelCase : Optional[Any] = format(lowerCAmelCase_ , """032b""" ) _UpperCAmelCase : Union[str, Any] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCAmelCase_ , 2 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' return (a + b) % 2**32 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : List[Any] = preprocess(lowerCAmelCase_ ) _UpperCAmelCase : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCAmelCase : List[Any] = 0x67_452_301 _UpperCAmelCase : int = 0xEF_CDA_B89 _UpperCAmelCase : List[Any] = 0x98_BAD_CFE _UpperCAmelCase : Any = 0x10_325_476 _UpperCAmelCase : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = aa _UpperCAmelCase : str = ba _UpperCAmelCase : str = ca _UpperCAmelCase : List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCAmelCase : str = d ^ (b & (c ^ d)) _UpperCAmelCase : str = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCAmelCase : Optional[Any] = c ^ (d & (b ^ c)) _UpperCAmelCase : int = (5 * i + 1) % 16 elif i <= 47: _UpperCAmelCase : int = b ^ c ^ d _UpperCAmelCase : Optional[int] = (3 * i + 5) % 16 else: _UpperCAmelCase : List[str] = c ^ (b | not_aa(lowerCAmelCase_ )) _UpperCAmelCase : Optional[int] = (7 * i) % 16 _UpperCAmelCase : str = (f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCAmelCase : Any = d _UpperCAmelCase : Optional[int] = c _UpperCAmelCase : Any = b _UpperCAmelCase : List[str] = sum_aa(lowerCAmelCase_ , left_rotate_aa(lowerCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCAmelCase : Optional[int] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A_ : str = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _UpperCAmelCase : Optional[int] = DetaConfig( backbone_config=lowerCAmelCase_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCAmelCase_ , with_box_refine=lowerCAmelCase_ , two_stage=lowerCAmelCase_ , ) # set labels _UpperCAmelCase : Optional[Any] = """huggingface/label-files""" if "o365" in model_name: _UpperCAmelCase : Union[str, Any] = 366 _UpperCAmelCase : Tuple = """object365-id2label.json""" else: _UpperCAmelCase : Any = 91 _UpperCAmelCase : str = """coco-detection-id2label.json""" _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCAmelCase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[Any] = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Dict = dct.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCAmelCase : str = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : str = in_proj_weight[:dim, :] _UpperCAmelCase : List[Any] = in_proj_bias[: dim] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : List[Any] = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : str = in_proj_weight[ -dim :, : ] _UpperCAmelCase : Optional[Any] = in_proj_bias[-dim :] # fmt: on def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : Optional[Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[:hidden_size, :] _UpperCAmelCase : List[str] = in_proj_bias[:hidden_size] _UpperCAmelCase : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : List[str] = in_proj_weight[-hidden_size:, :] _UpperCAmelCase : List[Any] = in_proj_bias[-hidden_size:] def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Any = get_deta_config(lowerCAmelCase_ ) # load original state dict if model_name == "deta-swin-large": _UpperCAmelCase : Any = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase : str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) _UpperCAmelCase : Optional[int] = torch.load(lowerCAmelCase_ , map_location='cpu' )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCAmelCase_ , param.shape ) # rename keys _UpperCAmelCase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = val if "input_proj" in key: _UpperCAmelCase : Tuple = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCAmelCase : Any = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Optional[Any] = DetaForObjectDetection(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() _UpperCAmelCase : int = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCAmelCase_ ) # load image processor _UpperCAmelCase : Optional[int] = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : int = processor(images=lowerCAmelCase_ , return_tensors='pt' ) _UpperCAmelCase : Tuple = encoding["""pixel_values"""] _UpperCAmelCase : Optional[int] = model(pixel_values.to(lowerCAmelCase_ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCAmelCase : Dict = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _UpperCAmelCase : Optional[int] = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _UpperCAmelCase : Any = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCAmelCase_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCAmelCase_ ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A_ : Optional[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_=None ,a_=True ,a_=None ,**a_ ) -> Optional[Any]: _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Optional[Any] = config_class _UpperCAmelCase : Optional[Any] = has_text_modality _UpperCAmelCase : Any = kwargs _UpperCAmelCase : Tuple = common_properties def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Any = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Union[str, Any] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(a_ ,a_ ) ,msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(a_ ): try: setattr(a_ ,a_ ,a_ ) self.parent.assertEqual( getattr(a_ ,a_ ) ,a_ ,msg=f'''`{name} value {idx} expected, but was {getattr(a_ ,a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(a_ ): try: _UpperCAmelCase : Dict = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(a_ ,a_ ) ,a_ ,msg=f'''`{name} value {idx} expected, but was {getattr(a_ ,a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _snake_case ( self ) -> Dict: _UpperCAmelCase : str = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] ,a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = os.path.join(a_ ,"""config.json""" ) config_first.to_json_file(a_ ) _UpperCAmelCase : Any = self.config_class.from_json_file(a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[str] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(a_ ) _UpperCAmelCase : Dict = self.config_class.from_pretrained(a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Optional[int] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = os.path.join(a_ ,a_ ) config_first.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = self.config_class.from_pretrained(a_ ,subfolder=a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.config_class(**self.inputs_dict ,num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) ,5 ) self.parent.assertEqual(len(config.labelaid ) ,5 ) _UpperCAmelCase : List[Any] = 3 self.parent.assertEqual(len(config.idalabel ) ,3 ) self.parent.assertEqual(len(config.labelaid ) ,3 ) def _snake_case ( self ) -> Optional[int]: if self.config_class.is_composition: return _UpperCAmelCase : List[Any] = self.config_class() self.parent.assertIsNotNone(a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = copy.deepcopy(a_ ) _UpperCAmelCase : Optional[Any] = self.config_class(**a_ ) _UpperCAmelCase : Optional[int] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(a_ ,a_ ) != value: wrong_values.append((key, getattr(a_ ,a_ ), value) ) if len(a_ ) > 0: _UpperCAmelCase : Tuple = """\n""".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _snake_case ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ : str = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowercase : """simple docstring""" def __init__( self ) -> Dict: _UpperCAmelCase : int = {} def _snake_case ( self ,a_ ,a_ ,a_=1 ) -> Optional[int]: if self.graph.get(a_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Tuple = [[w, v]] if not self.graph.get(a_ ): _UpperCAmelCase : Optional[Any] = [] def _snake_case ( self ) -> Optional[Any]: return list(self.graph ) def _snake_case ( self ,a_ ,a_ ) -> int: if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(a_ ) - 1] else: _UpperCAmelCase : int = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def _snake_case ( self ,a_=-1 ) -> Union[str, Any]: if c == -1: _UpperCAmelCase : str = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(a_ ,a_ ,1 ) def _snake_case ( self ,a_=-2 ) -> str: _UpperCAmelCase : Any = deque() _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: _UpperCAmelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _snake_case ( self ,a_ ) -> Optional[Any]: return len(self.graph[u] ) def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : int = s _UpperCAmelCase : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a_ ) != 0: _UpperCAmelCase : Any = stack[len(a_ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return sorted_nodes def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : int = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : str = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[Any] = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(a_ ) != 0: _UpperCAmelCase : str = stack[len(a_ ) - 1] else: _UpperCAmelCase : Any = False indirect_parents.append(a_ ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Dict = -2 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = s _UpperCAmelCase : str = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : int = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(a_ ) != 0: _UpperCAmelCase : Optional[int] = stack[len(a_ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a_ ) _UpperCAmelCase : Any = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(a_ ) == 0: return False def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = time() self.dfs(a_ ,a_ ) _UpperCAmelCase : Dict = time() return end - begin def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : int = time() self.bfs(a_ ) _UpperCAmelCase : Union[str, Any] = time() return end - begin class lowercase : """simple docstring""" def __init__( self ) -> str: _UpperCAmelCase : List[Any] = {} def _snake_case ( self ,a_ ,a_ ,a_=1 ) -> Union[str, Any]: # check if the u exists if self.graph.get(a_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : Optional[int] = [[w, v]] # add the other way if self.graph.get(a_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Optional[int] = [[w, u]] def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) # the other way round if self.graph.get(a_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a_ ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Tuple: if s == d: return [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: _UpperCAmelCase : Tuple = stack[len(a_ ) - 1] else: _UpperCAmelCase : int = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def _snake_case ( self ,a_=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(a_ ,a_ ,1 ) def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : Optional[int] = deque() _UpperCAmelCase : Any = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self ,a_ ) -> Tuple: return len(self.graph[u] ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[Any] = s _UpperCAmelCase : int = False _UpperCAmelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Any = True if len(a_ ) != 0: _UpperCAmelCase : Any = stack[len(a_ ) - 1] else: _UpperCAmelCase : Tuple = False indirect_parents.append(a_ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : str = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Tuple = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Dict = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Optional[int] = True if len(a_ ) != 0: _UpperCAmelCase : Tuple = stack[len(a_ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(a_ ) _UpperCAmelCase : List[str] = s _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return False def _snake_case ( self ) -> List[Any]: return list(self.graph ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Optional[int]: _UpperCAmelCase : Any = time() self.dfs(a_ ,a_ ) _UpperCAmelCase : Optional[int] = time() return end - begin def _snake_case ( self ,a_=-2 ) -> Dict: _UpperCAmelCase : Dict = time() self.bfs(a_ ) _UpperCAmelCase : Union[str, Any] = time() return end - begin
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : """simple docstring""" def __init__( self ,a_ ,) -> Dict: _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = 13 _UpperCAmelCase : Union[str, Any] = 7 _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : int = False _UpperCAmelCase : List[str] = True _UpperCAmelCase : Optional[int] = 99 _UpperCAmelCase : int = 32 _UpperCAmelCase : Any = 2 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Optional[int] = 37 _UpperCAmelCase : List[str] = """gelu""" _UpperCAmelCase : List[Any] = 0.1 _UpperCAmelCase : List[Any] = 0.1 _UpperCAmelCase : int = 512 _UpperCAmelCase : Tuple = 16 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Optional[int] = 0.02 _UpperCAmelCase : int = 3 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Dict = None def _snake_case ( self ) -> Any: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = TFDistilBertModel(config=a_ ) _UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Tuple = model(a_ ) _UpperCAmelCase : List[str] = [input_ids, input_mask] _UpperCAmelCase : str = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : Tuple = TFDistilBertForMaskedLM(config=a_ ) _UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFDistilBertForQuestionAnswering(config=a_ ) _UpperCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, } _UpperCAmelCase : str = model(a_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Union[str, Any] = TFDistilBertForSequenceClassification(a_ ) _UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = self.num_choices _UpperCAmelCase : Optional[int] = TFDistilBertForMultipleChoice(a_ ) _UpperCAmelCase : List[str] = tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.num_choices, 1) ) _UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.num_choices, 1) ) _UpperCAmelCase : Dict = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } _UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : List[Any] = TFDistilBertForTokenClassification(a_ ) _UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Optional[int] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> int: _UpperCAmelCase : Any = self.prepare_config_and_inputs() (_UpperCAmelCase) : str = config_and_inputs _UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> int: _UpperCAmelCase : Any = TFDistilBertModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self ,config_class=a_ ,dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) @slow def _snake_case ( self ) -> List[Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCAmelCase : Optional[int] = TFDistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Tuple = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _UpperCAmelCase : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : List[str] = model(a_ )[0] _UpperCAmelCase : int = [1, 6, 768] self.assertEqual(output.shape ,a_ ) _UpperCAmelCase : Tuple = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,a_ ,atol=1E-4 )
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' from __future__ import annotations class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Tuple = text, pattern _UpperCAmelCase : List[str] = len(a_ ), len(a_ ) def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self ) -> list[int]: # searches pattern in text and returns index positions _UpperCAmelCase : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCAmelCase : Optional[int] = self.mismatch_in_text(a_ ) if mismatch_index == -1: positions.append(a_ ) else: _UpperCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) _UpperCAmelCase : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ : List[Any] = """ABAABA""" A_ : Optional[int] = """AB""" A_ : str = BoyerMooreSearch(text, pattern) A_ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' if len(lowerCAmelCase_ ) <= 1: return lst _UpperCAmelCase : str = 1 while i < len(lowerCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase : Any = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase : Union[str, Any] = 1 return lst if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() A_ : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' from torch import nn def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer A_ : int = logging.get_logger(__name__) A_ : List[str] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : str = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } A_ : List[Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } A_ : Dict = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self ,a_=None ,a_=None ,a_=True ,a_="[UNK]" ,a_="[SEP]" ,a_="[PAD]" ,a_="[CLS]" ,a_="[MASK]" ,a_=True ,a_=None ,**a_ ,) -> Optional[int]: super().__init__( a_ ,tokenizer_file=a_ ,do_lower_case=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,tokenize_chinese_chars=a_ ,strip_accents=a_ ,**a_ ,) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,a_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,a_ ) != tokenize_chinese_chars ): _UpperCAmelCase : List[Any] = getattr(a_ ,normalizer_state.pop("""type""" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : List[Any] = strip_accents _UpperCAmelCase : Optional[Any] = tokenize_chinese_chars _UpperCAmelCase : Tuple = normalizer_class(**a_ ) _UpperCAmelCase : str = do_lower_case def _snake_case ( self ,a_ ,a_=None ) -> int: _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: _UpperCAmelCase : str = self._tokenizer.model.save(a_ ,name=a_ ) return tuple(a_ )
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import re def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' try: _UpperCAmelCase : Tuple = split_input(lowerCAmelCase_ ) if upper: _UpperCAmelCase : str = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCAmelCase : Tuple = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return to_simple_case(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' try: _UpperCAmelCase : Any = to_simple_case(lowerCAmelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , """_""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") A_ : int = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self ) -> Optional[int]: if self.train_file is not None: _UpperCAmelCase : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None def __call__( self ,a_ ) -> str: _UpperCAmelCase : List[Any] = """label""" if """label""" in features[0].keys() else """labels""" _UpperCAmelCase : Optional[int] = [feature.pop(a_ ) for feature in features] _UpperCAmelCase : Union[str, Any] = len(a_ ) _UpperCAmelCase : Optional[Any] = len(features[0]["""input_ids"""] ) _UpperCAmelCase : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(a_ )] for feature in features ] _UpperCAmelCase : Optional[Any] = list(chain(*a_ ) ) _UpperCAmelCase : List[Any] = self.tokenizer.pad( a_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) # Un-flatten _UpperCAmelCase : List[Any] = {k: v.view(a_ ,a_ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : Any = torch.tensor(a_ ,dtype=torch.intaa ) return batch def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : str = {} if data_args.train_file is not None: _UpperCAmelCase : List[Any] = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Dict = data_args.validation_file _UpperCAmelCase : List[str] = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : Dict = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Any = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : str = [F'''ending{i}''' for i in range(4 )] _UpperCAmelCase : List[Any] = """sent1""" _UpperCAmelCase : Tuple = """sent2""" if data_args.max_seq_length is None: _UpperCAmelCase : Optional[int] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) _UpperCAmelCase : Tuple = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _UpperCAmelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): _UpperCAmelCase : int = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : str = examples[question_header_name] _UpperCAmelCase : Optional[int] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out _UpperCAmelCase : List[Any] = list(chain(*lowerCAmelCase_ ) ) _UpperCAmelCase : Union[str, Any] = list(chain(*lowerCAmelCase_ ) ) # Tokenize _UpperCAmelCase : int = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : Union[str, Any] = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) _UpperCAmelCase : Optional[int] = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _UpperCAmelCase : Dict = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : List[Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : Dict = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) _UpperCAmelCase : Tuple = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase : str = eval_predictions _UpperCAmelCase : Optional[int] = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : str = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Dict = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : Dict = train_result.metrics _UpperCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A_ : str = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """albert""" def __init__( self ,a_=30_000 ,a_=128 ,a_=4_096 ,a_=12 ,a_=1 ,a_=64 ,a_=16_384 ,a_=1 ,a_="gelu_new" ,a_=0 ,a_=0 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0.1 ,a_="absolute" ,a_=0 ,a_=2 ,a_=3 ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : str = embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Dict = num_hidden_groups _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = inner_group_num _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : int = classifier_dropout_prob _UpperCAmelCase : Any = position_embedding_type class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency A_ : Optional[int] = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } A_ : Any = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" A_ : List[str] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def snake_case_ ( lowerCAmelCase_ )-> dict[str, int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return x[0] def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : int = get_letter_count(lowerCAmelCase_ ) _UpperCAmelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase_ ) _UpperCAmelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = """""".join(freq_to_letter[freq] ) _UpperCAmelCase : Optional[Any] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase_ , reverse=lowerCAmelCase_ ) _UpperCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_frequency_order(lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = {"""vocab_file""": """spm_char.model"""} A_ : Dict = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } A_ : Tuple = { """microsoft/speecht5_asr""": 1_0_2_4, """microsoft/speecht5_tts""": 1_0_2_4, """microsoft/speecht5_vc""": 1_0_2_4, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_="<s>" ,a_="</s>" ,a_="<unk>" ,a_="<pad>" ,a_ = None ,**a_ ,) -> None: _UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ ,eos_token=a_ ,unk_token=a_ ,pad_token=a_ ,sp_model_kwargs=self.sp_model_kwargs ,**a_ ,) _UpperCAmelCase : Optional[Any] = vocab_file _UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def _snake_case ( self ) -> Any: return self.sp_model.get_piece_size() def _snake_case ( self ) -> int: _UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = self.__dict__.copy() _UpperCAmelCase : Any = None return state def __setstate__( self ,a_ ) -> Any: _UpperCAmelCase : str = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self ,a_ ) -> List[str]: return self.sp_model.encode(a_ ,out_type=a_ ) def _snake_case ( self ,a_ ) -> Union[str, Any]: return self.sp_model.piece_to_id(a_ ) def _snake_case ( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.sp_model.IdToPiece(a_ ) return token def _snake_case ( self ,a_ ) -> int: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token _UpperCAmelCase : str = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def _snake_case ( self ,a_ ,a_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) _UpperCAmelCase : Any = [1] if token_ids_a is None: return ([0] * len(a_ )) + suffix_ones return ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Dict = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ ,"""wb""" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A_ : Dict = 8 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = x.device _UpperCAmelCase : int = (x * 255).int().clamp(0 , 255 ) _UpperCAmelCase : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """b c h w -> b c 1 h w""" ) _UpperCAmelCase : Optional[Any] = ((x & mask) != 0).float() _UpperCAmelCase : int = rearrange(lowerCAmelCase_ , """b c d h w -> b (c d) h w""" ) _UpperCAmelCase : Tuple = bits * 2 - 1 return bits def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = x.device _UpperCAmelCase : Optional[int] = (x > 0).int() _UpperCAmelCase : Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ , dtype=torch.intaa ) _UpperCAmelCase : Tuple = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : Dict = rearrange(lowerCAmelCase_ , """b (c d) h w -> b c d h w""" , d=8 ) _UpperCAmelCase : Optional[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = True , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCAmelCase : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCAmelCase : List[str] = self.alphas_cumprod[timestep] _UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCAmelCase : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCAmelCase : List[Any] = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Union[str, Any] = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCAmelCase : Union[str, Any] = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCAmelCase : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCAmelCase : Dict = model_output.device if torch.is_tensor(lowerCAmelCase_ ) else """cpu""" _UpperCAmelCase : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _UpperCAmelCase : int = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) ** 0.5 * eta * noise _UpperCAmelCase : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="epsilon" , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCAmelCase : Any = torch.split(lowerCAmelCase_ , sample.shape[1] , dim=1 ) else: _UpperCAmelCase : List[Any] = None # 1. compute alphas, betas _UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[t] _UpperCAmelCase : int = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCAmelCase : Tuple = 1 - alpha_prod_t _UpperCAmelCase : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCAmelCase : str = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCAmelCase : int = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Any = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCAmelCase : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase : List[str] = 0 if t > 0: _UpperCAmelCase : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase_ ).to(model_output.device ) _UpperCAmelCase : Tuple = (self._get_variance(lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise _UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ = 1.0 ,) -> Any: super().__init__() _UpperCAmelCase : List[Any] = bit_scale _UpperCAmelCase : Any = ( ddim_bit_scheduler_step if isinstance(a_ ,a_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a_ ,scheduler=a_ ) @torch.no_grad() def __call__( self ,a_ = 256 ,a_ = 256 ,a_ = 50 ,a_ = None ,a_ = 1 ,a_ = "pil" ,a_ = True ,**a_ ,) -> Union[Tuple, ImagePipelineOutput]: _UpperCAmelCase : int = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=a_ ,) _UpperCAmelCase : int = decimal_to_bits(a_ ) * self.bit_scale _UpperCAmelCase : int = latents.to(self.device ) self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCAmelCase : Union[str, Any] = self.unet(a_ ,a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Optional[Any] = self.scheduler.step(a_ ,a_ ,a_ ).prev_sample _UpperCAmelCase : List[str] = bits_to_decimal(a_ ) if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A_ : Optional[int] = float("""nan""") class lowercase : """simple docstring""" def __init__( self ,a_ ) -> int: _UpperCAmelCase : Union[str, Any] = sys.stdout _UpperCAmelCase : Dict = open(a_ ,"""a""" ) def __getattr__( self ,a_ ) -> Any: return getattr(self.stdout ,a_ ) def _snake_case ( self ,a_ ) -> List[Any]: self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" ,"""""" ,a_ ,0 ,re.M ) ) def snake_case_ ( lowerCAmelCase_=80 , lowerCAmelCase_=False )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = [] # deal with critical env vars _UpperCAmelCase : List[str] = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: _UpperCAmelCase : Optional[Any] = os.environ.get(lowerCAmelCase_ , lowerCAmelCase_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) _UpperCAmelCase : Tuple = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(lowerCAmelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = """""" while len(lowerCAmelCase_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowerCAmelCase_ ) _UpperCAmelCase : Any = """""" return "\\\n".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : str = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own _UpperCAmelCase : Tuple = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir _UpperCAmelCase : List[str] = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) _UpperCAmelCase : Optional[int] = subprocess.run(lowerCAmelCase_ , capture_output=lowerCAmelCase_ , text=lowerCAmelCase_ ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams _UpperCAmelCase : Union[str, Any] = variation.replace(""" """ , """-""" ) with open(Path(lowerCAmelCase_ ) / F'''log.{prefix}.stdout.txt''' , """w""" ) as f: f.write(result.stdout ) with open(Path(lowerCAmelCase_ ) / F'''log.{prefix}.stderr.txt''' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , """r""" , encoding="""utf-8""" ) as f: _UpperCAmelCase : Union[str, Any] = json.load(lowerCAmelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : List[Any] = F'''{id}: {variation:<{longest_variation_len}}''' _UpperCAmelCase : Tuple = F'''{preamble}: ''' _UpperCAmelCase : Any = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowerCAmelCase_ ) , desc=lowerCAmelCase_ , leave=lowerCAmelCase_ ): _UpperCAmelCase : int = process_run_single( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = single_run_metrics[target_metric_key] if not math.isnan(lowerCAmelCase_ ): metrics.append(lowerCAmelCase_ ) results.append(lowerCAmelCase_ ) outcome += "✓" else: outcome += "✘" _UpperCAmelCase : int = F'''\33[2K\r{outcome}''' if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _UpperCAmelCase : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) _UpperCAmelCase : int = F'''{outcome} {mean_target}''' if len(lowerCAmelCase_ ) > 1: results_str += F''' {tuple(round(lowerCAmelCase_ , 2 ) for x in results )}''' print(lowerCAmelCase_ ) _UpperCAmelCase : int = variation return mean_metrics else: print(lowerCAmelCase_ ) return {variation_key: variation, target_metric_key: nan} def snake_case_ ( )-> List[str]: '''simple docstring''' _UpperCAmelCase : str = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return F''' Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = pd.DataFrame(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = """variation""" _UpperCAmelCase : Tuple = """diff_%""" _UpperCAmelCase : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _UpperCAmelCase : Any = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowerCAmelCase_ ): # as a fallback, use the minimal value as the sentinel _UpperCAmelCase : List[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowerCAmelCase_ ): _UpperCAmelCase : Any = df.apply( lambda lowerCAmelCase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns _UpperCAmelCase : List[str] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _UpperCAmelCase : Optional[int] = df.reindex(lowerCAmelCase_ , axis="""columns""" ) # reorder cols # capitalize _UpperCAmelCase : str = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible _UpperCAmelCase : Union[str, Any] = df.rename(lambda lowerCAmelCase_ : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) _UpperCAmelCase : int = df.rename(lambda lowerCAmelCase_ : c.replace("""_""" , """\n""" ) , axis="""columns""" ) _UpperCAmelCase : int = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowerCAmelCase_ , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowerCAmelCase_ , floatfmt=""".2f""" )] print("""\n\n""".join(lowerCAmelCase_ ) ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , nargs="""+""" , required=lowerCAmelCase_ , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=lowerCAmelCase_ , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=lowerCAmelCase_ , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=lowerCAmelCase_ , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=lowerCAmelCase_ , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = args.output_dir Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) _UpperCAmelCase : Dict = get_base_command(lowerCAmelCase_ , lowerCAmelCase_ ) # split each dimension into its --foo variations _UpperCAmelCase : Tuple = [list(map(str.strip , re.split(R"""\|""" , lowerCAmelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _UpperCAmelCase : Union[str, Any] = list(map(str.strip , map(""" """.join , itertools.product(*lowerCAmelCase_ ) ) ) ) _UpperCAmelCase : str = max(len(lowerCAmelCase_ ) for x in variations ) # split wanted keys _UpperCAmelCase : Optional[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience _UpperCAmelCase : str = F'''benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) _UpperCAmelCase : Optional[int] = Tee(lowerCAmelCase_ ) print(F'''\n*** Running {len(lowerCAmelCase_ )} benchmarks:''' ) print(F'''Base command: {' '.join(lowerCAmelCase_ )}''' ) _UpperCAmelCase : Any = """variation""" _UpperCAmelCase : List[Any] = [] for id, variation in enumerate(tqdm(lowerCAmelCase_ , desc="""Total completion: """ , leave=lowerCAmelCase_ ) ): _UpperCAmelCase : str = base_cmd + variation.split() results.append( process_run( id + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.repeat_times , lowerCAmelCase_ , args.verbose , ) ) process_results(lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.base_variation , lowerCAmelCase_ ) if __name__ == "__main__": main()
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params A_ : Optional[Any] = getLogger(__name__) A_ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 8 , lowerCAmelCase_ = DEFAULT_DEVICE , lowerCAmelCase_=False , lowerCAmelCase_="summarization" , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = Path(lowerCAmelCase_ ).open("""w""" , encoding="""utf-8""" ) _UpperCAmelCase : Tuple = str(lowerCAmelCase_ ) _UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) if fpaa: _UpperCAmelCase : Any = model.half() _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _UpperCAmelCase : Any = time.time() # update config with task specific params use_task_specific_params(lowerCAmelCase_ , lowerCAmelCase_ ) if prefix is None: _UpperCAmelCase : List[str] = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(lowerCAmelCase_ , lowerCAmelCase_ ) ) ): _UpperCAmelCase : Optional[int] = [prefix + text for text in examples_chunk] _UpperCAmelCase : Union[str, Any] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_ , padding="""longest""" ).to(lowerCAmelCase_ ) _UpperCAmelCase : Any = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowerCAmelCase_ , ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() _UpperCAmelCase : Dict = int(time.time() - start_time ) # seconds _UpperCAmelCase : int = len(lowerCAmelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def snake_case_ ( lowerCAmelCase_=True )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=lowerCAmelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=lowerCAmelCase_ , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=lowerCAmelCase_ , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=lowerCAmelCase_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=lowerCAmelCase_ , default=8 , required=lowerCAmelCase_ , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=lowerCAmelCase_ , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _UpperCAmelCase : Tuple = parser.parse_known_args() _UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase_ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) _UpperCAmelCase : Optional[int] = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _UpperCAmelCase : List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=lowerCAmelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) _UpperCAmelCase : Union[str, Any] = generate_summaries_or_translations( lowerCAmelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowerCAmelCase_ , ) if args.reference_path is None: return {} # Compute scores _UpperCAmelCase : Any = calculate_bleu if """translation""" in args.task else calculate_rouge _UpperCAmelCase : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _UpperCAmelCase : Tuple = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowerCAmelCase_ )] _UpperCAmelCase : dict = score_fn(lowerCAmelCase_ , lowerCAmelCase_ ) scores.update(lowerCAmelCase_ ) if args.dump_args: scores.update(lowerCAmelCase_ ) if args.info: _UpperCAmelCase : Dict = args.info if verbose: print(lowerCAmelCase_ ) if args.score_path is not None: json.dump(lowerCAmelCase_ , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Tuple = {"""vocab_file""": """vocab.txt"""} A_ : Tuple = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } A_ : Union[str, Any] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = collections.OrderedDict() with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as reader: _UpperCAmelCase : Optional[int] = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Any = token.rstrip("""\n""" ) _UpperCAmelCase : List[str] = index return vocab class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_="<unk>" ,a_=200 ) -> Optional[Any]: _UpperCAmelCase : Dict = vocab _UpperCAmelCase : Dict = unk_token _UpperCAmelCase : Any = max_input_chars_per_word def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : List[str] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[Any] = [] while start < len(a_ ): _UpperCAmelCase : Union[str, Any] = len(a_ ) _UpperCAmelCase : List[Any] = None while start < end: _UpperCAmelCase : int = """""".join(chars[start:end] ) if substr in self.vocab: _UpperCAmelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) _UpperCAmelCase : List[str] = end return sub_tokens class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] UpperCAmelCase = False def __init__( self ,a_ ,a_="<d>" ,a_="</d>" ,a_="<s>" ,a_="</s>" ,a_="<pad>" ,a_="<unk>" ,a_="</n>" ,a_="</_>" ,a_="left" ,**a_ ,) -> List[Any]: requires_backends(self ,["""jieba"""] ) super().__init__( bod_token=a_ ,eod_token=a_ ,bos_token=a_ ,eos_token=a_ ,pad_token=a_ ,unk_token=a_ ,line_token=a_ ,space_token=a_ ,padding_side=a_ ,**a_ ,) _UpperCAmelCase : Union[str, Any] = bod_token _UpperCAmelCase : List[str] = eod_token _UpperCAmelCase : str = load_vocab(a_ ) _UpperCAmelCase : int = self.encoder[space_token] _UpperCAmelCase : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _UpperCAmelCase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda a_ : x[1] ) ) _UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def _snake_case ( self ) -> Optional[Any]: return self.encoder[self.bod_token] @property def _snake_case ( self ) -> Tuple: return self.encoder[self.eod_token] @property def _snake_case ( self ) -> str: return self.encoder["\n"] @property def _snake_case ( self ) -> int: return len(self.encoder ) def _snake_case ( self ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Optional[int] = [] for x in jieba.cut(a_ ,cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def _snake_case ( self ,a_ ,**a_ ) -> Optional[int]: _UpperCAmelCase : int = [i for i in token_ids if i >= 0] _UpperCAmelCase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ ,**a_ ) def _snake_case ( self ,a_ ) -> str: return token in self.encoder def _snake_case ( self ,a_ ) -> str: return "".join(a_ ) def _snake_case ( self ,a_ ) -> Optional[int]: return self.encoder.get(a_ ,self.encoder.get(self.unk_token ) ) def _snake_case ( self ,a_ ) -> Any: return self.decoder.get(a_ ,self.unk_token ) def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if os.path.isdir(a_ ): _UpperCAmelCase : int = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _UpperCAmelCase : Optional[int] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _UpperCAmelCase : Any = 0 if " " in self.encoder: _UpperCAmelCase : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _UpperCAmelCase : Optional[int] = self.encoder["""\n"""] del self.encoder["\n"] _UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda a_ : x[1] ) ) with open(a_ ,"""w""" ,encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) _UpperCAmelCase : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = 384 if "tiny" in model_name: _UpperCAmelCase : Any = [3, 3, 9, 3] _UpperCAmelCase : str = [96, 192, 384, 768] if "small" in model_name: _UpperCAmelCase : Any = [3, 3, 27, 3] _UpperCAmelCase : Dict = [96, 192, 384, 768] if "base" in model_name: _UpperCAmelCase : Union[str, Any] = [3, 3, 27, 3] _UpperCAmelCase : List[Any] = [128, 256, 512, 1024] _UpperCAmelCase : List[str] = 512 if "large" in model_name: _UpperCAmelCase : List[Any] = [3, 3, 27, 3] _UpperCAmelCase : int = [192, 384, 768, 1536] _UpperCAmelCase : str = 768 if "xlarge" in model_name: _UpperCAmelCase : Tuple = [3, 3, 27, 3] _UpperCAmelCase : Dict = [256, 512, 1024, 2048] _UpperCAmelCase : Optional[int] = 1024 # set label information _UpperCAmelCase : Optional[Any] = 150 _UpperCAmelCase : str = """huggingface/label-files""" _UpperCAmelCase : Tuple = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = ConvNextConfig( depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _UpperCAmelCase : int = UperNetConfig( backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = dct.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _UpperCAmelCase : Optional[Any] = model_name_to_url[model_name] _UpperCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""state_dict"""] _UpperCAmelCase : List[Any] = get_upernet_config(lowerCAmelCase_ ) _UpperCAmelCase : str = UperNetForSemanticSegmentation(lowerCAmelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase_ ) if "bn" in key: _UpperCAmelCase : str = key.replace("""bn""" , """batch_norm""" ) _UpperCAmelCase : Union[str, Any] = val # rename keys _UpperCAmelCase : Optional[Any] = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # verify on image _UpperCAmelCase : List[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _UpperCAmelCase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) _UpperCAmelCase : List[Any] = SegformerImageProcessor() _UpperCAmelCase : Tuple = processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _UpperCAmelCase : Dict = model(lowerCAmelCase_ ) if model_name == "upernet-convnext-tiny": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": _UpperCAmelCase : str = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": _UpperCAmelCase : str = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": _UpperCAmelCase : Tuple = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A_ : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py A_ : Optional[int] = """src/transformers""" A_ : List[Any] = """docs/source/en""" A_ : List[str] = """.""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCAmelCase : Union[str, Any] = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 _UpperCAmelCase : List[Any] = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | A_ : Any = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. A_ : Any = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") A_ : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A_ : int = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. A_ : str = direct_transformers_import(TRANSFORMERS_PATH) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = 2 if text == """✅""" or text == """❌""" else len(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = (width - text_length) // 2 _UpperCAmelCase : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCAmelCase : Dict = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCAmelCase : Union[str, Any] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : int = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Any = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = None if attr_name.endswith("""Tokenizer""" ): _UpperCAmelCase : Tuple = slow_tokenizers _UpperCAmelCase : Optional[int] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): _UpperCAmelCase : str = fast_tokenizers _UpperCAmelCase : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : int = tf_models _UpperCAmelCase : Optional[int] = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : Optional[Any] = flax_models _UpperCAmelCase : Tuple = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : str = pt_models _UpperCAmelCase : Dict = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCAmelCase : str = True break # Try again after removing the last word in the name _UpperCAmelCase : str = """""".join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! _UpperCAmelCase : Tuple = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCAmelCase : int = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCAmelCase : int = [len(lowerCAmelCase_ ) + 2 for c in columns] _UpperCAmelCase : Union[str, Any] = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCAmelCase : Optional[Any] = """|""" + """|""".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" _UpperCAmelCase : int = {True: """✅""", False: """❌"""} for name in model_names: _UpperCAmelCase : Any = model_name_to_prefix[name] _UpperCAmelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def snake_case_ ( lowerCAmelCase_=False )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) _UpperCAmelCase : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A_ : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin A_ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") A_ : Any = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") A_ : Dict = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = CamembertTokenizer UpperCAmelCase = CamembertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : str = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = """<pad>""" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>NOTUSED' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(a_ ) ,1_004 ) def _snake_case ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size ,1_005 ) def _snake_case ( self ) -> int: _UpperCAmelCase : Union[str, Any] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : List[Any] = tokenizer.encode(a_ ) _UpperCAmelCase : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : Optional[int] = tokenizer.encode(a_ ,add_special_tokens=a_ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(a_ ) _UpperCAmelCase : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : Optional[int] = tokenizer.tokenize(a_ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : Any = tokenizer.encode(a_ ,add_special_tokens=a_ ) _UpperCAmelCase : int = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = tokenizer.encode(a_ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) @slow def _snake_case ( self ) -> Any: # fmt: off _UpperCAmelCase : List[str] = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCAmelCase : List[str] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name='camembert-base' ,revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' ,sequences=a_ ,)
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def _snake_case ( *a_ ,**a_ ) -> Optional[Any]: pass @is_pipeline_test @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" ,) _UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _UpperCAmelCase : List[Any] = image_classifier(a_ ,candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ) ,[ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] ,) _UpperCAmelCase : Dict = image_classifier([image] * 5 ,candidate_labels=["""A""", """B""", """C"""] ,batch_size=2 ) self.assertEqual( nested_simplify(a_ ) ,[ [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], ] ,) @require_tf def _snake_case ( self ) -> Tuple: _UpperCAmelCase : int = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" ,framework="""tf""" ) _UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _UpperCAmelCase : Any = image_classifier(a_ ,candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(a_ ) ,[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] ,) _UpperCAmelCase : List[str] = image_classifier([image] * 5 ,candidate_labels=["""A""", """B""", """C"""] ,batch_size=2 ) self.assertEqual( nested_simplify(a_ ) ,[ [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], [ {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, {"""score""": 0.333, """label""": ANY(a_ )}, ], ] ,) @slow @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = pipeline( task="""zero-shot-image-classification""" ,model="""openai/clip-vit-base-patch32""" ,) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _UpperCAmelCase : Optional[int] = image_classifier(a_ ,candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(a_ ) ,[ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] ,) _UpperCAmelCase : Optional[int] = image_classifier([image] * 5 ,candidate_labels=["""cat""", """plane""", """remote"""] ,batch_size=2 ) self.assertEqual( nested_simplify(a_ ) ,[ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 ,) @slow @require_tf def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Any = pipeline( task="""zero-shot-image-classification""" ,model="""openai/clip-vit-base-patch32""" ,framework="""tf""" ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _UpperCAmelCase : List[Any] = image_classifier(a_ ,candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(a_ ) ,[ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] ,) _UpperCAmelCase : Dict = image_classifier([image] * 5 ,candidate_labels=["""cat""", """plane""", """remote"""] ,batch_size=2 ) self.assertEqual( nested_simplify(a_ ) ,[ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 ,)
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A_ : Any = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """train""" UpperCAmelCase = """dev""" UpperCAmelCase = """test""" class lowercase : """simple docstring""" @staticmethod def _snake_case ( a_ ,a_ ) -> List[InputExample]: raise NotImplementedError @staticmethod def _snake_case ( a_ ) -> List[str]: raise NotImplementedError @staticmethod def _snake_case ( a_ ,a_ ,a_ ,a_ ,a_=False ,a_="[CLS]" ,a_=1 ,a_="[SEP]" ,a_=False ,a_=False ,a_=0 ,a_=0 ,a_=-100 ,a_=0 ,a_=True ,) -> List[InputFeatures]: _UpperCAmelCase : List[Any] = {label: i for i, label in enumerate(a_ )} _UpperCAmelCase : str = [] for ex_index, example in enumerate(a_ ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" ,a_ ,len(a_ ) ) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : List[Any] = [] for word, label in zip(example.words ,example.labels ): _UpperCAmelCase : int = tokenizer.tokenize(a_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(a_ ) > 0: tokens.extend(a_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(a_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _UpperCAmelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add() if len(a_ ) > max_seq_length - special_tokens_count: _UpperCAmelCase : Optional[int] = tokens[: (max_seq_length - special_tokens_count)] _UpperCAmelCase : str = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _UpperCAmelCase : str = [sequence_a_segment_id] * len(a_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _UpperCAmelCase : Optional[int] = [cls_token] + tokens _UpperCAmelCase : List[str] = [pad_token_label_id] + label_ids _UpperCAmelCase : str = [cls_token_segment_id] + segment_ids _UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(a_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _UpperCAmelCase : Optional[Any] = [1 if mask_padding_with_zero else 0] * len(a_ ) # Zero-pad up to the sequence length. _UpperCAmelCase : Optional[Any] = max_seq_length - len(a_ ) if pad_on_left: _UpperCAmelCase : Optional[int] = ([pad_token] * padding_length) + input_ids _UpperCAmelCase : Optional[Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _UpperCAmelCase : List[str] = ([pad_token_segment_id] * padding_length) + segment_ids _UpperCAmelCase : str = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(a_ ) == max_seq_length assert len(a_ ) == max_seq_length assert len(a_ ) == max_seq_length assert len(a_ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" ,example.guid ) logger.info("""tokens: %s""" ,""" """.join([str(a_ ) for x in tokens] ) ) logger.info("""input_ids: %s""" ,""" """.join([str(a_ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" ,""" """.join([str(a_ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" ,""" """.join([str(a_ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" ,""" """.join([str(a_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : Tuple = None features.append( InputFeatures( input_ids=a_ ,attention_mask=a_ ,token_type_ids=a_ ,label_ids=a_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = nn.CrossEntropyLoss().ignore_index def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ = None ,a_=False ,a_ = Split.train ,) -> List[Any]: # Load data features from cache or dataset file _UpperCAmelCase : List[str] = os.path.join( a_ ,"""cached_{}_{}_{}""".format(mode.value ,tokenizer.__class__.__name__ ,str(a_ ) ) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : Optional[Any] = cached_features_file + """.lock""" with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _UpperCAmelCase : Optional[Any] = torch.load(a_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _UpperCAmelCase : Any = token_classification_task.read_examples_from_file(a_ ,a_ ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : Optional[int] = token_classification_task.convert_examples_to_features( a_ ,a_ ,a_ ,a_ ,cls_token_at_end=bool(model_type in ["""xlnet"""] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=a_ ,pad_on_left=bool(tokenizer.padding_side == """left""" ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features ,a_ ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self ,a_ ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = -100 def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ = None ,a_=False ,a_ = Split.train ,) -> Dict: _UpperCAmelCase : Tuple = token_classification_task.read_examples_from_file(a_ ,a_ ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : str = token_classification_task.convert_examples_to_features( a_ ,a_ ,a_ ,a_ ,cls_token_at_end=bool(model_type in ["""xlnet"""] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=a_ ,pad_on_left=bool(tokenizer.padding_side == """left""" ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator( a_ ,({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) ,( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) ,) else: _UpperCAmelCase : Optional[Any] = tf.data.Dataset.from_generator( a_ ,({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) ,( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) ,) def _snake_case ( self ) -> int: _UpperCAmelCase : Tuple = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self ,a_ ) -> InputFeatures: return self.features[i]
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> list[int]: '''simple docstring''' _UpperCAmelCase : int = int(lowerCAmelCase_ ) # Initialize Result _UpperCAmelCase : int = [] # Traverse through all denomination for denomination in reversed(lowerCAmelCase_ ): # Find denominations while int(lowerCAmelCase_ ) >= int(lowerCAmelCase_ ): total_value -= int(lowerCAmelCase_ ) answer.append(lowerCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ : Optional[Any] = [] A_ : int = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): A_ : List[str] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) A_ : Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter A_ : int = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] A_ : int = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f"""Following is minimal change for {value}: """) A_ : Dict = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from jiwer import compute_measures import datasets A_ : List[str] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ : Any = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ : List[Any] = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/jitsi/jiwer/"""] ,reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] ,) def _snake_case ( self ,a_=None ,a_=None ,a_=False ) -> List[Any]: if concatenate_texts: return compute_measures(a_ ,a_ )["wer"] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Any = 0 for prediction, reference in zip(a_ ,a_ ): _UpperCAmelCase : Optional[int] = compute_measures(a_ ,a_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0