code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A_ : Optional[Any] = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BILINEAR ,a_ = True ,a_ = None ,a_ = True ,a_ = 1 / 255 ,a_ = True ,a_ = None ,a_ = None ,**a_ ,) -> None: super().__init__(**a_ ) _UpperCAmelCase : Optional[int] = size if size is not None else {"""shortest_edge""": 256} _UpperCAmelCase : int = get_size_dict(a_ ,default_to_square=a_ ) _UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : List[Any] = get_size_dict(a_ ,param_name="""crop_size""" ) _UpperCAmelCase : Any = do_resize _UpperCAmelCase : List[str] = size _UpperCAmelCase : Optional[int] = resample _UpperCAmelCase : int = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : Any = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BICUBIC ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : List[str] = get_size_dict(a_ ,default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCAmelCase : int = get_resize_output_image_size(a_ ,size=size["""shortest_edge"""] ,default_to_square=a_ ) return resize(a_ ,size=a_ ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Optional[int] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(a_ ,size=(size["""height"""], size["""width"""]) ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ) -> np.ndarray: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> List[str]: _UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Optional[int] = size if size is not None else self.size _UpperCAmelCase : List[Any] = get_size_dict(a_ ,default_to_square=a_ ) _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Optional[int] = get_size_dict(a_ ,param_name="""crop_size""" ) _UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : str = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : List[Any] = [self.resize(image=a_ ,size=a_ ,resample=a_ ) for image in images] if do_center_crop: _UpperCAmelCase : Union[str, Any] = [self.center_crop(image=a_ ,size=a_ ) for image in images] if do_rescale: _UpperCAmelCase : List[str] = [self.rescale(image=a_ ,scale=a_ ) for image in images] if do_normalize: _UpperCAmelCase : List[Any] = [self.normalize(image=a_ ,mean=a_ ,std=a_ ) for image in images] _UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : int = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ ) def _snake_case ( self ,a_ ,a_ = None ) -> int: _UpperCAmelCase : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(a_ ): _UpperCAmelCase : Any = target_sizes.numpy() _UpperCAmelCase : int = [] for idx in range(len(a_ ) ): _UpperCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=a_ ) _UpperCAmelCase : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: _UpperCAmelCase : List[str] = logits.argmax(dim=1 ) _UpperCAmelCase : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Any = split_dict._to_yaml_list() assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(lowerCAmelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase : Any = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase_ ), SplitInfo(dataset_name="""my_dataset""" )] ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ = 10**9 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = 0 _UpperCAmelCase : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _UpperCAmelCase : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) _UpperCAmelCase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) _UpperCAmelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def _snake_case ( self ) -> Any: print(f'''Found {torch.cuda.device_count()} devices.''' ) _UpperCAmelCase : List[str] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_ ,env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self ) -> Optional[Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) _UpperCAmelCase : Union[str, Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_ ,env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Tuple = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_ ,env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self ) -> List[str]: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _UpperCAmelCase : List[str] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices="""0,1""" ): execute_subprocess_async(a_ ,env=os.environ.copy() ) if __name__ == "__main__": A_ : Any = Accelerator() A_ : int = (accelerator.state.process_index + 2, 1_0) A_ : Any = torch.randint(0, 1_0, shape).to(accelerator.device) A_ : List[str] = """""" A_ : List[str] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A_ : Tuple = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A_ : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' A_ : List[str] = [0, 2, 4, 6, 8] A_ : List[Any] = [1, 3, 5, 7, 9] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : List[str] = 0 for digit in range(10 ): _UpperCAmelCase : List[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase_ , lowerCAmelCase_ ) return result _UpperCAmelCase : str = 0 for digita in range(10 ): _UpperCAmelCase : str = digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : Any = ODD_DIGITS else: _UpperCAmelCase : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : Optional[int] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase_ , lowerCAmelCase_ , ) return result def snake_case_ ( lowerCAmelCase_ = 9 )-> int: '''simple docstring''' _UpperCAmelCase : str = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase_ , 0 , [0] * length , lowerCAmelCase_ ) return result if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL A_ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=0 , lowerCAmelCase_=None ): _UpperCAmelCase : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase : Tuple = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase : List[Any] = (output_size, output_size) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else output_size _UpperCAmelCase ,_UpperCAmelCase : List[str] = get_image_size(lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = output_size # determine new height and width _UpperCAmelCase : List[Any] = output_height / input_height _UpperCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase : Any = scale_width else: # fit height _UpperCAmelCase : int = scale_height _UpperCAmelCase : Optional[int] = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase_ ) return (new_height, new_width) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BILINEAR ,a_ = False ,a_ = 1 ,a_ = True ,a_ = 1 / 255 ,a_ = True ,a_ = None ,a_ = None ,**a_ ,) -> None: super().__init__(**a_ ) _UpperCAmelCase : Any = size if size is not None else {"""height""": 384, """width""": 384} _UpperCAmelCase : Tuple = get_size_dict(a_ ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Dict = size _UpperCAmelCase : Union[str, Any] = keep_aspect_ratio _UpperCAmelCase : Tuple = ensure_multiple_of _UpperCAmelCase : List[Any] = resample _UpperCAmelCase : List[Any] = do_rescale _UpperCAmelCase : List[str] = rescale_factor _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self ,a_ ,a_ ,a_ = False ,a_ = 1 ,a_ = PILImageResampling.BICUBIC ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _UpperCAmelCase : Optional[Any] = get_resize_output_image_size( a_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=a_ ,multiple=a_ ,) return resize(a_ ,size=a_ ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> Union[str, Any]: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> PIL.Image.Image: _UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Optional[int] = size if size is not None else self.size _UpperCAmelCase : Tuple = get_size_dict(a_ ) _UpperCAmelCase : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase : str = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : int = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Union[str, Any] = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : Optional[Any] = [self.resize(image=a_ ,size=a_ ,resample=a_ ) for image in images] if do_rescale: _UpperCAmelCase : Optional[int] = [self.rescale(image=a_ ,scale=a_ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(image=a_ ,mean=a_ ,std=a_ ) for image in images] _UpperCAmelCase : Dict = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : Dict = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ ) def _snake_case ( self ,a_ ,a_ = None ) -> Tuple: _UpperCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(a_ ): _UpperCAmelCase : List[str] = target_sizes.numpy() _UpperCAmelCase : str = [] for idx in range(len(a_ ) ): _UpperCAmelCase : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=a_ ) _UpperCAmelCase : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: _UpperCAmelCase : List[str] = logits.argmax(dim=1 ) _UpperCAmelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if point: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for item in point: if not isinstance(lowerCAmelCase_ , (int, float) ): _UpperCAmelCase : Any = ( """Expected a list of numbers as input, found """ F'''{type(lowerCAmelCase_ ).__name__}''' ) raise TypeError(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = F'''Expected a list of numbers as input, found {type(lowerCAmelCase_ ).__name__}''' raise TypeError(lowerCAmelCase_ ) else: raise ValueError("""Missing an input""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _validate_point(lowerCAmelCase_ ) _validate_point(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' from math import factorial A_ : List[Any] = {str(d): factorial(d) for d in range(1_0)} def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(lowerCAmelCase_ ) ) def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowerCAmelCase_ ) if sum_of_digit_factorial(lowerCAmelCase_ ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowercase ( _lowerCamelCase ): """simple docstring""" def __get__( self ,a_ ,a_=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) _UpperCAmelCase : Dict = """__cached_""" + self.fget.__name__ _UpperCAmelCase : str = getattr(a_ ,a_ ,a_ ) if cached is None: _UpperCAmelCase : Tuple = self.fget(a_ ) setattr(a_ ,a_ ,a_ ) return cached def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if is_torch_fx_proxy(lowerCAmelCase_ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return isinstance(lowerCAmelCase_ , np.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' return _is_numpy(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' import torch return isinstance(lowerCAmelCase_ , torch.device ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' import torch if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) else: return False return isinstance(lowerCAmelCase_ , torch.dtype ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' import tensorflow as tf return isinstance(lowerCAmelCase_ , tf.Tensor ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase_ , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(lowerCAmelCase_ ) return type(lowerCAmelCase_ ) == tf.Tensor def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase_ , jnp.ndarray ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return False if not is_flax_available() else _is_jax(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_py_obj(lowerCAmelCase_ ) for o in obj] elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ).tolist() elif isinstance(lowerCAmelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase_ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase_ , (list, tuple) ): return np.array(lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase_ ): return np.asarray(lowerCAmelCase_ ) else: return obj class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(a_ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) _UpperCAmelCase : Tuple = getattr(self ,class_fields[0].name ) _UpperCAmelCase : Tuple = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(a_ ): if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = first_field.items() _UpperCAmelCase : int = True else: try: _UpperCAmelCase : Optional[int] = iter(a_ ) _UpperCAmelCase : Tuple = True except TypeError: _UpperCAmelCase : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(a_ ): if ( not isinstance(a_ ,(list, tuple) ) or not len(a_ ) == 2 or not isinstance(element[0] ,a_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _UpperCAmelCase : str = element[1] elif first_field is not None: _UpperCAmelCase : List[str] = first_field else: for field in class_fields: _UpperCAmelCase : Optional[Any] = getattr(self ,field.name ) if v is not None: _UpperCAmelCase : Any = v def __delitem__( self ,*a_ ,**a_ ) -> int: raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> Union[str, Any]: raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self ,*a_ ,**a_ ) -> str: raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self ,a_ ) -> int: if isinstance(a_ ,a_ ): _UpperCAmelCase : Any = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self ,a_ ,a_ ) -> Union[str, Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(a_ ,a_ ) super().__setattr__(a_ ,a_ ) def __setitem__( self ,a_ ,a_ ) -> str: # Will raise a KeyException if needed super().__setitem__(a_ ,a_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(a_ ,a_ ) def _snake_case ( self ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class lowercase ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" @classmethod def _snake_case ( cls ,a_ ) -> Union[str, Any]: raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longest""" UpperCAmelCase = """max_length""" UpperCAmelCase = """do_not_pad""" class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """pt""" UpperCAmelCase = """tf""" UpperCAmelCase = """np""" UpperCAmelCase = """jax""" class lowercase : """simple docstring""" def __init__( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[str] = context_managers _UpperCAmelCase : Union[str, Any] = ExitStack() def __enter__( self ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(a_ ) def __exit__( self ,*a_ ,**a_ ) -> List[str]: self.stack.__exit__(*a_ ,**a_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Optional[int] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : List[Any] = model_class.__name__ _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase_ ) if framework == "tf": _UpperCAmelCase : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "" , lowerCAmelCase_ = "." )-> Tuple: '''simple docstring''' def _flatten_dict(lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_="." ): for k, v in d.items(): _UpperCAmelCase : List[Any] = str(lowerCAmelCase_ ) + delimiter + str(lowerCAmelCase_ ) if parent_key else k if v and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): yield from flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , delimiter=lowerCAmelCase_ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) @contextmanager def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = False )-> Tuple: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.T if axes is None else array.permute(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.transpose(lowerCAmelCase_ , perm=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.transpose(lowerCAmelCase_ , axes=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for transpose: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.reshape(*lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for reshape: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> Dict: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.squeeze(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for squeeze: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.expand_dims(lowerCAmelCase_ , lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.unsqueeze(dim=lowerCAmelCase_ ) elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return jnp.expand_dims(lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if is_numpy_array(lowerCAmelCase_ ): return np.size(lowerCAmelCase_ ) elif is_torch_tensor(lowerCAmelCase_ ): return array.numel() elif is_tf_tensor(lowerCAmelCase_ ): import tensorflow as tf return tf.size(lowerCAmelCase_ ) elif is_jax_tensor(lowerCAmelCase_ ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(lowerCAmelCase_ )}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(lowerCAmelCase_ , (tuple, list) ): _UpperCAmelCase : Optional[Any] = [F'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : List[Any] = F'''{repo_id}--{value}''' return auto_map def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' for base_class in inspect.getmro(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = base_class.__module__ _UpperCAmelCase : List[str] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """WhisperFeatureExtractor""" UpperCAmelCase = """WhisperTokenizer""" def __init__( self ,a_ ,a_ ) -> str: super().__init__(a_ ,a_ ) _UpperCAmelCase : Dict = self.feature_extractor _UpperCAmelCase : Union[str, Any] = False def _snake_case ( self ,a_=None ,a_=None ,a_=True ) -> str: return self.tokenizer.get_decoder_prompt_ids(task=a_ ,language=a_ ,no_timestamps=a_ ) def __call__( self ,*a_ ,**a_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a_ ,**a_ ) _UpperCAmelCase : Dict = kwargs.pop("""audio""" ,a_ ) _UpperCAmelCase : int = kwargs.pop("""sampling_rate""" ,a_ ) _UpperCAmelCase : List[str] = kwargs.pop("""text""" ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : Dict = args[0] _UpperCAmelCase : List[str] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor(a_ ,*a_ ,sampling_rate=a_ ,**a_ ) if text is not None: _UpperCAmelCase : List[str] = self.tokenizer(a_ ,**a_ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Optional[Any] = encodings["""input_ids"""] return inputs def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: return self.tokenizer.batch_decode(*a_ ,**a_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: return self.tokenizer.decode(*a_ ,**a_ ) def _snake_case ( self ,a_ ,a_="np" ) -> Dict: return self.tokenizer.get_prompt_ids(a_ ,return_tensors=a_ )
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=2 ,a_=3 ,a_=4 ,a_=2 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=36 ,a_=2 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=6 ,a_=6 ,a_=3 ,a_=4 ,a_=None ,a_=1_000 ,) -> Dict: _UpperCAmelCase : int = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Dict = coordinate_size _UpperCAmelCase : Union[str, Any] = shape_size _UpperCAmelCase : str = num_labels _UpperCAmelCase : Tuple = num_choices _UpperCAmelCase : int = scope _UpperCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase : int = text_seq_length _UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase : List[str] = self.text_seq_length + self.image_seq_length def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) _UpperCAmelCase : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : int = bbox[i, j, 3] _UpperCAmelCase : Optional[int] = bbox[i, j, 1] _UpperCAmelCase : Optional[int] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Dict = bbox[i, j, 2] _UpperCAmelCase : str = bbox[i, j, 0] _UpperCAmelCase : str = tmp_coordinate _UpperCAmelCase : List[str] = tf.constant(a_ ) _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) _UpperCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Tuple = TFLayoutLMvaModel(config=a_ ) # text + image _UpperCAmelCase : Any = model(a_ ,pixel_values=a_ ,training=a_ ) _UpperCAmelCase : Tuple = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,training=a_ ,) _UpperCAmelCase : int = model(a_ ,bbox=a_ ,pixel_values=a_ ,training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase : Optional[Any] = model(a_ ,training=a_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase : Optional[Any] = model({"""pixel_values""": pixel_values} ,training=a_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Any: _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=a_ ) _UpperCAmelCase : List[Any] = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,training=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : List[Any] = TFLayoutLMvaForTokenClassification(config=a_ ) _UpperCAmelCase : Any = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,training=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : str = 2 _UpperCAmelCase : Tuple = TFLayoutLMvaForQuestionAnswering(config=a_ ) _UpperCAmelCase : Union[str, Any] = model( a_ ,bbox=a_ ,pixel_values=a_ ,attention_mask=a_ ,token_type_ids=a_ ,start_positions=a_ ,end_positions=a_ ,training=a_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = self.prepare_config_and_inputs() ((_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase)) : Optional[Any] = config_and_inputs _UpperCAmelCase : str = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: return True def _snake_case ( self ,a_ ,a_ ,a_=False ) -> dict: _UpperCAmelCase : Dict = copy.deepcopy(a_ ) if model_class in get_values(a_ ): _UpperCAmelCase : Tuple = { k: tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(a_ ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a_ ): _UpperCAmelCase : Optional[Any] = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : List[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) _UpperCAmelCase : Dict = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(a_ ): _UpperCAmelCase : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = TFLayoutLMvaModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: _UpperCAmelCase ,_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[int] = model_class(a_ ) if getattr(a_ ,"""hf_compute_loss""" ,a_ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase : str = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=a_ )[0] ] _UpperCAmelCase : Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase : Dict = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Optional[Any] = prepared_for_class.pop("""input_ids""" ) _UpperCAmelCase : List[Any] = model(a_ ,**a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase : str = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : Dict = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: _UpperCAmelCase : Any = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase : Any = -100 _UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(a_ ) _UpperCAmelCase : Any = model(a_ ,**a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) _UpperCAmelCase : List[Any] = model(a_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase : int = self._prepare_for_class(inputs_dict.copy() ,a_ ,return_labels=a_ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase : Any = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase : Union[str, Any] = inspect.signature(model.call ).parameters _UpperCAmelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase : str = {0: """input_ids"""} for label_key in label_keys: _UpperCAmelCase : str = signature_names.index(a_ ) _UpperCAmelCase : Optional[int] = label_key _UpperCAmelCase : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase : List[Any] = prepared_for_class[value] _UpperCAmelCase : Tuple = tuple(a_ ) # Send to model _UpperCAmelCase : Optional[int] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> List[str]: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> Tuple: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> str: ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) @slow def _snake_case ( self ) -> List[str]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = TFLayoutLMvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ) -> str: return LayoutLMvaImageProcessor(apply_ocr=a_ ) if is_vision_available() else None @slow def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : int = image_processor(images=a_ ,return_tensors="""tf""" ).pixel_values _UpperCAmelCase : Tuple = tf.constant([[1, 2]] ) _UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass _UpperCAmelCase : Union[str, Any] = model(input_ids=a_ ,bbox=a_ ,pixel_values=a_ ,training=a_ ) # verify the logits _UpperCAmelCase : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,a_ ) _UpperCAmelCase : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,a_ ,atol=1E-4 ) )
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowerCAmelCase_ ) env_command_parser(subparsers=lowerCAmelCase_ ) launch_command_parser(subparsers=lowerCAmelCase_ ) tpu_command_parser(subparsers=lowerCAmelCase_ ) test_command_parser(subparsers=lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Tuple = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = 384 if "tiny" in model_name: _UpperCAmelCase : Any = [3, 3, 9, 3] _UpperCAmelCase : str = [96, 192, 384, 768] if "small" in model_name: _UpperCAmelCase : Any = [3, 3, 27, 3] _UpperCAmelCase : Dict = [96, 192, 384, 768] if "base" in model_name: _UpperCAmelCase : Union[str, Any] = [3, 3, 27, 3] _UpperCAmelCase : List[Any] = [128, 256, 512, 1024] _UpperCAmelCase : List[str] = 512 if "large" in model_name: _UpperCAmelCase : List[Any] = [3, 3, 27, 3] _UpperCAmelCase : int = [192, 384, 768, 1536] _UpperCAmelCase : str = 768 if "xlarge" in model_name: _UpperCAmelCase : Tuple = [3, 3, 27, 3] _UpperCAmelCase : Dict = [256, 512, 1024, 2048] _UpperCAmelCase : Optional[int] = 1024 # set label information _UpperCAmelCase : Optional[Any] = 150 _UpperCAmelCase : str = """huggingface/label-files""" _UpperCAmelCase : Tuple = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = ConvNextConfig( depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _UpperCAmelCase : int = UperNetConfig( backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = dct.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _UpperCAmelCase : Optional[Any] = model_name_to_url[model_name] _UpperCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""state_dict"""] _UpperCAmelCase : List[Any] = get_upernet_config(lowerCAmelCase_ ) _UpperCAmelCase : str = UperNetForSemanticSegmentation(lowerCAmelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase_ ) if "bn" in key: _UpperCAmelCase : str = key.replace("""bn""" , """batch_norm""" ) _UpperCAmelCase : Union[str, Any] = val # rename keys _UpperCAmelCase : Optional[Any] = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # verify on image _UpperCAmelCase : List[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _UpperCAmelCase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) _UpperCAmelCase : List[Any] = SegformerImageProcessor() _UpperCAmelCase : Tuple = processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _UpperCAmelCase : Dict = model(lowerCAmelCase_ ) if model_name == "upernet-convnext-tiny": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": _UpperCAmelCase : str = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": _UpperCAmelCase : str = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": _UpperCAmelCase : Tuple = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": _UpperCAmelCase : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A_ : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : Any = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["""PerceiverFeatureExtractor"""] A_ : Union[str, Any] = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : int = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) _UpperCAmelCase : List[Any] = """The dog is cute and lives in the garden house""" _UpperCAmelCase : Dict = jnp.array([tokenizer.encode(a_ )] ) _UpperCAmelCase : str = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase : Any = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _UpperCAmelCase : Union[str, Any] = model(a_ )["""last_hidden_state"""] self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,a_ ,atol=1E-3 ) )
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' import requests A_ : List[str] = """YOUR API KEY""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = giphy_api_key )-> list: '''simple docstring''' _UpperCAmelCase : Dict = """+""".join(query.split() ) _UpperCAmelCase : Union[str, Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' _UpperCAmelCase : Optional[int] = requests.get(lowerCAmelCase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionSAGPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = False def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) _UpperCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : str = CLIPTextModel(a_ ) _UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Any: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(a_ ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : Optional[int] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) _UpperCAmelCase : Dict = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """.""" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Dict = sag_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Optional[int] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : Tuple = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """.""" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : str = sag_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Any = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : List[Any] = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """.""" _UpperCAmelCase : Dict = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = sag_pipe( [prompt] ,width=768 ,height=512 ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ,) _UpperCAmelCase : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not nums: return 0 _UpperCAmelCase : List[str] = nums[0] _UpperCAmelCase : Union[str, Any] = 0 for num in nums[1:]: _UpperCAmelCase ,_UpperCAmelCase : List[Any] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ) -> List[str]: with open(a_ ,encoding="""utf-8""" ) as input_file: _UpperCAmelCase : Optional[int] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) _UpperCAmelCase : List[Any] = input_file.read() _UpperCAmelCase : List[Any] = regexp.search(a_ ) return match def _snake_case ( self ,a_ ) -> Optional[int]: with open(a_ ,encoding="""utf-8""" ) as input_file: _UpperCAmelCase : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" ,re.DOTALL ) _UpperCAmelCase : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase : int = regexp.finditer(a_ ) _UpperCAmelCase : str = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _snake_case ( self ) -> int: _UpperCAmelCase : int = Path("""./datasets""" ) _UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(a_ ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : int = Path("""./datasets""" ) _UpperCAmelCase : List[Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(a_ ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = MobileBertConfig.from_json_file(lowerCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase : Any = MobileBertForPreTraining(lowerCAmelCase_ ) # Load weights from tf checkpoint _UpperCAmelCase : Optional[int] = load_tf_weights_in_mobilebert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """trocr""" UpperCAmelCase = ["""past_key_values"""] UpperCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self ,a_=50_265 ,a_=1_024 ,a_=12 ,a_=16 ,a_=4_096 ,a_="gelu" ,a_=512 ,a_=0.1 ,a_=0.0 ,a_=0.0 ,a_=2 ,a_=0.02 ,a_=0.0 ,a_=True ,a_=False ,a_=True ,a_=True ,a_=1 ,a_=0 ,a_=2 ,**a_ ,) -> str: _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : str = d_model _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : int = activation_function _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Tuple = attention_dropout _UpperCAmelCase : List[str] = activation_dropout _UpperCAmelCase : Optional[Any] = init_std _UpperCAmelCase : List[Any] = decoder_layerdrop _UpperCAmelCase : Optional[Any] = use_cache _UpperCAmelCase : Union[str, Any] = scale_embedding _UpperCAmelCase : str = use_learned_position_embeddings _UpperCAmelCase : Optional[int] = layernorm_embedding super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,decoder_start_token_id=a_ ,**a_ ,)
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 class lowercase ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self ,a_ = 32 ,a_ = 64 ,a_ = 20 ,a_ = 768 ,a_=77 ,a_=4 ,a_ = 0.0 ,a_ = "silu" ,a_ = None ,a_ = None ,a_ = "linear" ,a_ = "prd" ,a_ = None ,a_ = None ,a_ = None ,) -> Any: super().__init__() _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[Any] = attention_head_dim _UpperCAmelCase : List[Any] = num_attention_heads * attention_head_dim _UpperCAmelCase : Any = additional_embeddings _UpperCAmelCase : List[str] = time_embed_dim or inner_dim _UpperCAmelCase : Dict = embedding_proj_dim or embedding_dim _UpperCAmelCase : List[str] = clip_embed_dim or embedding_dim _UpperCAmelCase : int = Timesteps(a_ ,a_ ,0 ) _UpperCAmelCase : List[str] = TimestepEmbedding(a_ ,a_ ,out_dim=a_ ,act_fn=a_ ) _UpperCAmelCase : Dict = nn.Linear(a_ ,a_ ) if embedding_proj_norm_type is None: _UpperCAmelCase : Dict = None elif embedding_proj_norm_type == "layer": _UpperCAmelCase : Any = nn.LayerNorm(a_ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _UpperCAmelCase : Optional[Any] = nn.Linear(a_ ,a_ ) if encoder_hid_proj_type is None: _UpperCAmelCase : List[Any] = None elif encoder_hid_proj_type == "linear": _UpperCAmelCase : str = nn.Linear(a_ ,a_ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _UpperCAmelCase : Optional[Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,a_ ) ) if added_emb_type == "prd": _UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 ,1 ,a_ ) ) elif added_emb_type is None: _UpperCAmelCase : List[str] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _UpperCAmelCase : str = nn.ModuleList( [ BasicTransformerBlock( a_ ,a_ ,a_ ,dropout=a_ ,activation_fn="""gelu""" ,attention_bias=a_ ,) for d in range(a_ ) ] ) if norm_in_type == "layer": _UpperCAmelCase : List[str] = nn.LayerNorm(a_ ) elif norm_in_type is None: _UpperCAmelCase : str = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) _UpperCAmelCase : Any = nn.LayerNorm(a_ ) _UpperCAmelCase : List[Any] = nn.Linear(a_ ,a_ ) _UpperCAmelCase : int = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) _UpperCAmelCase : Any = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" ,a_ ,persistent=a_ ) _UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,a_ ) ) _UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(1 ,a_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self ) -> Dict[str, AttentionProcessor]: _UpperCAmelCase : Tuple = {} def fn_recursive_add_processors(a_ ,a_ ,a_ ): if hasattr(a_ ,"""set_processor""" ): _UpperCAmelCase : List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' ,a_ ,a_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a_ ,a_ ,a_ ) return processors def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(a_ ,a_ ) and len(a_ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(a_ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(a_ ,a_ ,a_ ): if hasattr(a_ ,"""set_processor""" ): if not isinstance(a_ ,a_ ): module.set_processor(a_ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' ,a_ ,a_ ) for name, module in self.named_children(): fn_recursive_attn_processor(a_ ,a_ ,a_ ) def _snake_case ( self ) -> str: self.set_attn_processor(AttnProcessor() ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,a_ = None ,a_ = True ,) -> Union[str, Any]: _UpperCAmelCase : Tuple = hidden_states.shape[0] _UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(a_ ): _UpperCAmelCase : Dict = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(a_ ) and len(timesteps.shape ) == 0: _UpperCAmelCase : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase : int = timesteps * torch.ones(a_ ,dtype=timesteps.dtype ,device=timesteps.device ) _UpperCAmelCase : List[str] = self.time_proj(a_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _UpperCAmelCase : Tuple = timesteps_projected.to(dtype=self.dtype ) _UpperCAmelCase : Optional[Any] = self.time_embedding(a_ ) if self.embedding_proj_norm is not None: _UpperCAmelCase : List[Any] = self.embedding_proj_norm(a_ ) _UpperCAmelCase : str = self.embedding_proj(a_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _UpperCAmelCase : Tuple = self.encoder_hidden_states_proj(a_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _UpperCAmelCase : List[Any] = self.proj_in(a_ ) _UpperCAmelCase : Tuple = self.positional_embedding.to(hidden_states.dtype ) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(a_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _UpperCAmelCase : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _UpperCAmelCase : str = hidden_states[:, None, :] _UpperCAmelCase : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _UpperCAmelCase : Union[str, Any] = self.prd_embedding.to(hidden_states.dtype ).expand(a_ ,-1 ,-1 ) additional_embeds.append(a_ ) _UpperCAmelCase : Union[str, Any] = torch.cat( a_ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _UpperCAmelCase : Optional[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _UpperCAmelCase : Optional[Any] = F.pad( a_ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _UpperCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _UpperCAmelCase : Dict = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 _UpperCAmelCase : Union[str, Any] = F.pad(a_ ,(0, self.additional_embeddings) ,value=0.0 ) _UpperCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _UpperCAmelCase : Dict = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _UpperCAmelCase : str = self.norm_in(a_ ) for block in self.transformer_blocks: _UpperCAmelCase : str = block(a_ ,attention_mask=a_ ) _UpperCAmelCase : Optional[int] = self.norm_out(a_ ) if self.prd_embedding is not None: _UpperCAmelCase : Optional[Any] = hidden_states[:, -1] else: _UpperCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _UpperCAmelCase : List[Any] = self.proj_to_clip_embeddings(a_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=a_ ) def _snake_case ( self ,a_ ) -> int: _UpperCAmelCase : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : Any = logging.get_logger(__name__) A_ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Union[str, Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } A_ : List[Any] = { """gpt-neox-20b""": 2_0_4_8, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_=None ,a_=None ,a_=None ,a_="<|endoftext|>" ,a_="<|endoftext|>" ,a_="<|endoftext|>" ,a_=False ,**a_ ,) -> Optional[int]: super().__init__( a_ ,a_ ,tokenizer_file=a_ ,unk_token=a_ ,bos_token=a_ ,eos_token=a_ ,add_prefix_space=a_ ,**a_ ,) _UpperCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,a_ ) != add_prefix_space: _UpperCAmelCase : Optional[int] = getattr(a_ ,pre_tok_state.pop("""type""" ) ) _UpperCAmelCase : Optional[Any] = add_prefix_space _UpperCAmelCase : Union[str, Any] = pre_tok_class(**a_ ) _UpperCAmelCase : Dict = add_prefix_space def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: _UpperCAmelCase : int = self._tokenizer.model.save(a_ ,name=a_ ) return tuple(a_ ) def _snake_case ( self ,a_ ) -> List[int]: _UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a_ ,add_special_tokens=a_ ) + [self.eos_token_id] ) if len(a_ ) > self.model_max_length: _UpperCAmelCase : int = input_ids[-self.model_max_length :] return input_ids
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params A_ : Optional[Any] = getLogger(__name__) A_ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 8 , lowerCAmelCase_ = DEFAULT_DEVICE , lowerCAmelCase_=False , lowerCAmelCase_="summarization" , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = Path(lowerCAmelCase_ ).open("""w""" , encoding="""utf-8""" ) _UpperCAmelCase : Tuple = str(lowerCAmelCase_ ) _UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) if fpaa: _UpperCAmelCase : Any = model.half() _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _UpperCAmelCase : Any = time.time() # update config with task specific params use_task_specific_params(lowerCAmelCase_ , lowerCAmelCase_ ) if prefix is None: _UpperCAmelCase : List[str] = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(lowerCAmelCase_ , lowerCAmelCase_ ) ) ): _UpperCAmelCase : Optional[int] = [prefix + text for text in examples_chunk] _UpperCAmelCase : Union[str, Any] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_ , padding="""longest""" ).to(lowerCAmelCase_ ) _UpperCAmelCase : Any = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowerCAmelCase_ , ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() _UpperCAmelCase : Dict = int(time.time() - start_time ) # seconds _UpperCAmelCase : int = len(lowerCAmelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def snake_case_ ( lowerCAmelCase_=True )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=lowerCAmelCase_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=lowerCAmelCase_ , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=lowerCAmelCase_ , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=lowerCAmelCase_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=lowerCAmelCase_ , default=8 , required=lowerCAmelCase_ , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=lowerCAmelCase_ , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _UpperCAmelCase ,_UpperCAmelCase : Tuple = parser.parse_known_args() _UpperCAmelCase : Tuple = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase_ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) _UpperCAmelCase : Optional[int] = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _UpperCAmelCase : List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=lowerCAmelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) _UpperCAmelCase : Union[str, Any] = generate_summaries_or_translations( lowerCAmelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowerCAmelCase_ , ) if args.reference_path is None: return {} # Compute scores _UpperCAmelCase : Any = calculate_bleu if """translation""" in args.task else calculate_rouge _UpperCAmelCase : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _UpperCAmelCase : Tuple = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowerCAmelCase_ )] _UpperCAmelCase : dict = score_fn(lowerCAmelCase_ , lowerCAmelCase_ ) scores.update(lowerCAmelCase_ ) if args.dump_args: scores.update(lowerCAmelCase_ ) if args.info: _UpperCAmelCase : Dict = args.info if verbose: print(lowerCAmelCase_ ) if args.score_path is not None: json.dump(lowerCAmelCase_ , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A_ : Union[str, Any] = """CompVis/stable-diffusion-v1-1""" A_ : Optional[Any] = """CompVis/stable-diffusion-v1-2""" A_ : Dict = """CompVis/stable-diffusion-v1-3""" A_ : Optional[Any] = """CompVis/stable-diffusion-v1-4""" class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ = True ,) -> Dict: super()._init_() _UpperCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(a_ ) _UpperCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(a_ ) _UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(a_ ) _UpperCAmelCase : List[str] = StableDiffusionPipeline( vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,unet=a_ ,scheduler=a_ ,safety_checker=a_ ,feature_extractor=a_ ,requires_safety_checker=a_ ,) self.register_modules(pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea ) @property def _snake_case ( self ) -> Dict[str, Any]: return {k: getattr(self ,a_ ) for k in self.config.keys() if not k.startswith("""_""" )} def _snake_case ( self ,a_ = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def _snake_case ( self ) -> Dict: self.enable_attention_slicing(a_ ) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 512 ,a_ = 512 ,a_ = 50 ,a_ = 7.5 ,a_ = None ,a_ = 1 ,a_ = 0.0 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,a_ = None ,a_ = 1 ,**a_ ,) -> int: return self.pipea( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 512 ,a_ = 512 ,a_ = 50 ,a_ = 7.5 ,a_ = None ,a_ = 1 ,a_ = 0.0 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,a_ = None ,a_ = 1 ,**a_ ,) -> Optional[int]: return self.pipea( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 512 ,a_ = 512 ,a_ = 50 ,a_ = 7.5 ,a_ = None ,a_ = 1 ,a_ = 0.0 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,a_ = None ,a_ = 1 ,**a_ ,) -> List[Any]: return self.pipea( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 512 ,a_ = 512 ,a_ = 50 ,a_ = 7.5 ,a_ = None ,a_ = 1 ,a_ = 0.0 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,a_ = None ,a_ = 1 ,**a_ ,) -> int: return self.pipea( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 512 ,a_ = 512 ,a_ = 50 ,a_ = 7.5 ,a_ = None ,a_ = 1 ,a_ = 0.0 ,a_ = None ,a_ = None ,a_ = "pil" ,a_ = True ,a_ = None ,a_ = 1 ,**a_ ,) -> List[str]: _UpperCAmelCase : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(a_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCAmelCase : Any = self.textaimg_sda_a( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCAmelCase : List[Any] = self.textaimg_sda_a( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCAmelCase : List[str] = self.textaimg_sda_a( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCAmelCase : Tuple = self.textaimg_sda_a( prompt=a_ ,height=a_ ,width=a_ ,num_inference_steps=a_ ,guidance_scale=a_ ,negative_prompt=a_ ,num_images_per_prompt=a_ ,eta=a_ ,generator=a_ ,latents=a_ ,output_type=a_ ,return_dict=a_ ,callback=a_ ,callback_steps=a_ ,**a_ ,) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if index == number_of_items: return 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : int = knapsack(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 ) if weights[index] <= max_weight: _UpperCAmelCase : str = values[index] + knapsack( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : Any = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' from __future__ import annotations class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase ,_UpperCAmelCase : Tuple = text, pattern _UpperCAmelCase ,_UpperCAmelCase : List[str] = len(a_ ), len(a_ ) def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self ) -> list[int]: # searches pattern in text and returns index positions _UpperCAmelCase : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCAmelCase : Optional[int] = self.mismatch_in_text(a_ ) if mismatch_index == -1: positions.append(a_ ) else: _UpperCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) _UpperCAmelCase : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ : List[Any] = """ABAABA""" A_ : Optional[int] = """AB""" A_ : str = BoyerMooreSearch(text, pattern) A_ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = abs(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = abs(lowerCAmelCase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' return sum(int(lowerCAmelCase_ ) for c in str(abs(lowerCAmelCase_ ) ) ) def snake_case_ ( )-> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _UpperCAmelCase : List[str] = F'''{func.__name__}({value})''' _UpperCAmelCase : str = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(lowerCAmelCase_ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[Any] = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BICUBIC ,a_ = True ,a_ = None ,a_ = True ,a_ = 1 / 255 ,a_ = True ,a_ = None ,a_ = None ,a_ = True ,**a_ ,) -> None: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase : str = get_size_dict(a_ ,default_to_square=a_ ) _UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : Any = get_size_dict(a_ ,default_to_square=a_ ,param_name="""crop_size""" ) _UpperCAmelCase : Union[str, Any] = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Dict = resample _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[Any] = crop_size _UpperCAmelCase : Tuple = do_rescale _UpperCAmelCase : Optional[Any] = rescale_factor _UpperCAmelCase : Optional[Any] = do_normalize _UpperCAmelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase : int = do_convert_rgb def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BICUBIC ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Optional[int] = get_size_dict(a_ ,default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCAmelCase : Tuple = get_resize_output_image_size(a_ ,size=size["""shortest_edge"""] ,default_to_square=a_ ) return resize(a_ ,size=a_ ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ ,size=(size["""height"""], size["""width"""]) ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> Union[str, Any]: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> PIL.Image.Image: _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Tuple = size if size is not None else self.size _UpperCAmelCase : List[str] = get_size_dict(a_ ,param_name="""size""" ,default_to_square=a_ ) _UpperCAmelCase : Tuple = resample if resample is not None else self.resample _UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : str = get_size_dict(a_ ,param_name="""crop_size""" ,default_to_square=a_ ) _UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : List[Any] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : Tuple = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : Tuple = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : Any = [self.resize(image=a_ ,size=a_ ,resample=a_ ) for image in images] if do_center_crop: _UpperCAmelCase : Tuple = [self.center_crop(image=a_ ,size=a_ ) for image in images] if do_rescale: _UpperCAmelCase : List[str] = [self.rescale(image=a_ ,scale=a_ ) for image in images] if do_normalize: _UpperCAmelCase : List[str] = [self.normalize(image=a_ ,mean=a_ ,std=a_ ) for image in images] _UpperCAmelCase : int = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : str = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ )
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> Union[str, Any]: super().__init__() _UpperCAmelCase : int = module _UpperCAmelCase : Union[str, Any] = nn.Sequential( nn.Linear(module.in_features ,a_ ,bias=a_ ) ,nn.Linear(a_ ,module.out_features ,bias=a_ ) ,) _UpperCAmelCase : int = (2.0 / (5 * min(module.in_features ,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight ,std=a_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _snake_case ( self ,a_ ,*a_ ,**a_ ) -> Optional[int]: return self.module(a_ ,*a_ ,**a_ ) + self.adapter(a_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = """bigscience/bloom-1b7""" # Constant values UpperCAmelCase = 2.109_6595_5269_2574 UpperCAmelCase = """Hello my name is""" UpperCAmelCase = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) UpperCAmelCase = 10 def _snake_case ( self ) -> int: # Models and tokenizer _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(self.model_name ) class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> List[str]: super().setUp() # Models and tokenizer _UpperCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name ,torch_dtype=torch.floataa ,device_map="""auto""" ) _UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) def _snake_case ( self ) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = self.model_abit.config self.assertTrue(hasattr(a_ ,"""quantization_config""" ) ) _UpperCAmelCase : int = config.to_dict() _UpperCAmelCase : Union[str, Any] = config.to_diff_dict() _UpperCAmelCase : Optional[int] = config.to_json_string() def _snake_case ( self ) -> Tuple: from bitsandbytes.nn import Paramsabit _UpperCAmelCase : Tuple = self.model_fpaa.get_memory_footprint() _UpperCAmelCase : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit ,self.EXPECTED_RELATIVE_DIFFERENCE ) _UpperCAmelCase : Dict = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _snake_case ( self ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a_ ,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _snake_case ( self ) -> Any: _UpperCAmelCase : str = self.tokenizer(self.input_text ,return_tensors="""pt""" ) _UpperCAmelCase : str = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=a_ ) ,self.EXPECTED_OUTPUTS ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = BitsAndBytesConfig() _UpperCAmelCase : int = True _UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=a_ ,device_map="""auto""" ) _UpperCAmelCase : Union[str, Any] = self.tokenizer(self.input_text ,return_tensors="""pt""" ) _UpperCAmelCase : str = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=a_ ) ,self.EXPECTED_OUTPUTS ) def _snake_case ( self ) -> Optional[Any]: with self.assertRaises(a_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = BitsAndBytesConfig() with self.assertRaises(a_ ): _UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=a_ ,load_in_abit=a_ ,device_map="""auto""" ,bnb_abit_quant_type="""nf4""" ,) def _snake_case ( self ) -> List[Any]: with self.assertRaises(a_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(a_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _UpperCAmelCase : Any = self.tokenizer(self.input_text ,return_tensors="""pt""" ) _UpperCAmelCase : int = self.model_fpaa.to(torch.floataa ) _UpperCAmelCase : int = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) ,max_new_tokens=10 ) # Check this does not throw an error _UpperCAmelCase : Union[str, Any] = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error _UpperCAmelCase : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error _UpperCAmelCase : List[str] = self.model_fpaa.float() def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" ,load_in_abit=a_ ,device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ) -> Tuple: _UpperCAmelCase : int = """t5-small""" _UpperCAmelCase : int = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(cls.model_name ) _UpperCAmelCase : int = """Translate in German: Hello, my dog is cute""" def _snake_case ( self ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[Any]: from transformers import TaForConditionalGeneration _UpperCAmelCase : int = TaForConditionalGeneration._keep_in_fpaa_modules _UpperCAmelCase : Dict = None # test with `t5-small` _UpperCAmelCase : str = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) _UpperCAmelCase : List[str] = self.tokenizer(self.input_text ,return_tensors="""pt""" ).to(0 ) _UpperCAmelCase : Dict = model.generate(**a_ ) # test with `flan-t5-small` _UpperCAmelCase : Optional[int] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=a_ ,device_map="""auto""" ) _UpperCAmelCase : List[str] = self.tokenizer(self.input_text ,return_tensors="""pt""" ).to(0 ) _UpperCAmelCase : List[str] = model.generate(**a_ ) _UpperCAmelCase : List[str] = modules def _snake_case ( self ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _UpperCAmelCase : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q ,bnb.nn.Linearabit ) ) _UpperCAmelCase : Tuple = self.tokenizer(self.input_text ,return_tensors="""pt""" ).to(0 ) _UpperCAmelCase : Tuple = model.generate(**a_ ) # test with `flan-t5-small` _UpperCAmelCase : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=a_ ,device_map="""auto""" ) _UpperCAmelCase : List[str] = self.tokenizer(self.input_text ,return_tensors="""pt""" ).to(0 ) _UpperCAmelCase : str = model.generate(**a_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Any: super().setUp() # model_name _UpperCAmelCase : List[Any] = """bigscience/bloom-560m""" _UpperCAmelCase : int = """t5-small""" # Different types of model _UpperCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) # Sequence classification model _UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) # CausalLM model _UpperCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=a_ ,device_map="""auto""" ) # Seq2seq model _UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name ,load_in_abit=a_ ,device_map="""auto""" ) def _snake_case ( self ) -> List[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> List[str]: super().setUp() def _snake_case ( self ) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> int: _UpperCAmelCase : Any = pipeline( """text-generation""" ,model=self.model_name ,model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} ,max_new_tokens=self.MAX_NEW_TOKENS ,) # Real second forward pass _UpperCAmelCase : Optional[int] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] ,self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Tuple: super().setUp() def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name ,load_in_abit=a_ ,device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) ,{0, 1} ) # Check that inference pass works on the model _UpperCAmelCase : Dict = self.tokenizer(self.input_text ,return_tensors="""pt""" ) # Second real batch _UpperCAmelCase : Union[str, Any] = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] ,skip_special_tokens=a_ ) ,self.EXPECTED_OUTPUTS ) class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Any = """facebook/opt-350m""" super().setUp() def _snake_case ( self ) -> int: if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters _UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=a_ ) self.assertEqual(set(model.hf_device_map.values() ) ,{torch.cuda.current_device()} ) for param in model.parameters(): _UpperCAmelCase : Dict = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _UpperCAmelCase : str = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a_ ) ): _UpperCAmelCase : List[str] = LoRALayer(module.q_proj ,rank=16 ) _UpperCAmelCase : Dict = LoRALayer(module.k_proj ,rank=16 ) _UpperCAmelCase : Optional[Any] = LoRALayer(module.v_proj ,rank=16 ) # Step 3: dummy batch _UpperCAmelCase : str = self.tokenizer("""Test batch """ ,return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _UpperCAmelCase : str = model.forward(**a_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(a_ ,a_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(a_ ,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """gpt2-xl""" UpperCAmelCase = 3.3191_8548_5415_2187
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ = True ,a_ = False ) -> List[str]: _UpperCAmelCase : Optional[int] = scheduler _UpperCAmelCase : Dict = optimizers if isinstance(a_ ,(list, tuple) ) else [optimizers] _UpperCAmelCase : Tuple = split_batches _UpperCAmelCase : List[Any] = step_with_optimizer _UpperCAmelCase : Dict = GradientState() def _snake_case ( self ,*a_ ,**a_ ) -> str: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a_ ,**a_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a_ ,**a_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _UpperCAmelCase : List[str] = AcceleratorState().num_processes for _ in range(a_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler ,"""total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a_ ,**a_ ) else: self.scheduler.step(*a_ ,**a_ ) def _snake_case ( self ) -> str: return self.scheduler.get_last_lr() def _snake_case ( self ) -> Dict: return self.scheduler.state_dict() def _snake_case ( self ,a_ ) -> Union[str, Any]: self.scheduler.load_state_dict(a_ ) def _snake_case ( self ) -> Tuple: return self.scheduler.get_lr() def _snake_case ( self ,*a_ ,**a_ ) -> List[str]: return self.scheduler.print_lr(*a_ ,**a_ )
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[Any] = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """cvt""" def __init__( self ,a_=3 ,a_=[7, 3, 3] ,a_=[4, 2, 2] ,a_=[2, 1, 1] ,a_=[64, 192, 384] ,a_=[1, 3, 6] ,a_=[1, 2, 10] ,a_=[4.0, 4.0, 4.0] ,a_=[0.0, 0.0, 0.0] ,a_=[0.0, 0.0, 0.0] ,a_=[0.0, 0.0, 0.1] ,a_=[True, True, True] ,a_=[False, False, True] ,a_=["dw_bn", "dw_bn", "dw_bn"] ,a_=[3, 3, 3] ,a_=[1, 1, 1] ,a_=[2, 2, 2] ,a_=[1, 1, 1] ,a_=[1, 1, 1] ,a_=0.02 ,a_=1E-1_2 ,**a_ ,) -> Dict: super().__init__(**a_ ) _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Union[str, Any] = patch_sizes _UpperCAmelCase : Any = patch_stride _UpperCAmelCase : Union[str, Any] = patch_padding _UpperCAmelCase : Optional[Any] = embed_dim _UpperCAmelCase : int = num_heads _UpperCAmelCase : int = depth _UpperCAmelCase : str = mlp_ratio _UpperCAmelCase : str = attention_drop_rate _UpperCAmelCase : Optional[int] = drop_rate _UpperCAmelCase : Optional[Any] = drop_path_rate _UpperCAmelCase : int = qkv_bias _UpperCAmelCase : int = cls_token _UpperCAmelCase : Optional[Any] = qkv_projection_method _UpperCAmelCase : Tuple = kernel_qkv _UpperCAmelCase : Optional[Any] = padding_kv _UpperCAmelCase : int = stride_kv _UpperCAmelCase : int = padding_q _UpperCAmelCase : Union[str, Any] = stride_q _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : str = layer_norm_eps
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin A_ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") A_ : Any = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") A_ : Dict = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = CamembertTokenizer UpperCAmelCase = CamembertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : str = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = """<pad>""" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""<mask>""" ) self.assertEqual(len(a_ ) ,1_004 ) def _snake_case ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size ,1_005 ) def _snake_case ( self ) -> int: _UpperCAmelCase : Union[str, Any] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : List[Any] = tokenizer.encode(a_ ) _UpperCAmelCase : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : Optional[int] = tokenizer.encode(a_ ,add_special_tokens=a_ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(a_ ) _UpperCAmelCase : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : Optional[int] = tokenizer.tokenize(a_ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : Any = tokenizer.encode(a_ ,add_special_tokens=a_ ) _UpperCAmelCase : int = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = tokenizer.encode(a_ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) @slow def _snake_case ( self ) -> Any: # fmt: off _UpperCAmelCase : List[str] = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCAmelCase : List[str] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name="""camembert-base""" ,revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" ,sequences=a_ ,)
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' from math import factorial, pi def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 30 )-> float: '''simple docstring''' if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) _UpperCAmelCase : List[Any] = float(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 30 )-> float: '''simple docstring''' if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) _UpperCAmelCase : Union[str, Any] = float(lowerCAmelCase_ ) _UpperCAmelCase : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_MASKED_LM_MAPPING def _snake_case ( self ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""tf""" ) _UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser"""}, ] ,) _UpperCAmelCase : List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser""", }, ] ,) _UpperCAmelCase : Optional[Any] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-0_5, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""pt""" ) _UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Tuple = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ {"""sequence""": """My name is Patrick""", """score""": 2.1E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-0_5, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, ] ,) _UpperCAmelCase : List[Any] = unmasker("""My name is <mask> <mask>""" ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=6 ) ,[ [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] ,) @require_torch_gpu def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[str] = pipeline("""fill-mask""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,device=0 ,framework="""pt""" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase : List[str] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a_ ,a_ ) @slow @require_torch def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Any = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""pt""" ) self.run_large_test(a_ ) @slow @require_tf def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""tf""" ) self.run_large_test(a_ ) def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : Tuple = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(a_ ) ,[ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] ,) _UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(a_ ) ,[ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] ,) _UpperCAmelCase : Any = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(a_ ) ,[ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""pt""" ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = None self.run_pipeline_test(a_ ,[] ) @require_tf def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""tf""" ) _UpperCAmelCase : str = None _UpperCAmelCase : Tuple = None self.run_pipeline_test(a_ ,[] ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _UpperCAmelCase : str = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Optional[int] = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : int = fill_masker.tokenizer _UpperCAmelCase : List[str] = fill_masker.model _UpperCAmelCase : Optional[Any] = fill_masker( f'''This is a {tokenizer.mask_token}''' ,) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Optional[Any] = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( a_ ,[ [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], ] ,) with self.assertRaises(a_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a_ ): fill_masker("""This is""" ) self.run_test_top_k(a_ ,a_ ) self.run_test_targets(a_ ,a_ ) self.run_test_top_k_targets(a_ ,a_ ) self.fill_mask_with_duplicate_targets_and_top_k(a_ ,a_ ) self.fill_mask_with_multiple_masks(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Optional[int] = tokenizer.get_vocab() _UpperCAmelCase : Tuple = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase : Optional[Any] = FillMaskPipeline(model=a_ ,tokenizer=a_ ,targets=a_ ) _UpperCAmelCase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Union[str, Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,a_ ) _UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(a_ ) ) # Call argument _UpperCAmelCase : int = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,a_ ) _UpperCAmelCase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(a_ ) ) # Score equivalence _UpperCAmelCase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) _UpperCAmelCase : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _UpperCAmelCase : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a_ ) == set(a_ ): _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=a_ ) _UpperCAmelCase : Tuple = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) # Raises with invalid with self.assertRaises(a_ ): _UpperCAmelCase : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a_ ): _UpperCAmelCase : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[""""""] ) with self.assertRaises(a_ ): _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets="""""" ) def _snake_case ( self ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : Tuple = FillMaskPipeline(model=a_ ,tokenizer=a_ ,top_k=2 ) _UpperCAmelCase : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) _UpperCAmelCase : Tuple = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( a_ ,[ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ] ,) self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int: _UpperCAmelCase : str = tokenizer.get_vocab() _UpperCAmelCase : Tuple = FillMaskPipeline(model=a_ ,tokenizer=a_ ) # top_k=2, ntargets=3 _UpperCAmelCase : Any = sorted(vocab.keys() )[:3] _UpperCAmelCase : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ,targets=a_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase : Optional[int] = [el["""token_str"""] for el in sorted(a_ ,key=lambda a_ : x["score"] ,reverse=a_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a_ ).issubset(a_ ): _UpperCAmelCase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=3 ,targets=a_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a_ ) ,nested_simplify(a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : Tuple = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Any = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase : List[Any] = sorted(vocab.keys() )[:3] _UpperCAmelCase : List[str] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase : Union[str, Any] = fill_masker(f'''My name is {tokenizer.mask_token}''' ,targets=a_ ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a_ ) ,3 ) def _snake_case ( self ,a_ ,a_ ) -> str: _UpperCAmelCase : int = FillMaskPipeline(model=a_ ,tokenizer=a_ ) _UpperCAmelCase : Union[str, Any] = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( a_ ,[ [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], [ {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, {"""sequence""": ANY(a_ ), """score""": ANY(a_ ), """token""": ANY(a_ ), """token_str""": ANY(a_ )}, ], ] ,)
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from torch import nn def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[Any] = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """ibert""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=1 ,a_=0 ,a_=2 ,a_="absolute" ,a_=False ,a_="none" ,**a_ ,) -> List[str]: super().__init__(pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ) _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : Optional[Any] = quant_mode _UpperCAmelCase : Tuple = force_dequant class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def snake_case_ ( )-> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return model @property def _snake_case ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase : str = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,cross_attention_dim=10 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") ,up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") ,) _UpperCAmelCase : Tuple = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return vqvae, unet @slow def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : List[Any] = AudioDiffusionPipeline(vqvae=a_ ,unet=self.dummy_unet ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Dict = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Optional[int] = pipe(generator=a_ ,steps=4 ) _UpperCAmelCase : Any = output.audios[0] _UpperCAmelCase : Optional[int] = output.images[0] _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Dict = pipe(generator=a_ ,steps=4 ,return_dict=a_ ) _UpperCAmelCase : List[str] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCAmelCase : str = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[Any] = np.frombuffer(image_from_tuple.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) _UpperCAmelCase : Any = DDIMScheduler() _UpperCAmelCase : Any = self.dummy_vqvae_and_unet _UpperCAmelCase : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCAmelCase : Optional[Any] = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : int = pipe(raw_audio=a_ ,generator=a_ ,start_step=5 ,steps=10 ) _UpperCAmelCase : List[Any] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCAmelCase : Optional[int] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Tuple = self.dummy_unet_condition _UpperCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=a_ ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = torch.rand((1, 1, 10) ) _UpperCAmelCase : Optional[Any] = pipe(generator=a_ ,encoding=a_ ) _UpperCAmelCase : Dict = output.images[0] _UpperCAmelCase : List[str] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = torch_device _UpperCAmelCase : List[Any] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _UpperCAmelCase : Union[str, Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Any = pipe(generator=a_ ) _UpperCAmelCase : str = output.audios[0] _UpperCAmelCase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCAmelCase : int = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> Optional[int]: super().__init__() self.register_modules(unet=a_ ,scheduler=a_ ) @torch.no_grad() def __call__( self ,a_ = 1 ,a_ = 100 ,a_ = None ,a_ = None ,a_ = True ,) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: _UpperCAmelCase : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCAmelCase : Tuple = audio_length_in_s * self.unet.config.sample_rate _UpperCAmelCase : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) _UpperCAmelCase : Optional[Any] = int(a_ ) if sample_size % down_scale_factor != 0: _UpperCAmelCase : Any = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) _UpperCAmelCase : int = int(a_ ) _UpperCAmelCase : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype _UpperCAmelCase : str = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(a_ ,a_ ) and len(a_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(a_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _UpperCAmelCase : str = randn_tensor(a_ ,generator=a_ ,device=self.device ,dtype=a_ ) # set step values self.scheduler.set_timesteps(a_ ,device=audio.device ) _UpperCAmelCase : Any = self.scheduler.timesteps.to(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Optional[int] = self.unet(a_ ,a_ ).sample # 2. compute previous image: x_t -> t_t-1 _UpperCAmelCase : Union[str, Any] = self.scheduler.step(a_ ,a_ ,a_ ).prev_sample _UpperCAmelCase : Dict = audio.clamp(-1 ,1 ).float().cpu().numpy() _UpperCAmelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=a_ )
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' import string def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): _UpperCAmelCase : Optional[int] = """""" for symbol in message: if symbol in string.ascii_uppercase: _UpperCAmelCase : List[Any] = string.ascii_uppercase.find(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = num - key if num < 0: _UpperCAmelCase : List[Any] = num + len(string.ascii_uppercase ) _UpperCAmelCase : int = translated + string.ascii_uppercase[num] else: _UpperCAmelCase : Union[str, Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Dict = input("""Encrypted message: """ ) _UpperCAmelCase : Tuple = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Any = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' from __future__ import annotations A_ : Optional[int] = list[list[int]] # assigning initial values to the grid A_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case_ ( lowerCAmelCase_ )-> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case_ ( lowerCAmelCase_ )-> Matrix | None: '''simple docstring''' if location := find_empty_location(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase : str = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = digit if sudoku(lowerCAmelCase_ ) is not None: return grid _UpperCAmelCase : List[str] = 0 return None def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' for row in grid: for cell in row: print(lowerCAmelCase_ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") A_ : Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """summarization""" UpperCAmelCase = ["""loss"""] UpperCAmelCase = ROUGE_KEYS UpperCAmelCase = """rouge2""" def __init__( self ,a_ ,**a_ ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCAmelCase : List[str] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(a_ ,num_labels=a_ ,mode=self.mode ,**a_ ) use_task_specific_params(self.model ,"""summarization""" ) save_git_info(self.hparams.output_dir ) _UpperCAmelCase : List[Any] = Path(self.output_dir ) / """metrics.json""" _UpperCAmelCase : str = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams ,self.hparams_save_path ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[str] = defaultdict(a_ ) _UpperCAmelCase : Optional[int] = self.config.model_type _UpperCAmelCase : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _UpperCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCAmelCase : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _UpperCAmelCase : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCAmelCase : List[str] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCAmelCase : Optional[Any] = get_git_info()["""repo_sha"""] _UpperCAmelCase : Any = hparams.num_workers _UpperCAmelCase : Dict = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,a_ ): _UpperCAmelCase : Union[str, Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCAmelCase : Optional[int] = self.decoder_start_token_id _UpperCAmelCase : List[str] = ( SeqaSeqDataset if hasattr(self.tokenizer ,"""prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCAmelCase : Optional[int] = self.hparams.eval_max_gen_length else: _UpperCAmelCase : List[Any] = self.model.config.max_length _UpperCAmelCase : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _snake_case ( self ,a_ ) -> Dict[str, List[str]]: _UpperCAmelCase : List[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(a_ ,Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / """tok_batch.json""" ) _UpperCAmelCase : Union[str, Any] = True return readable_batch def _snake_case ( self ,a_ ,**a_ ) -> Dict: return self.model(a_ ,**a_ ) def _snake_case ( self ,a_ ) -> Optional[Any]: _UpperCAmelCase : Tuple = self.tokenizer.batch_decode( a_ ,skip_special_tokens=a_ ,clean_up_tokenization_spaces=a_ ) return lmap(str.strip ,a_ ) def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : str = self.tokenizer.pad_token_id _UpperCAmelCase ,_UpperCAmelCase : List[Any] = batch["""input_ids"""], batch["""attention_mask"""] _UpperCAmelCase : int = batch["""labels"""] if isinstance(self.model ,a_ ): _UpperCAmelCase : Optional[int] = self.model._shift_right(a_ ) else: _UpperCAmelCase : Optional[Any] = shift_tokens_right(a_ ,a_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCAmelCase : Any = decoder_input_ids self.save_readable_batch(a_ ) _UpperCAmelCase : str = self(a_ ,attention_mask=a_ ,decoder_input_ids=a_ ,use_cache=a_ ) _UpperCAmelCase : Union[str, Any] = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCAmelCase : Tuple = nn.CrossEntropyLoss(ignore_index=a_ ) assert lm_logits.shape[-1] == self.vocab_size _UpperCAmelCase : List[Any] = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: _UpperCAmelCase : Dict = nn.functional.log_softmax(a_ ,dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = label_smoothed_nll_loss( a_ ,a_ ,self.hparams.label_smoothing ,ignore_index=a_ ) return (loss,) @property def _snake_case ( self ) -> int: return self.tokenizer.pad_token_id def _snake_case ( self ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = self._step(a_ ) _UpperCAmelCase : List[str] = dict(zip(self.loss_names ,a_ ) ) # tokens per batch _UpperCAmelCase : List[Any] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _UpperCAmelCase : List[str] = batch["""input_ids"""].shape[0] _UpperCAmelCase : str = batch["""input_ids"""].eq(self.pad ).sum() _UpperCAmelCase : List[Any] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _snake_case ( self ,a_ ,a_ ) -> Dict: return self._generative_step(a_ ) def _snake_case ( self ,a_ ,a_="val" ) -> Dict: self.step_count += 1 _UpperCAmelCase : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCAmelCase : Any = losses["""loss"""] _UpperCAmelCase : List[str] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _UpperCAmelCase : Dict = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCAmelCase : torch.FloatTensor = torch.tensor(a_ ).type_as(a_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(a_ ) _UpperCAmelCase : str = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCAmelCase : Any = self.step_count self.metrics[prefix].append(a_ ) # callback writes this to self.metrics_save_path _UpperCAmelCase : Union[str, Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def _snake_case ( self ,a_ ,a_ ) -> Dict: return calculate_rouge(a_ ,a_ ) def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase : Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCAmelCase : Optional[Any] = self.model.generate( batch["""input_ids"""] ,attention_mask=batch["""attention_mask"""] ,use_cache=a_ ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) _UpperCAmelCase : Any = (time.time() - ta) / batch["""input_ids"""].shape[0] _UpperCAmelCase : List[str] = self.ids_to_clean_text(a_ ) _UpperCAmelCase : List[str] = self.ids_to_clean_text(batch["""labels"""] ) _UpperCAmelCase : int = self._step(a_ ) _UpperCAmelCase : str = dict(zip(self.loss_names ,a_ ) ) _UpperCAmelCase : Dict = self.calc_generative_metrics(a_ ,a_ ) _UpperCAmelCase : int = np.mean(lmap(a_ ,a_ ) ) base_metrics.update(gen_time=a_ ,gen_len=a_ ,preds=a_ ,target=a_ ,**a_ ) return base_metrics def _snake_case ( self ,a_ ,a_ ) -> List[str]: return self._generative_step(a_ ) def _snake_case ( self ,a_ ) -> str: return self.validation_epoch_end(a_ ,prefix="""test""" ) def _snake_case ( self ,a_ ) -> SeqaSeqDataset: _UpperCAmelCase : int = self.n_obs[type_path] _UpperCAmelCase : Dict = self.target_lens[type_path] _UpperCAmelCase : List[str] = self.dataset_class( self.tokenizer ,type_path=a_ ,n_obs=a_ ,max_target_length=a_ ,**self.dataset_kwargs ,) return dataset def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : int = self.get_dataset(a_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCAmelCase : Any = dataset.make_sortish_sampler(a_ ,distributed=self.hparams.gpus > 1 ) return DataLoader( a_ ,batch_size=a_ ,collate_fn=dataset.collate_fn ,shuffle=a_ ,num_workers=self.num_workers ,sampler=a_ ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCAmelCase : List[str] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( a_ ,batch_sampler=a_ ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( a_ ,batch_size=a_ ,collate_fn=dataset.collate_fn ,shuffle=a_ ,num_workers=self.num_workers ,sampler=a_ ,) def _snake_case ( self ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = self.get_dataloader("""train""" ,batch_size=self.hparams.train_batch_size ,shuffle=a_ ) return dataloader def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""val""" ,batch_size=self.hparams.eval_batch_size ) def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""test""" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def _snake_case ( a_ ,a_ ) -> Optional[Any]: BaseTransformer.add_model_specific_args(a_ ,a_ ) add_generic_args(a_ ,a_ ) parser.add_argument( """--max_source_length""" ,default=1_024 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--max_target_length""" ,default=56 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--val_max_target_length""" ,default=142 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--test_max_target_length""" ,default=142 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument("""--freeze_encoder""" ,action="""store_true""" ) parser.add_argument("""--freeze_embeds""" ,action="""store_true""" ) parser.add_argument("""--sortish_sampler""" ,action="""store_true""" ,default=a_ ) parser.add_argument("""--overwrite_output_dir""" ,action="""store_true""" ,default=a_ ) parser.add_argument("""--max_tokens_per_batch""" ,type=a_ ,default=a_ ) parser.add_argument("""--logger_name""" ,type=a_ ,choices=["""default""", """wandb""", """wandb_shared"""] ,default="""default""" ) parser.add_argument("""--n_train""" ,type=a_ ,default=-1 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" ,type=a_ ,default=500 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" ,type=a_ ,default=-1 ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" ,type=a_ ,default="""summarization""" ,required=a_ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" ,type=a_ ,default=0.0 ,required=a_ ) parser.add_argument("""--src_lang""" ,type=a_ ,default="""""" ,required=a_ ) parser.add_argument("""--tgt_lang""" ,type=a_ ,default="""""" ,required=a_ ) parser.add_argument("""--eval_beams""" ,type=a_ ,default=a_ ,required=a_ ) parser.add_argument( """--val_metric""" ,type=a_ ,default=a_ ,required=a_ ,choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" ,type=a_ ,default=a_ ,help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" ,type=a_ ,default=1 ,required=a_ ,help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" ,type=a_ ,default=-1 ,required=a_ ,help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) ,) return parser class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """translation""" UpperCAmelCase = ["""loss"""] UpperCAmelCase = ["""bleu"""] UpperCAmelCase = """bleu""" def __init__( self ,a_ ,**a_ ) -> List[str]: super().__init__(a_ ,**a_ ) _UpperCAmelCase : Any = hparams.src_lang _UpperCAmelCase : Any = hparams.tgt_lang def _snake_case ( self ,a_ ,a_ ) -> dict: return calculate_bleu(a_ ,a_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None )-> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase_ ) check_output_dir(lowerCAmelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCAmelCase : SummarizationModule = SummarizationModule(lowerCAmelCase_ ) else: _UpperCAmelCase : SummarizationModule = TranslationModule(lowerCAmelCase_ ) _UpperCAmelCase : Any = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _UpperCAmelCase : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : Tuple = os.environ.get("""WANDB_PROJECT""" , lowerCAmelCase_ ) _UpperCAmelCase : Tuple = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase : Optional[Any] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCAmelCase : int = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCAmelCase : Dict = False _UpperCAmelCase : int = args.val_metric == """loss""" _UpperCAmelCase : pl.Trainer = generic_train( lowerCAmelCase_ , lowerCAmelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase_ ) , early_stopping_callback=lowerCAmelCase_ , logger=lowerCAmelCase_ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _UpperCAmelCase : int = """""" _UpperCAmelCase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) if checkpoints: _UpperCAmelCase : List[str] = checkpoints[-1] _UpperCAmelCase : Optional[int] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() A_ : str = pl.Trainer.add_argparse_args(parser) A_ : Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A_ : Union[str, Any] = parser.parse_args() main(args)
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' A_ : str = tuple[float, float, float] A_ : Any = tuple[float, float, float] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Vectorad: '''simple docstring''' _UpperCAmelCase : Optional[Any] = end_pointa[0] - end_pointa[0] _UpperCAmelCase : Any = end_pointa[1] - end_pointa[1] _UpperCAmelCase : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Vectorad: '''simple docstring''' _UpperCAmelCase : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i _UpperCAmelCase : Tuple = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _UpperCAmelCase : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> bool: '''simple docstring''' return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 )-> bool: '''simple docstring''' _UpperCAmelCase : List[str] = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ : List[Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowercase : """simple docstring""" UpperCAmelCase = PegasusConfig UpperCAmelCase = {} UpperCAmelCase = """gelu""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=False ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_=0.1 ,a_=0.1 ,a_=20 ,a_=2 ,a_=1 ,a_=0 ,) -> Optional[Any]: _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = eos_token_id _UpperCAmelCase : Any = pad_token_id _UpperCAmelCase : Tuple = bos_token_id def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) _UpperCAmelCase : Optional[int] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCAmelCase : int = np.concatenate([input_ids, eos_tensor] ,axis=1 ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) _UpperCAmelCase : Dict = prepare_pegasus_inputs_dict(a_ ,a_ ,a_ ) return config, inputs_dict def _snake_case ( self ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : int = 20 _UpperCAmelCase : List[str] = model_class_name(a_ ) _UpperCAmelCase : str = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] ,a_ ,a_ ) _UpperCAmelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) _UpperCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _UpperCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] ,a_ ,decoder_attention_mask=a_ ,past_key_values=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : int = model.decode( decoder_input_ids[:, -1:] ,a_ ,decoder_attention_mask=a_ ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=a_ ,) _UpperCAmelCase : Tuple = model.decode(a_ ,a_ ) _UpperCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = 20 _UpperCAmelCase : Dict = model_class_name(a_ ) _UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) _UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] ,a_ ,a_ ) _UpperCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) _UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,a_ ,decoder_attention_mask=a_ ,past_key_values=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] ,a_ ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=a_ ,decoder_position_ids=a_ ,) _UpperCAmelCase : List[Any] = model.decode(a_ ,a_ ,decoder_attention_mask=a_ ) _UpperCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , )-> str: '''simple docstring''' if attention_mask is None: _UpperCAmelCase : Optional[int] = np.not_equal(lowerCAmelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCAmelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = FlaxPegasusModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self ,config_class=a_ ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase ,_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_ ,a_ ,a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase ,_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_ ,a_ ,a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Any = self._prepare_for_class(a_ ,a_ ) _UpperCAmelCase : Union[str, Any] = model_class(a_ ) @jax.jit def encode_jitted(a_ ,a_=None ,**a_ ): return model.encode(input_ids=a_ ,attention_mask=a_ ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase : Tuple = encode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase : List[Any] = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ) for jitted_output, output in zip(a_ ,a_ ): self.assertEqual(jitted_output.shape ,output.shape ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase ,_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Tuple = model_class(a_ ) _UpperCAmelCase : Any = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) _UpperCAmelCase : List[str] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a_ ,a_ ,a_ ): return model.decode( decoder_input_ids=a_ ,decoder_attention_mask=a_ ,encoder_outputs=a_ ,) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase : Dict = decode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase : Tuple = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ) for jitted_output, output in zip(a_ ,a_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=a_ ) _UpperCAmelCase : Dict = np.ones((1, 1) ) _UpperCAmelCase : int = model(a_ ) self.assertIsNotNone(a_ ) @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase : int = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase : Tuple = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase : Dict = tokenizer(a_ ,return_tensors="""np""" ,truncation=a_ ,max_length=512 ,padding=a_ ) _UpperCAmelCase : List[Any] = model.generate(**a_ ,num_beams=2 ).sequences _UpperCAmelCase : Optional[int] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) assert tgt_text == decoded
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A_ : str = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase : """simple docstring""" def __init__( self ,a_ ) -> str: _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Union[str, Any] = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def _snake_case ( a_ ,a_ ) -> Dict: return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _UpperCAmelCase : Tuple = self.data + padding + struct.pack(""">Q""" ,8 * len(self.data ) ) return padded_data def _snake_case ( self ) -> str: return [ self.padded_data[i : i + 64] for i in range(0 ,len(self.padded_data ) ,64 ) ] def _snake_case ( self ,a_ ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = list(struct.unpack(""">16L""" ,a_ ) ) + [0] * 64 for i in range(16 ,80 ): _UpperCAmelCase : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) ,1 ) return w def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = self.padding() _UpperCAmelCase : Optional[Any] = self.split_blocks() for block in self.blocks: _UpperCAmelCase : Tuple = self.expand_block(a_ ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.h for i in range(0 ,80 ): if 0 <= i < 20: _UpperCAmelCase : List[str] = (b & c) | ((~b) & d) _UpperCAmelCase : Optional[int] = 0X5A_827_999 elif 20 <= i < 40: _UpperCAmelCase : Optional[int] = b ^ c ^ d _UpperCAmelCase : Optional[Any] = 0X6E_D9E_BA1 elif 40 <= i < 60: _UpperCAmelCase : List[str] = (b & c) | (b & d) | (c & d) _UpperCAmelCase : int = 0X8F_1BB_CDC elif 60 <= i < 80: _UpperCAmelCase : Union[str, Any] = b ^ c ^ d _UpperCAmelCase : Optional[int] = 0XCA_62C_1D6 _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = ( self.rotate(a_ ,5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(a_ ,30 ), c, d, ) _UpperCAmelCase : Union[str, Any] = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : Dict = B"""Test String""" assert SHAaHash(lowerCAmelCase_ ).final_hash() == hashlib.shaa(lowerCAmelCase_ ).hexdigest() # noqa: S324 def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Dict = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _UpperCAmelCase : Optional[int] = f.read() else: _UpperCAmelCase : str = bytes(lowerCAmelCase_ , """utf-8""" ) print(SHAaHash(lowerCAmelCase_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = FileLock(str(tmpdir / """foo.lock""" ) ) _UpperCAmelCase : List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) _UpperCAmelCase : Dict = 0.0_1 with locka.acquire(): with pytest.raises(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = time.time() locka.acquire(lowerCAmelCase_ ) assert time.time() - _start > timeout def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = """a""" * 1000 + """.lock""" _UpperCAmelCase : Dict = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _UpperCAmelCase : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase_ ): locka.acquire(0 )
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 3 )-> list: '''simple docstring''' _UpperCAmelCase : Tuple = min(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 3 )-> list: '''simple docstring''' _UpperCAmelCase : str = mean(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") A_ : int = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self ) -> Optional[int]: if self.train_file is not None: _UpperCAmelCase : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None def __call__( self ,a_ ) -> str: _UpperCAmelCase : List[Any] = """label""" if """label""" in features[0].keys() else """labels""" _UpperCAmelCase : Optional[int] = [feature.pop(a_ ) for feature in features] _UpperCAmelCase : Union[str, Any] = len(a_ ) _UpperCAmelCase : Optional[Any] = len(features[0]["""input_ids"""] ) _UpperCAmelCase : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(a_ )] for feature in features ] _UpperCAmelCase : Optional[Any] = list(chain(*a_ ) ) _UpperCAmelCase : List[Any] = self.tokenizer.pad( a_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) # Un-flatten _UpperCAmelCase : List[Any] = {k: v.view(a_ ,a_ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : Any = torch.tensor(a_ ,dtype=torch.intaa ) return batch def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : str = {} if data_args.train_file is not None: _UpperCAmelCase : List[Any] = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Dict = data_args.validation_file _UpperCAmelCase : List[str] = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : Dict = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Any = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : str = [F'''ending{i}''' for i in range(4 )] _UpperCAmelCase : List[Any] = """sent1""" _UpperCAmelCase : Tuple = """sent2""" if data_args.max_seq_length is None: _UpperCAmelCase : Optional[int] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) _UpperCAmelCase : Tuple = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _UpperCAmelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): _UpperCAmelCase : int = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : str = examples[question_header_name] _UpperCAmelCase : Optional[int] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out _UpperCAmelCase : List[Any] = list(chain(*lowerCAmelCase_ ) ) _UpperCAmelCase : Union[str, Any] = list(chain(*lowerCAmelCase_ ) ) # Tokenize _UpperCAmelCase : int = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : Union[str, Any] = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) _UpperCAmelCase : Optional[int] = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _UpperCAmelCase : Dict = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : List[Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : Dict = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) _UpperCAmelCase : Tuple = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase : str = eval_predictions _UpperCAmelCase : Optional[int] = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : str = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Dict = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : Dict = train_result.metrics _UpperCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = len(lowerCAmelCase_ ), len(grid[0] ) if ( min(lowerCAmelCase_ , lowerCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCAmelCase : Tuple = 0 count += depth_first_search(lowerCAmelCase_ , row + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , row - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col + 1 , lowerCAmelCase_ ) count += depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , col - 1 , lowerCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: _UpperCAmelCase : str = ( """Wrong input data's dimensions... """ F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCAmelCase : int = ( """Wrong input data's shape... """ F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: _UpperCAmelCase : List[Any] = ( """Input data have different datatype... """ F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowerCAmelCase_ ) _UpperCAmelCase : Any = [] for value in value_array: _UpperCAmelCase : Union[str, Any] = euclidean(lowerCAmelCase_ , dataset[0] ) _UpperCAmelCase : str = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCAmelCase : Union[str, Any] = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: _UpperCAmelCase : Union[str, Any] = temp_dist _UpperCAmelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A_ : Dict = logging.getLogger(__name__) @dataclass(frozen=_lowerCamelCase ) class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None @dataclass(frozen=_lowerCamelCase ) class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 def __init__( self ,a_ ,a_ ,a_ ,a_ = None ,a_=False ,a_ = False ,) -> Dict: _UpperCAmelCase : Any = hans_processors[task]() _UpperCAmelCase : Union[str, Any] = os.path.join( a_ ,"""cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" ,tokenizer.__class__.__name__ ,str(a_ ) ,a_ ,) ,) _UpperCAmelCase : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase ,_UpperCAmelCase : Any = label_list[2], label_list[1] _UpperCAmelCase : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : Optional[int] = cached_features_file + """.lock""" with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _UpperCAmelCase : Tuple = torch.load(a_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _UpperCAmelCase : Tuple = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info("""Training examples: %s""" ,len(a_ ) ) _UpperCAmelCase : List[str] = hans_convert_examples_to_features(a_ ,a_ ,a_ ,a_ ) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(self.features ,a_ ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self ,a_ ) -> InputFeatures: return self.features[i] def _snake_case ( self ) -> List[str]: return self.label_list if is_tf_available(): import tensorflow as tf class lowercase : """simple docstring""" UpperCAmelCase = 42 def __init__( self ,a_ ,a_ ,a_ ,a_ = 128 ,a_=False ,a_ = False ,) -> Any: _UpperCAmelCase : str = hans_processors[task]() _UpperCAmelCase : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase ,_UpperCAmelCase : Tuple = label_list[2], label_list[1] _UpperCAmelCase : List[Any] = label_list _UpperCAmelCase : Dict = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) _UpperCAmelCase : Any = hans_convert_examples_to_features(a_ ,a_ ,a_ ,a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc="""convert examples to features""" ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator( a_ ,( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) ,( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def _snake_case ( self ) -> List[str]: return self.dataset def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self ,a_ ) -> InputFeatures: return self.features[i] def _snake_case ( self ) -> Any: return self.label_list class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ) -> int: return self._create_examples(self._read_tsv(os.path.join(a_ ,"""heuristics_train_set.txt""" ) ) ,"""train""" ) def _snake_case ( self ,a_ ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(a_ ,"""heuristics_evaluation_set.txt""" ) ) ,"""dev""" ) def _snake_case ( self ) -> List[str]: return ["contradiction", "entailment", "neutral"] def _snake_case ( self ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : Dict = [] for i, line in enumerate(a_ ): if i == 0: continue _UpperCAmelCase : Optional[Any] = """%s-%s""" % (set_type, line[0]) _UpperCAmelCase : Optional[Any] = line[5] _UpperCAmelCase : List[str] = line[6] _UpperCAmelCase : str = line[7][2:] if line[7].startswith("""ex""" ) else line[7] _UpperCAmelCase : List[str] = line[0] examples.append(InputExample(guid=a_ ,text_a=a_ ,text_b=a_ ,label=a_ ,pairID=a_ ) ) return examples def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = {label: i for i, label in enumerate(lowerCAmelCase_ )} _UpperCAmelCase : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase_ ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d""" % (ex_index) ) _UpperCAmelCase : Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , truncation=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , ) _UpperCAmelCase : Tuple = label_map[example.label] if example.label in label_map else 0 _UpperCAmelCase : str = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase_ , label=lowerCAmelCase_ , pairID=lowerCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features A_ : Any = { """hans""": 3, } A_ : Union[str, Any] = { """hans""": HansProcessor, }
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Tuple = {"""vocab_file""": """vocab.txt"""} A_ : Tuple = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } A_ : Union[str, Any] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = collections.OrderedDict() with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as reader: _UpperCAmelCase : Optional[int] = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Any = token.rstrip("""\n""" ) _UpperCAmelCase : List[str] = index return vocab class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_="<unk>" ,a_=200 ) -> Optional[Any]: _UpperCAmelCase : Dict = vocab _UpperCAmelCase : Dict = unk_token _UpperCAmelCase : Any = max_input_chars_per_word def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : List[str] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[Any] = [] while start < len(a_ ): _UpperCAmelCase : Union[str, Any] = len(a_ ) _UpperCAmelCase : List[Any] = None while start < end: _UpperCAmelCase : int = """""".join(chars[start:end] ) if substr in self.vocab: _UpperCAmelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) _UpperCAmelCase : List[str] = end return sub_tokens class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] UpperCAmelCase = False def __init__( self ,a_ ,a_="<d>" ,a_="</d>" ,a_="<s>" ,a_="</s>" ,a_="<pad>" ,a_="<unk>" ,a_="</n>" ,a_="</_>" ,a_="left" ,**a_ ,) -> List[Any]: requires_backends(self ,["""jieba"""] ) super().__init__( bod_token=a_ ,eod_token=a_ ,bos_token=a_ ,eos_token=a_ ,pad_token=a_ ,unk_token=a_ ,line_token=a_ ,space_token=a_ ,padding_side=a_ ,**a_ ,) _UpperCAmelCase : Union[str, Any] = bod_token _UpperCAmelCase : List[str] = eod_token _UpperCAmelCase : str = load_vocab(a_ ) _UpperCAmelCase : int = self.encoder[space_token] _UpperCAmelCase : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _UpperCAmelCase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda a_ : x[1] ) ) _UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def _snake_case ( self ) -> Optional[Any]: return self.encoder[self.bod_token] @property def _snake_case ( self ) -> Tuple: return self.encoder[self.eod_token] @property def _snake_case ( self ) -> str: return self.encoder["\n"] @property def _snake_case ( self ) -> int: return len(self.encoder ) def _snake_case ( self ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Optional[int] = [] for x in jieba.cut(a_ ,cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def _snake_case ( self ,a_ ,**a_ ) -> Optional[int]: _UpperCAmelCase : int = [i for i in token_ids if i >= 0] _UpperCAmelCase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ ,**a_ ) def _snake_case ( self ,a_ ) -> str: return token in self.encoder def _snake_case ( self ,a_ ) -> str: return "".join(a_ ) def _snake_case ( self ,a_ ) -> Optional[int]: return self.encoder.get(a_ ,self.encoder.get(self.unk_token ) ) def _snake_case ( self ,a_ ) -> Any: return self.decoder.get(a_ ,self.unk_token ) def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if os.path.isdir(a_ ): _UpperCAmelCase : int = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _UpperCAmelCase : Optional[int] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _UpperCAmelCase : Any = 0 if " " in self.encoder: _UpperCAmelCase : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _UpperCAmelCase : Optional[int] = self.encoder["""\n"""] del self.encoder["\n"] _UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda a_ : x[1] ) ) with open(a_ ,"""w""" ,encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) _UpperCAmelCase : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = int(lowerCAmelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : List[Any] = divmod(lowerCAmelCase_ , 2 ) return binary_recursive(lowerCAmelCase_ ) + str(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Any = str(lowerCAmelCase_ ).strip() if not number: raise ValueError("""No input value was provided""" ) _UpperCAmelCase : Optional[Any] = """-""" if number.startswith("""-""" ) else """""" _UpperCAmelCase : Tuple = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(lowerCAmelCase_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case_ ( )-> List[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def snake_case_ ( )-> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def snake_case_ ( )-> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head("""https://huggingface.co""" )
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase : """simple docstring""" UpperCAmelCase = PegasusConfig UpperCAmelCase = {} UpperCAmelCase = """gelu""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=False ,a_=99 ,a_=32 ,a_=2 ,a_=4 ,a_=37 ,a_=0.1 ,a_=0.1 ,a_=40 ,a_=2 ,a_=1 ,a_=0 ,) -> Dict: _UpperCAmelCase : Dict = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : Union[str, Any] = pad_token_id _UpperCAmelCase : List[Any] = bos_token_id def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _UpperCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] ,axis=1 ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) _UpperCAmelCase : int = prepare_pegasus_inputs_dict(a_ ,a_ ,a_ ) return config, inputs_dict def _snake_case ( self ,a_ ,a_ ) -> Dict: _UpperCAmelCase : Optional[int] = TFPegasusModel(config=a_ ).get_decoder() _UpperCAmelCase : Dict = inputs_dict["""input_ids"""] _UpperCAmelCase : Any = input_ids[:1, :] _UpperCAmelCase : Optional[int] = inputs_dict["""attention_mask"""][:1, :] _UpperCAmelCase : Dict = inputs_dict["""head_mask"""] _UpperCAmelCase : Tuple = 1 # first forward pass _UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ ,head_mask=a_ ,use_cache=a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _UpperCAmelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _UpperCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) _UpperCAmelCase : Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ )[0] _UpperCAmelCase : str = model(a_ ,attention_mask=a_ ,past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Union[str, Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_ ,a_ ,rtol=1E-3 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , )-> Union[str, Any]: '''simple docstring''' if attention_mask is None: _UpperCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TFPegasusModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ) def _snake_case ( self ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase = """google/pegasus-xsum""" @cached_property def _snake_case ( self ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self ,**a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = self.translate_src_text(**a_ ) assert self.expected_text == generated_words def _snake_case ( self ,**a_ ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text ,**a_ ,padding=a_ ,return_tensors="""tf""" ) _UpperCAmelCase : Dict = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=a_ ,) _UpperCAmelCase : Any = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=a_ ) return generated_words @slow def _snake_case ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' from math import factorial def snake_case_ ( lowerCAmelCase_ = 20 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase : int = n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label _UpperCAmelCase : str = label_idx def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : str = mode.value _UpperCAmelCase : List[str] = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = [] with open(a_ ,encoding="""utf-8""" ) as f: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = [] else: _UpperCAmelCase : List[str] = line.split(""" """ ) words.append(splits[0] ) if len(a_ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(a_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _UpperCAmelCase : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(a_ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : Any = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ) -> Union[str, Any]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : str = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : List[str] = mode.value _UpperCAmelCase : int = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : List[str] = [] with open(a_ ,encoding="""utf-8""" ) as f: for sentence in parse_incr(a_ ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(a_ ) == len(a_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : Dict = 0 for sentence in parse_incr(a_ ): _UpperCAmelCase : Dict = preds_list[example_id] _UpperCAmelCase : Dict = """""" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(a_ ) example_id += 1 def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A_ : Tuple = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' return math.sqrt(_UpperCAmelCase ) * math.sqrt(_UpperCAmelCase ) == num def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' _UpperCAmelCase : str = 0 _UpperCAmelCase : str = n while left <= right: _UpperCAmelCase : Optional[int] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase : int = mid - 1 else: _UpperCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github A_ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = Github(os.environ["""GITHUB_TOKEN"""] ) _UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) _UpperCAmelCase : List[str] = repo.get_issues(state="""open""" ) for issue in open_issues: _UpperCAmelCase : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase_ : i.created_at , reverse=lowercase__ ) _UpperCAmelCase : Any = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = cva.getAffineTransform(__UpperCAmelCase , __UpperCAmelCase ) return cva.warpAffine(__UpperCAmelCase , __UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image A_ : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value A_ : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ , A_ : int = gray_img.shape # set different points to rotate image A_ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A_ : Optional[Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A_ : Dict = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A_ : Union[str, Any] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A_ : Any = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Any = plt.figure(1) A_ : Optional[int] = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Any: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[Any]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=A__ ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] )
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' if len(lowerCamelCase__ ) <= 1: return lst _UpperCAmelCase : Any = 1 while i < len(lowerCamelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase : List[Any] = 1 return lst if __name__ == "__main__": A_ = input("""Enter numbers separated by a comma:\n""").strip() A_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : List[str] = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["""ChineseCLIPFeatureExtractor"""] A_ : Union[str, Any] = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from math import sqrt def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ = 10001 )-> int: '''simple docstring''' _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = 1 while count != nth and number < 3: number += 1 if is_prime(__snake_case ): count += 1 while count != nth: number += 2 if is_prime(__snake_case ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Any = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' return (gray > 127) & (gray <= 255) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = np.zeros_like(lowerCamelCase_ ) _UpperCAmelCase : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _UpperCAmelCase : List[str] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _UpperCAmelCase : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _UpperCAmelCase : Dict = int(summation > 0 ) return output if __name__ == "__main__": # read original image A_ : Optional[int] = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' A_ : int = np.array(Image.open(lena_path)) # kernel to be applied A_ : Optional[int] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) A_ : int = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image A_ : int = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A_ : List[str] = [ """good first issue""", """feature request""", """wip""", ] def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) _UpperCAmelCase : List[Any] = g.get_repo("""huggingface/accelerate""" ) _UpperCAmelCase : List[str] = repo.get_issues(state="""open""" ) for issue in open_issues: _UpperCAmelCase : Any = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase_ : i.created_at , reverse=lowerCAmelCase_ ) _UpperCAmelCase : str = comments[0] if len(lowerCAmelCase_ ) > 0 else None _UpperCAmelCase : int = dt.utcnow() _UpperCAmelCase : Union[str, Any] = (current_time - issue.updated_at).days _UpperCAmelCase : List[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : int = {"""vocab_file""": """spiece.model"""} A_ : str = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } A_ : Tuple = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class lowercase ( A_ ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,a_ ,a_=False ,a_=False ,a_=False ,a_=None ,a_=None ,a_=None ,a_=None ,a_ = None ,**a_ ,) -> None: _UpperCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase : Optional[Any] = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) _UpperCAmelCase : List[Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _UpperCAmelCase : str = "<|endoftext|>" if eos_token is None else eos_token _UpperCAmelCase : List[Any] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _UpperCAmelCase : List[Any] = unk_token if pad_token is None else pad_token _UpperCAmelCase : Optional[Any] = eos_token if bos_token is None else bos_token else: _UpperCAmelCase : List[Any] = "<pad>" if pad_token is None else pad_token _UpperCAmelCase : Dict = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=snake_case__ ,remove_space=snake_case__ ,keep_accents=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,pad_token=snake_case__ ,sp_model_kwargs=self.sp_model_kwargs ,**snake_case__ ,) _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Dict = remove_space _UpperCAmelCase : Optional[Any] = keep_accents _UpperCAmelCase : Optional[Any] = vocab_file _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # Used for whitespace normalization in input texts # fmt : off _UpperCAmelCase : Tuple = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _UpperCAmelCase : List[Any] = re.compile( f'''[{''.join(map(snake_case__ ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__( self ) -> Union[str, Any]: _UpperCAmelCase : int = self.__dict__.copy() _UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _snake_case ( self ) -> int: return len(self.sp_model ) def _snake_case ( self ,a_ ) -> str: _UpperCAmelCase : Optional[int] = self.non_printing_characters_re.sub("""""" ,snake_case__ ) # Normalize whitespaces _UpperCAmelCase : Optional[Any] = "".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization _UpperCAmelCase : Optional[Any] = unicodedata.normalize("""NFC""" ,snake_case__ ) return text def _snake_case ( self ,a_ ,**a_ ) -> List[str]: _UpperCAmelCase : Union[str, Any] = self.preprocess_text(snake_case__ ) return self.sp_model.encode(snake_case__ ,out_type=snake_case__ ) def _snake_case ( self ,a_ ) -> int: return self.sp_model.PieceToId(snake_case__ ) def _snake_case ( self ,a_ ) -> str: return self.sp_model.IdToPiece(snake_case__ ) @staticmethod def _snake_case ( a_ ) -> str: return out_string def _snake_case ( self ,a_ ) -> str: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : int = [] else: current_sub_tokens.append(snake_case__ ) _UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(snake_case__ ) return out_string def _snake_case ( self ) -> Dict[str, int]: _UpperCAmelCase : Any = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : str = os.path.join( snake_case__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ ,"""wb""" ) as fi: _UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _snake_case ( self ,a_ ,a_ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(snake_case__ ,snake_case__ ): _UpperCAmelCase : Dict = self.preprocess_text(snake_case__ ) _UpperCAmelCase : Optional[Any] = self.sp_model.encode(snake_case__ ) else: _UpperCAmelCase : Optional[int] = [self.preprocess_text(snake_case__ ) for t in text] _UpperCAmelCase : List[str] = self.sp_model.encode(snake_case__ ) if return_tensors is True or return_tensors == "pt": _UpperCAmelCase : Dict = torch.tensor(snake_case__ ) return token_ids def _snake_case ( self ,a_ ) -> str: return self.sp_model.decode(snake_case__ ) def _snake_case ( self ,a_ ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _UpperCAmelCase : List[Any] = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(snake_case__ ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=snake_case__ )
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") A_ : List[Any] = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self ) -> Union[str, Any]: if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None def __call__( self ,a_ ) -> Dict: _UpperCAmelCase : Any = """label""" if """label""" in features[0].keys() else """labels""" _UpperCAmelCase : Any = [feature.pop(_a ) for feature in features] _UpperCAmelCase : Tuple = len(_a ) _UpperCAmelCase : Optional[int] = len(features[0]["""input_ids"""] ) _UpperCAmelCase : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_a )] for feature in features ] _UpperCAmelCase : Dict = list(chain(*_a ) ) _UpperCAmelCase : Optional[int] = self.tokenizer.pad( _a ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) # Un-flatten _UpperCAmelCase : List[Any] = {k: v.view(_a ,_a ,-1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[Any] = torch.tensor(_a ,dtype=torch.intaa ) return batch def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : List[str] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : int = data_args.validation_file _UpperCAmelCase : Optional[Any] = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : Optional[Any] = load_dataset( lowerCAmelCase__ , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Optional[int] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[int] = [F'''ending{i}''' for i in range(4 )] _UpperCAmelCase : List[Any] = """sent1""" _UpperCAmelCase : List[Any] = """sent2""" if data_args.max_seq_length is None: _UpperCAmelCase : List[Any] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) _UpperCAmelCase : Dict = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _UpperCAmelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Union[str, Any] = examples[question_header_name] _UpperCAmelCase : List[Any] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCAmelCase__ ) ] # Flatten out _UpperCAmelCase : Any = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : int = list(chain(*lowerCAmelCase__ ) ) # Tokenize _UpperCAmelCase : Union[str, Any] = tokenizer( lowerCAmelCase__ , lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : Tuple = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : Any = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) _UpperCAmelCase : str = train_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : List[str] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : Tuple = min(len(lowerCAmelCase__ ) , data_args.max_eval_samples ) _UpperCAmelCase : int = eval_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _UpperCAmelCase : Tuple = eval_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCAmelCase : Any = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Dict = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: _UpperCAmelCase : int = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Any = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : List[str] = train_result.metrics _UpperCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""train""" , lowerCAmelCase__ ) trainer.save_metrics("""train""" , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : Optional[Any] = trainer.evaluate() _UpperCAmelCase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) _UpperCAmelCase : str = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' A_ : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Dict = input("""Enter message: """ ) _UpperCAmelCase : Optional[int] = input("""Enter key [alphanumeric]: """ ) _UpperCAmelCase : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): _UpperCAmelCase : Any = """encrypt""" _UpperCAmelCase : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): _UpperCAmelCase : Optional[int] = """decrypt""" _UpperCAmelCase : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[int] = key.upper() for symbol in message: _UpperCAmelCase : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): _UpperCAmelCase : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , )-> tuple[int, float, str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = cipher_alphabet or [chr(a_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _UpperCAmelCase : Union[str, Any] = { """a""": 0.0_8_4_9_7, """b""": 0.0_1_4_9_2, """c""": 0.0_2_2_0_2, """d""": 0.0_4_2_5_3, """e""": 0.1_1_1_6_2, """f""": 0.0_2_2_2_8, """g""": 0.0_2_0_1_5, """h""": 0.0_6_0_9_4, """i""": 0.0_7_5_4_6, """j""": 0.0_0_1_5_3, """k""": 0.0_1_2_9_2, """l""": 0.0_4_0_2_5, """m""": 0.0_2_4_0_6, """n""": 0.0_6_7_4_9, """o""": 0.0_7_5_0_7, """p""": 0.0_1_9_2_9, """q""": 0.0_0_0_9_5, """r""": 0.0_7_5_8_7, """s""": 0.0_6_3_2_7, """t""": 0.0_9_3_5_6, """u""": 0.0_2_7_5_8, """v""": 0.0_0_9_7_8, """w""": 0.0_2_5_6_0, """x""": 0.0_0_1_5_0, """y""": 0.0_1_9_9_4, """z""": 0.0_0_0_7_7, } else: # Custom frequencies dictionary _UpperCAmelCase : Dict = frequencies_dict if not case_sensitive: _UpperCAmelCase : Optional[int] = ciphertext.lower() # Chi squared statistic values _UpperCAmelCase : Tuple = {} # cycle through all of the shifts for shift in range(len(a_ ) ): _UpperCAmelCase : Dict = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _UpperCAmelCase : Optional[Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( a_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _UpperCAmelCase : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _UpperCAmelCase : List[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _UpperCAmelCase : str = decrypted_with_shift.lower().count(a_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCAmelCase : Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCAmelCase : Union[str, Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _UpperCAmelCase : Tuple = decrypted_with_shift.count(a_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCAmelCase : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCAmelCase : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _UpperCAmelCase : List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase_ ) -> tuple[float, str]: return chi_squared_statistic_values[key] _UpperCAmelCase : Any = min( a_ , key=a_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Optional[Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( __lowercase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : str = bertabert.config.encoder.vocab_size _UpperCAmelCase : int = tokenizer.sep_token_id _UpperCAmelCase : List[Any] = tokenizer.cls_token_id _UpperCAmelCase : Tuple = 128 _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Optional[int] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Union[str, Any] = train_dataset.select(range(32 ) ) _UpperCAmelCase : List[Any] = val_dataset.select(range(16 ) ) _UpperCAmelCase : Tuple = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : List[Any] = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=_a ,max_length=512 ) _UpperCAmelCase : List[Any] = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=_a ,max_length=128 ) _UpperCAmelCase : Any = inputs.input_ids _UpperCAmelCase : List[str] = inputs.attention_mask _UpperCAmelCase : List[Any] = outputs.input_ids _UpperCAmelCase : Any = outputs.input_ids.copy() _UpperCAmelCase : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(_a ) == 512 for x in inputs.input_ids ) assert all(len(_a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : int = pred.label_ids _UpperCAmelCase : int = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : int = tokenizer.batch_decode(_a ,skip_special_tokens=_a ) _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(_a ,skip_special_tokens=_a ) _UpperCAmelCase : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_a ) )] ) / len(_a ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=_a ,batch_size=_a ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=_a ,batch_size=_a ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[Any] = SeqaSeqTrainingArguments( output_dir=_a ,per_device_train_batch_size=_a ,per_device_eval_batch_size=_a ,predict_with_generate=_a ,evaluation_strategy="""steps""" ,do_train=_a ,do_eval=_a ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : str = SeqaSeqTrainer( model=_a ,args=_a ,compute_metrics=_compute_metrics ,train_dataset=_a ,eval_dataset=_a ,tokenizer=_a ,) # start training trainer.train()
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ = None )-> Optional[int]: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) _UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): _UpperCAmelCase : Union[str, Any] = nums[i] _UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user A_ : List[Any] = int(input("""Enter number of elements : """).strip()) A_ : int = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A_ : str = TypeVar("""T""") class lowercase ( Generic[T] ): """simple docstring""" def __init__( self ,a_ = True ) -> None: _UpperCAmelCase : dict[T, list[T]] = {} # dictionary of lists _UpperCAmelCase : Dict = directed def _snake_case ( self ,a_ ,a_ ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) self.adj_list[destination_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _UpperCAmelCase : List[Any] = [destination_vertex] _UpperCAmelCase : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _UpperCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _UpperCAmelCase : List[Any] = [destination_vertex] _UpperCAmelCase : List[str] = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from math import sqrt def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase : List[str] = False for divisor in range(2 , int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase : Tuple = False break # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'status' must been from type bool" return status def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase : Union[str, Any] = list(range(2 , n + 1 ) ) _UpperCAmelCase : List[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase : List[str] = 0 # filters actual prime numbers. _UpperCAmelCase : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase : List[Any] = [] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase : List[Any] = 2 _UpperCAmelCase : Any = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : List[Any] = 0 # prime factorization of 'number' _UpperCAmelCase : List[str] = prime_factorization(_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : Any = 0 # prime factorization of 'number' _UpperCAmelCase : Tuple = prime_factorization(_UpperCamelCase ) _UpperCAmelCase : List[str] = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" _UpperCAmelCase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase : Any = get_prime_numbers(_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = len(_UpperCamelCase ) # run variable for while-loops. _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = None # exit variable. for break up the loops _UpperCAmelCase : Any = True while i < len_pn and loop: _UpperCAmelCase : Union[str, Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase : str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : Union[str, Any] = 0 while numbera != 0: _UpperCAmelCase : Union[str, Any] = numbera % numbera _UpperCAmelCase : Optional[Any] = numbera _UpperCAmelCase : List[Any] = rest # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : Optional[int] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase : Optional[int] = prime_factorization(_UpperCamelCase ) _UpperCAmelCase : Any = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Any = max(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : int = 0 _UpperCAmelCase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase : Dict = prime_fac_a.count(_UpperCamelCase ) _UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase , _UpperCamelCase ) ): ans *= n else: _UpperCAmelCase : Dict = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase : Optional[Any] = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase : str = p_number_a + 1 # jump to the next number _UpperCAmelCase : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase : List[str] = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase : int = gcd(abs(_UpperCamelCase ) , abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = 1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase : Dict = ans ans += fiba _UpperCAmelCase : Union[str, Any] = tmp return ans
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowercase ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase = BertJapaneseTokenizer UpperCAmelCase = False UpperCAmelCase = True def _snake_case ( self ) -> List[str]: super().setUp() _UpperCAmelCase : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _UpperCAmelCase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' _UpperCAmelCase : str = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : int = self.get_input_output_texts(_lowerCamelCase ) _UpperCAmelCase : List[Any] = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def _snake_case ( self ) -> Tuple: pass # TODO add if relevant def _snake_case ( self ) -> Optional[int]: pass # TODO add if relevant def _snake_case ( self ) -> Optional[Any]: pass # TODO add if relevant def _snake_case ( self ) -> Dict: _UpperCAmelCase : str = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(_lowerCamelCase ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""mecab""" ) self.assertIsNotNone(_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' _UpperCAmelCase : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(_lowerCamelCase ,"""wb""" ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,"""rb""" ) as handle: _UpperCAmelCase : Any = pickle.load(_lowerCamelCase ) _UpperCAmelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _snake_case ( self ) -> str: try: _UpperCAmelCase : Any = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _snake_case ( self ) -> str: try: _UpperCAmelCase : str = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = MecabTokenizer(do_lower_case=_lowerCamelCase ,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _snake_case ( self ) -> Any: try: _UpperCAmelCase : List[str] = MecabTokenizer( do_lower_case=_lowerCamelCase ,normalize_text=_lowerCamelCase ,mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = MecabTokenizer(normalize_text=_lowerCamelCase ,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] ,) @require_sudachi def _snake_case ( self ) -> str: _UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(_lowerCamelCase ) _UpperCAmelCase : List[str] = '''こんにちは、世界。\nこんばんは、世界。''' _UpperCAmelCase : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(_lowerCamelCase ,"""wb""" ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,"""rb""" ) as handle: _UpperCAmelCase : int = pickle.load(_lowerCamelCase ) _UpperCAmelCase : Optional[int] = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) @require_sudachi def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,) @require_sudachi def _snake_case ( self ) -> str: _UpperCAmelCase : Any = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人""", """参政権"""] ) @require_sudachi def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人参政権"""] ) @require_sudachi def _snake_case ( self ) -> Dict: _UpperCAmelCase : Dict = SudachiTokenizer(do_lower_case=_lowerCamelCase ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,) @require_sudachi def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = SudachiTokenizer(normalize_text=_lowerCamelCase ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] ,) @require_sudachi def _snake_case ( self ) -> str: _UpperCAmelCase : Any = SudachiTokenizer(trim_whitespace=_lowerCamelCase ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) @require_jumanpp def _snake_case ( self ) -> str: _UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(_lowerCamelCase ) _UpperCAmelCase : Dict = '''こんにちは、世界。\nこんばんは、世界。''' _UpperCAmelCase : Any = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(_lowerCamelCase ,"""wb""" ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,"""rb""" ) as handle: _UpperCAmelCase : Any = pickle.load(_lowerCamelCase ) _UpperCAmelCase : Tuple = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) @require_jumanpp def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Dict = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] ,) @require_jumanpp def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) ,["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] ,) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _UpperCAmelCase : List[Any] = {} for i, token in enumerate(_lowerCamelCase ): _UpperCAmelCase : Any = i _UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=_lowerCamelCase ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) ,["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) ,["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) _UpperCAmelCase : List[str] = tokenizer.subword_tokenizer _UpperCAmelCase : str = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(_lowerCamelCase ,["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) _UpperCAmelCase : int = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(_lowerCamelCase ,["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) _UpperCAmelCase : Optional[int] = tokenizer.encode("""ありがとう。""" ,add_special_tokens=_lowerCamelCase ) _UpperCAmelCase : Optional[int] = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ,_lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase ( a__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase = BertJapaneseTokenizer UpperCAmelCase = False def _snake_case ( self ) -> Union[str, Any]: super().setUp() _UpperCAmelCase : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _snake_case ( self ,**a_ ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type="""character""" ,**_lowerCamelCase ) def _snake_case ( self ,a_ ) -> List[Any]: _UpperCAmelCase : int = '''こんにちは、世界。 \nこんばんは、世界。''' _UpperCAmelCase : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _snake_case ( self ) -> Optional[int]: pass # TODO add if relevant def _snake_case ( self ) -> Any: pass # TODO add if relevant def _snake_case ( self ) -> Union[str, Any]: pass # TODO add if relevant def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type="""character""" ) _UpperCAmelCase : List[str] = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( _lowerCamelCase ,["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _UpperCAmelCase : str = {} for i, token in enumerate(_lowerCamelCase ): _UpperCAmelCase : Optional[int] = i _UpperCAmelCase : Dict = CharacterTokenizer(vocab=_lowerCamelCase ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) ,["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) _UpperCAmelCase : Optional[Any] = tokenizer.encode("""ありがとう。""" ,add_special_tokens=_lowerCamelCase ) _UpperCAmelCase : str = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=_lowerCamelCase ) _UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ,_lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = '''cl-tohoku/bert-base-japanese''' _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) _UpperCAmelCase : Optional[Any] = '''bert-base-cased''' with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' import random def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None _UpperCAmelCase : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : Optional[Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Optional[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } A_ : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } A_ : Tuple = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } A_ : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } A_ : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } A_ : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A_ : Optional[int] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) A_ : Union[str, Any] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) A_ : int = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase : """simple docstring""" def __call__( self ,a_ ,a_ = None ,a_ = None ,a_ = False ,a_ = False ,a_ = None ,a_ = None ,a_ = None ,**a_ ,) -> Tuple: if titles is None and texts is None: return super().__call__( lowercase_ ,padding=lowercase_ ,truncation=lowercase_ ,max_length=lowercase_ ,return_tensors=lowercase_ ,return_attention_mask=lowercase_ ,**lowercase_ ,) elif titles is None or texts is None: _UpperCAmelCase : Tuple = titles if texts is None else texts return super().__call__( lowercase_ ,lowercase_ ,padding=lowercase_ ,truncation=lowercase_ ,max_length=lowercase_ ,return_tensors=lowercase_ ,return_attention_mask=lowercase_ ,**lowercase_ ,) _UpperCAmelCase : List[Any] = titles if not isinstance(lowercase_ ,lowercase_ ) else [titles] _UpperCAmelCase : Dict = texts if not isinstance(lowercase_ ,lowercase_ ) else [texts] _UpperCAmelCase : List[Any] = len(lowercase_ ) _UpperCAmelCase : Optional[Any] = questions if not isinstance(lowercase_ ,lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( f'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) _UpperCAmelCase : Any = super().__call__(lowercase_ ,lowercase_ ,padding=lowercase_ ,truncation=lowercase_ )["""input_ids"""] _UpperCAmelCase : str = super().__call__(lowercase_ ,add_special_tokens=lowercase_ ,padding=lowercase_ ,truncation=lowercase_ )["""input_ids"""] _UpperCAmelCase : List[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ ,lowercase_ ) ] } if return_attention_mask is not False: _UpperCAmelCase : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase : int = attention_mask return self.pad(lowercase_ ,padding=lowercase_ ,max_length=lowercase_ ,return_tensors=lowercase_ ) def _snake_case ( self ,a_ ,a_ ,a_ = 16 ,a_ = 64 ,a_ = 4 ,) -> str: _UpperCAmelCase : Optional[int] = reader_input["""input_ids"""] _UpperCAmelCase : Optional[int] = reader_output[:3] _UpperCAmelCase : Union[str, Any] = len(lowercase_ ) _UpperCAmelCase : List[Any] = sorted(range(lowercase_ ) ,reverse=lowercase_ ,key=relevance_logits.__getitem__ ) _UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _UpperCAmelCase : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase : Any = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase : Dict = len(lowercase_ ) _UpperCAmelCase : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=lowercase_ ,top_spans=lowercase_ ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=lowercase_ ,start_index=lowercase_ ,end_index=lowercase_ ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,) -> Any: _UpperCAmelCase : Tuple = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase : str = sorted(lowercase_ ,key=lambda a_ : x[1] ,reverse=lowercase_ ) _UpperCAmelCase : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) _UpperCAmelCase : Optional[int] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = ["""input_ids""", """attention_mask"""]
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import cmath import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = math.radians(__lowerCamelCase ) _UpperCAmelCase : Tuple = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form _UpperCAmelCase : Optional[Any] = cmath.rect(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Optional[int] = cmath.rect(__lowerCamelCase , __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Dict = 2 while i * i <= n: _UpperCAmelCase : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(_snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' from math import pi, sqrt def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ ( )-> Any: '''simple docstring''' assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : List[Any] = 1.0 while num: A_ : str = float(input("""Gamma of: """)) print(f"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> list: '''simple docstring''' _UpperCAmelCase : int = end or len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = i _UpperCAmelCase : List[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase : List[Any] = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase : List[str] = temp_index_value return array def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: # Max Heap '''simple docstring''' _UpperCAmelCase : Union[str, Any] = index _UpperCAmelCase : str = 2 * index + 1 # Left Node _UpperCAmelCase : Optional[int] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase : Any = right_index if largest != index: _UpperCAmelCase ,_UpperCAmelCase : Dict = array[largest], array[index] heapify(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' _UpperCAmelCase : Dict = len(lowerCAmelCase_ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase ,_UpperCAmelCase : Any = array[0], array[i] heapify(lowerCAmelCase_ , 0 , lowerCAmelCase_ ) return array def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = low _UpperCAmelCase : List[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase ,_UpperCAmelCase : Any = array[j], array[i] i += 1 def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' if len(lowerCAmelCase_ ) == 0: return array _UpperCAmelCase : Optional[Any] = 2 * math.ceil(math.loga(len(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = 16 return intro_sort(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCAmelCase_ ) max_depth -= 1 _UpperCAmelCase : List[str] = median_of_a(lowerCAmelCase_ , lowerCAmelCase_ , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase : Tuple = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) intro_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = p return insertion_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() A_ = input("""Enter numbers separated by a comma : """).strip() A_ = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Dict = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip_text_model' def __init__( self ,a_=250_002 ,a_=1_024 ,a_=24 ,a_=16 ,a_=4_096 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=514 ,a_=1 ,a_=0.02 ,a_=0.02 ,a_=1E-0_5 ,a_=1 ,a_=0 ,a_=2 ,a_="absolute" ,a_=True ,a_=768 ,**a_ ,) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : str = initializer_factor _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : List[str] = project_dim class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip_vision_model' def __init__( self ,a_=768 ,a_=3_072 ,a_=512 ,a_=12 ,a_=12 ,a_=3 ,a_=224 ,a_=32 ,a_="quick_gelu" ,a_=1E-5 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,**a_ ,) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Union[str, Any] = projection_dim _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Optional[int] = initializer_factor _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Dict = hidden_act @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> str: cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = cls.get_config_dict(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": _UpperCAmelCase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip' UpperCAmelCase = True def __init__( self ,a_=None ,a_=None ,a_=768 ,a_=2.6592 ,**a_ ) -> Any: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). _UpperCAmelCase : Dict = kwargs.pop("""text_config_dict""" ,SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[Any] = kwargs.pop("""vision_config_dict""" ,SCREAMING_SNAKE_CASE_ ) super().__init__(**SCREAMING_SNAKE_CASE_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _UpperCAmelCase : List[str] = {} # This is the complete result when using `text_config_dict`. _UpperCAmelCase : int = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _UpperCAmelCase : List[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : Any = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _UpperCAmelCase : List[str] = {} # This is the complete result when using `vision_config_dict`. _UpperCAmelCase : Dict = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _UpperCAmelCase : List[Any] = { str(SCREAMING_SNAKE_CASE_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _UpperCAmelCase : int = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : List[Any] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _UpperCAmelCase : int = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: _UpperCAmelCase : str = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) _UpperCAmelCase : str = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = projection_dim _UpperCAmelCase : Union[str, Any] = logit_scale_init_value _UpperCAmelCase : Union[str, Any] = 1.0 @classmethod def _snake_case ( cls ,a_ ,a_ ,**a_ ) -> Dict: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.text_config.to_dict() _UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() _UpperCAmelCase : Any = self.__class__.model_type return output
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( __UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def _snake_case ( a_ ) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def _snake_case ( self ) -> Optional[int]: raise NotImplementedError()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0