code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A_ : Dict = TypeVar("""T""") class lowercase ( Generic[T] ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> str: _UpperCAmelCase : List[Any] = None _UpperCAmelCase : int = len(UpperCamelCase_ ) _UpperCAmelCase : Any = [any_type for _ in range(self.N )] + arr _UpperCAmelCase : List[str] = fnc self.build() def _snake_case ( self ) -> Dict: for p in range(self.N - 1 ,0 ,-1 ): _UpperCAmelCase : Optional[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def _snake_case ( self ,a_ ,a_ ) -> List[Any]: p += self.N _UpperCAmelCase : str = v while p > 1: _UpperCAmelCase : Optional[int] = p // 2 _UpperCAmelCase : List[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: # noqa: E741 _UpperCAmelCase ,_UpperCAmelCase : List[str] = l + self.N, r + self.N _UpperCAmelCase : List[str] = None while l <= r: if l % 2 == 1: _UpperCAmelCase : Any = self.st[l] if res is None else self.fn(UpperCamelCase_ ,self.st[l] ) if r % 2 == 0: _UpperCAmelCase : int = self.st[r] if res is None else self.fn(UpperCamelCase_ ,self.st[r] ) _UpperCAmelCase ,_UpperCAmelCase : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A_ : Optional[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] A_ : Any = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } A_ : Optional[int] = SegmentTree(test_array, min) A_ : Dict = SegmentTree(test_array, max) A_ : List[Any] = SegmentTree(test_array, lambda a, b: a + b) def snake_case_ ( )-> Any: '''simple docstring''' for i in range(len(A__ ) ): for j in range(A__ , len(A__ ) ): _UpperCAmelCase : Union[str, Any] = reduce(A__ , test_array[i : j + 1] ) _UpperCAmelCase : Tuple = reduce(A__ , test_array[i : j + 1] ) _UpperCAmelCase : Optional[Any] = reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(A__ , A__ ) assert max_range == max_segment_tree.query(A__ , A__ ) assert sum_range == sum_segment_tree.query(A__ , A__ ) test_all_segments() for index, value in test_updates.items(): A_ : Dict = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase : """simple docstring""" def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _UpperCAmelCase : int = UNetaDConditionModel( sample_size=32 ,layers_per_block=1 ,block_out_channels=[32, 64] ,down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] ,mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" ,up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="""text""" ,addition_embed_type_num_heads=2 ,cross_attention_norm="""group_norm""" ,resnet_time_scale_shift="""scale_shift""" ,act_fn="""gelu""" ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCAmelCase : Any = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.0001 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="""epsilon""" ,variance_type="""learned_range""" ,) torch.manual_seed(0 ) _UpperCAmelCase : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( sample_size=32 ,layers_per_block=[1, 2] ,block_out_channels=[32, 64] ,down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] ,mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" ,up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="""text""" ,addition_embed_type_num_heads=2 ,cross_attention_norm="""group_norm""" ,resnet_time_scale_shift="""scale_shift""" ,act_fn="""gelu""" ,class_embed_type="""timestep""" ,mid_block_scale_factor=1.414 ,time_embedding_act_fn="""gelu""" ,time_embedding_dim=32 ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCAmelCase : Any = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.0001 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="""epsilon""" ,variance_type="""learned_range""" ,) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.0001 ,beta_end=0.02 ,) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : List[str] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase : Dict = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = inputs["""prompt"""] _UpperCAmelCase : int = inputs["""generator"""] _UpperCAmelCase : Optional[int] = inputs["""num_inference_steps"""] _UpperCAmelCase : List[Any] = inputs["""output_type"""] if "image" in inputs: _UpperCAmelCase : str = inputs["""image"""] else: _UpperCAmelCase : Union[str, Any] = None if "mask_image" in inputs: _UpperCAmelCase : Dict = inputs["""mask_image"""] else: _UpperCAmelCase : Dict = None if "original_image" in inputs: _UpperCAmelCase : Tuple = inputs["""original_image"""] else: _UpperCAmelCase : int = None _UpperCAmelCase ,_UpperCAmelCase : Any = pipe.encode_prompt(__lowerCAmelCase ) # inputs with prompt converted to embeddings _UpperCAmelCase : Union[str, Any] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _UpperCAmelCase : int = image if mask_image is not None: _UpperCAmelCase : Union[str, Any] = mask_image if original_image is not None: _UpperCAmelCase : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase ,__lowerCAmelCase ) is None ,f'''`{optional_component}` did not stay set to None after loading.''' ,) _UpperCAmelCase : Tuple = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase : int = inputs["""generator"""] _UpperCAmelCase : Optional[Any] = inputs["""num_inference_steps"""] _UpperCAmelCase : Union[str, Any] = inputs["""output_type"""] # inputs with prompt converted to embeddings _UpperCAmelCase : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _UpperCAmelCase : str = image if mask_image is not None: _UpperCAmelCase : Optional[int] = mask_image if original_image is not None: _UpperCAmelCase : Union[str, Any] = original_image _UpperCAmelCase : Tuple = pipe_loaded(**__lowerCAmelCase )[0] _UpperCAmelCase : Optional[int] = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1E-4 ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : Dict = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Tuple = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _UpperCAmelCase : Dict = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase : Any = pipe_loaded(**__lowerCAmelCase )[0] _UpperCAmelCase : Union[str, Any] = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1E-4 )
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' import random class lowercase : """simple docstring""" @staticmethod def _snake_case ( a_ ) -> Dict: _UpperCAmelCase : int = [ord(a_ ) for i in text] _UpperCAmelCase : int = [] _UpperCAmelCase : str = [] for i in plain: _UpperCAmelCase : Tuple = random.randint(1 ,300 ) _UpperCAmelCase : List[Any] = (i + k) * k cipher.append(a_ ) key.append(a_ ) return cipher, key @staticmethod def _snake_case ( a_ ,a_ ) -> int: _UpperCAmelCase : Optional[int] = [] for i in range(len(a_ ) ): _UpperCAmelCase : List[str] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(a_ ) ) return "".join(a_ ) if __name__ == "__main__": A_ : Optional[int] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowercase : """simple docstring""" UpperCAmelCase = None def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCAmelCase : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,__lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = os.path.join(__lowerCAmelCase ,"""feat_extract.json""" ) feat_extract_first.to_json_file(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Tuple = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(__lowerCAmelCase )
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : List[Any] = logging.get_logger(__name__) A_ : List[Any] = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase : Dict = model_type_to_module_name(a__ ) _UpperCAmelCase : Optional[int] = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(a__ , a__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a__ , """__name__""" , a__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase : Union[str, Any] = importlib.import_module("""transformers""" ) if hasattr(a__ , a__ ): return getattr(a__ , a__ ) return None def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , )-> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = get_file_from_repo( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(a__ , encoding="""utf-8""" ) as reader: return json.load(a__ ) class lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def _snake_case ( cls ,a_ ,**a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = kwargs.pop("""config""" ,_snake_case ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("""trust_remote_code""" ,_snake_case ) _UpperCAmelCase : Tuple = True _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = ImageProcessingMixin.get_image_processor_dict(_snake_case ,**_snake_case ) _UpperCAmelCase : Tuple = config_dict.get("""image_processor_type""" ,_snake_case ) _UpperCAmelCase : Dict = None if "AutoImageProcessor" in config_dict.get("""auto_map""" ,{} ): _UpperCAmelCase : List[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase : Optional[Any] = config_dict.pop("""feature_extractor_type""" ,_snake_case ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model\'s feature extractor configuration.""" ) _UpperCAmelCase : Tuple = feature_extractor_class.replace("""FeatureExtractor""" ,"""ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" ,{} ): _UpperCAmelCase : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] _UpperCAmelCase : Optional[Any] = feature_extractor_auto_map.replace("""FeatureExtractor""" ,"""ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model\'s feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_snake_case ,_snake_case ): _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(_snake_case ,**_snake_case ) # It could be in `config.image_processor_type`` _UpperCAmelCase : Any = getattr(_snake_case ,"""image_processor_type""" ,_snake_case ) if hasattr(_snake_case ,"""auto_map""" ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase : Optional[int] = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: _UpperCAmelCase : Tuple = image_processor_class_from_name(_snake_case ) _UpperCAmelCase : str = image_processor_auto_map is not None _UpperCAmelCase : Optional[int] = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase : Union[str, Any] = resolve_trust_remote_code( _snake_case ,_snake_case ,_snake_case ,_snake_case ) if has_remote_code and trust_remote_code: _UpperCAmelCase : Any = get_class_from_dynamic_module( _snake_case ,_snake_case ,**_snake_case ) _UpperCAmelCase : Dict = kwargs.pop("""code_revision""" ,_snake_case ) if os.path.isdir(_snake_case ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_snake_case ,**_snake_case ) elif image_processor_class is not None: return image_processor_class.from_dict(_snake_case ,**_snake_case ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase : Any = IMAGE_PROCESSOR_MAPPING[type(_snake_case )] return image_processor_class.from_dict(_snake_case ,**_snake_case ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _snake_case ( a_ ,a_ ) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(_snake_case ,_snake_case )
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> None: if len(a_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) _UpperCAmelCase : Optional[Any] = list(a_ ) _UpperCAmelCase : Optional[Any] = degree def __add__( self ,a_ ) -> Polynomial: if self.degree > polynomial_a.degree: _UpperCAmelCase : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,a_ ) else: _UpperCAmelCase : Optional[int] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,a_ ) def __sub__( self ,a_ ) -> Polynomial: return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self ,a_ ) -> Polynomial: _UpperCAmelCase : List[str] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,a_ ) def _snake_case ( self ,a_ ) -> int | float: _UpperCAmelCase : Union[str, Any] = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: _UpperCAmelCase : int = """""" for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(a_ ) return polynomial def __repr__( self ) -> str: return self.__str__() def _snake_case ( self ) -> Polynomial: _UpperCAmelCase : Any = [0] * self.degree for i in range(self.degree ): _UpperCAmelCase : str = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,a_ ) def _snake_case ( self ,a_ = 0 ) -> Polynomial: _UpperCAmelCase : Union[str, Any] = [0] * (self.degree + 2) _UpperCAmelCase : List[Any] = constant for i in range(self.degree + 1 ): _UpperCAmelCase : Union[str, Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,a_ ) def __eq__( self ,a_ ) -> bool: if not isinstance(a_ ,a_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self ,a_ ) -> bool: return not self.__eq__(a_ )
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A_ : str = False A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = """ybelkada/fonts""" def snake_case_ ( )-> str: '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' requires_backends(UpperCamelCase__ , ["""torch"""] ) _check_torch_version() _UpperCAmelCase : Dict = image_tensor.unsqueeze(0 ) _UpperCAmelCase : Optional[int] = torch.nn.functional.unfold(UpperCamelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _UpperCAmelCase : Union[str, Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase__ , UpperCamelCase__ , -1 ) _UpperCAmelCase : Dict = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 36 , lowerCAmelCase_ = "black" , lowerCAmelCase_ = "white" , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 5 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , )-> Dict: '''simple docstring''' requires_backends(UpperCamelCase__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. _UpperCAmelCase : Optional[Any] = textwrap.TextWrapper(width=80 ) _UpperCAmelCase : Optional[Any] = wrapper.wrap(text=UpperCamelCase__ ) _UpperCAmelCase : Dict = """\n""".join(UpperCamelCase__ ) if font_bytes is not None and font_path is None: _UpperCAmelCase : Optional[Any] = io.BytesIO(UpperCamelCase__ ) elif font_path is not None: _UpperCAmelCase : Dict = font_path else: _UpperCAmelCase : int = hf_hub_download(UpperCamelCase__ , """Arial.TTF""" ) _UpperCAmelCase : Any = ImageFont.truetype(UpperCamelCase__ , encoding="""UTF-8""" , size=UpperCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _UpperCAmelCase : str = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , UpperCamelCase__ ) ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : int = temp_draw.textbbox((0, 0) , UpperCamelCase__ , UpperCamelCase__ ) # Create the actual image with a bit of padding around the text. _UpperCAmelCase : Union[str, Any] = text_width + left_padding + right_padding _UpperCAmelCase : List[Any] = text_height + top_padding + bottom_padding _UpperCAmelCase : Any = Image.new("""RGB""" , (image_width, image_height) , UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = ImageDraw.Draw(UpperCamelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase__ , fill=UpperCamelCase__ , font=UpperCamelCase__ ) return image def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )-> Tuple: '''simple docstring''' requires_backends(UpperCamelCase__ , """vision""" ) # Convert to PIL image if necessary _UpperCAmelCase : List[Any] = to_pil_image(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = render_text(UpperCamelCase__ , **UpperCamelCase__ ) _UpperCAmelCase : Tuple = max(header_image.width , image.width ) _UpperCAmelCase : Union[str, Any] = int(image.height * (new_width / image.width) ) _UpperCAmelCase : int = int(header_image.height * (new_width / header_image.width) ) _UpperCAmelCase : Optional[Any] = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _UpperCAmelCase : Union[str, Any] = to_numpy_array(UpperCamelCase__ ) if infer_channel_dimension_format(UpperCamelCase__ ) == ChannelDimension.LAST: _UpperCAmelCase : int = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.LAST ) return new_image class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ['''flattened_patches'''] def __init__( self ,a_ = True ,a_ = True ,a_ = None ,a_ = 2_048 ,a_ = False ,**a_ ,) -> int: super().__init__(**_a ) _UpperCAmelCase : Optional[int] = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} _UpperCAmelCase : int = do_normalize _UpperCAmelCase : int = do_convert_rgb _UpperCAmelCase : Union[str, Any] = max_patches _UpperCAmelCase : Optional[int] = is_vqa def _snake_case ( self ,a_ ,a_ ,a_ ,**a_ ) -> Tuple: requires_backends(self.extract_flattened_patches ,"""torch""" ) _check_torch_version() # convert to torch _UpperCAmelCase : Dict = to_channel_dimension_format(_a ,ChannelDimension.FIRST ) _UpperCAmelCase : str = torch.from_numpy(_a ) _UpperCAmelCase ,_UpperCAmelCase : str = patch_size["""height"""], patch_size["""width"""] _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = get_image_size(_a ) # maximize scale s.t. _UpperCAmelCase : List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _UpperCAmelCase : int = max(min(math.floor(scale * image_height / patch_height ) ,_a ) ,1 ) _UpperCAmelCase : int = max(min(math.floor(scale * image_width / patch_width ) ,_a ) ,1 ) _UpperCAmelCase : Tuple = max(num_feasible_rows * patch_height ,1 ) _UpperCAmelCase : List[str] = max(num_feasible_cols * patch_width ,1 ) _UpperCAmelCase : Optional[int] = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode="""bilinear""" ,align_corners=_a ,antialias=_a ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _UpperCAmelCase : List[Any] = torch_extract_patches(_a ,_a ,_a ) _UpperCAmelCase : str = patches.shape _UpperCAmelCase : Optional[int] = patches_shape[1] _UpperCAmelCase : Dict = patches_shape[2] _UpperCAmelCase : str = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _UpperCAmelCase : Union[str, Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _UpperCAmelCase : Optional[int] = torch.arange(_a ).reshape([rows, 1] ).repeat(1 ,_a ).reshape([rows * columns, 1] ) _UpperCAmelCase : List[str] = torch.arange(_a ).reshape([1, columns] ).repeat(_a ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _UpperCAmelCase : Union[str, Any] = row_ids.to(torch.floataa ) _UpperCAmelCase : str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : str = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : Dict = torch.nn.functional.pad(_a ,[0, 0, 0, max_patches - (rows * columns)] ).float() _UpperCAmelCase : Tuple = to_numpy_array(_a ) return result def _snake_case ( self ,a_ ,a_ = None ,**a_ ) -> str: if image.dtype == np.uinta: _UpperCAmelCase : Dict = image.astype(np.floataa ) # take mean across the whole `image` _UpperCAmelCase : Union[str, Any] = np.mean(_a ) _UpperCAmelCase : List[str] = np.std(_a ) _UpperCAmelCase : Tuple = max(_a ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_a ,mean=_a ,std=_a ,**_a ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> Optional[int]: _UpperCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : List[str] = patch_size if patch_size is not None else self.patch_size _UpperCAmelCase : List[Any] = max_patches if max_patches is not None else self.max_patches _UpperCAmelCase : Any = self.is_vqa if kwargs.get("""data_format""" ,_a ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) _UpperCAmelCase : Optional[int] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : List[Any] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : int = [to_numpy_array(_a ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) _UpperCAmelCase : Optional[int] = kwargs.pop("""font_bytes""" ,_a ) _UpperCAmelCase : Tuple = kwargs.pop("""font_path""" ,_a ) if isinstance(_a ,_a ): _UpperCAmelCase : Any = [header_text] * len(_a ) _UpperCAmelCase : Dict = [ render_header(_a ,header_text[i] ,font_bytes=_a ,font_path=_a ) for i, image in enumerate(_a ) ] if do_normalize: _UpperCAmelCase : Union[str, Any] = [self.normalize(image=_a ) for image in images] # convert to torch tensor and permute _UpperCAmelCase : List[Any] = [ self.extract_flattened_patches(image=_a ,max_patches=_a ,patch_size=_a ) for image in images ] # create attention mask in numpy _UpperCAmelCase : Dict = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _UpperCAmelCase : Dict = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} ,tensor_type=_a ) return encoded_outputs
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None )-> Tuple: '''simple docstring''' if start is None: _UpperCAmelCase : Dict = 0 if end is None: _UpperCAmelCase : Tuple = len(_a ) - 1 if start >= end: return _UpperCAmelCase : Union[str, Any] = (start + end) // 2 slowsort(_a , _a , _a ) slowsort(_a , mid + 1 , _a ) if sequence[end] < sequence[mid]: _UpperCAmelCase : Any = sequence[mid], sequence[end] slowsort(_a , _a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : str = { "nielsr/canine-s": 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” A_ : List[str] = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py A_ : Any = 0 A_ : Tuple = 0xe000 A_ : Optional[Any] = 0xe001 A_ : Tuple = 0xe002 A_ : Union[str, Any] = 0xe003 A_ : Dict = 0xe004 # Maps special codepoints to human-readable names. A_ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. A_ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowercase ( snake_case__ ): """simple docstring""" UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,a_=chr(UpperCAmelCase_ ) ,a_=chr(UpperCAmelCase_ ) ,a_=chr(UpperCAmelCase_ ) ,a_=chr(UpperCAmelCase_ ) ,a_=chr(UpperCAmelCase_ ) ,a_=chr(UpperCAmelCase_ ) ,a_=False ,a_=2_048 ,**a_ ,) -> int: _UpperCAmelCase : Any = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else bos_token _UpperCAmelCase : int = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else eos_token _UpperCAmelCase : Union[str, Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else sep_token _UpperCAmelCase : Tuple = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else cls_token _UpperCAmelCase : List[Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : List[Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else mask_token super().__init__( bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ,model_max_length=UpperCAmelCase_ ,**UpperCAmelCase_ ,) # Creates a mapping for looking up the IDs of special symbols. _UpperCAmelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _UpperCAmelCase : Optional[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _UpperCAmelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _UpperCAmelCase : List[Any] = UNICODE_VOCAB_SIZE _UpperCAmelCase : str = len(self._special_codepoints ) @property def _snake_case ( self ) -> List[Any]: return self._unicode_vocab_size def _snake_case ( self ,a_ ) -> Optional[int]: return list(UpperCAmelCase_ ) def _snake_case ( self ,a_ ) -> Tuple: try: return ord(UpperCAmelCase_ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self ,a_ ) -> Union[str, Any]: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self ,a_ ) -> List[str]: return "".join(UpperCAmelCase_ ) def _snake_case ( self ,a_ ,a_ = None ) -> Optional[Any]: _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] _UpperCAmelCase : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ ,token_ids_a=UpperCAmelCase_ ,already_has_special_tokens=UpperCAmelCase_ ) _UpperCAmelCase : List[str] = [1] + ([0] * len(UpperCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_ )) + [1] return result def _snake_case ( self ,a_ ,a_ = None ) -> Union[str, Any]: _UpperCAmelCase : List[str] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] _UpperCAmelCase : Optional[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self ,a_ ,a_ = None ) -> Optional[Any]: return ()
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from __future__ import annotations class lowercase : """simple docstring""" def __init__( self ,a_ ) -> None: _UpperCAmelCase : Optional[int] = order # a_{0} ... a_{k} _UpperCAmelCase : Optional[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[int] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Any = [0.0] * self.order def _snake_case ( self ,a_ ,a_ ) -> None: if len(lowerCAmelCase__ ) < self.order: _UpperCAmelCase : Optional[int] = [1.0, *a_coeffs] if len(lowerCAmelCase__ ) != self.order + 1: _UpperCAmelCase : List[str] = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(lowerCAmelCase__ )}''' ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != self.order + 1: _UpperCAmelCase : int = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(lowerCAmelCase__ )}''' ) raise ValueError(lowerCAmelCase__ ) _UpperCAmelCase : int = a_coeffs _UpperCAmelCase : str = b_coeffs def _snake_case ( self ,a_ ) -> float: _UpperCAmelCase : Optional[int] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 ,self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : int = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[int] = sample _UpperCAmelCase : Optional[Any] = result return result
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__ ): """simple docstring""" def __init__( self ,**a_ ) -> Optional[int]: super().__init__(**__lowerCamelCase ) requires_backends(self ,"""vision""" ) requires_backends(self ,"""torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(__lowerCamelCase ) def _snake_case ( self ,**a_ ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : List[str] = {} _UpperCAmelCase : Tuple = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase : Tuple = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _UpperCAmelCase : Dict = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _UpperCAmelCase : Optional[int] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase : Any = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase : Dict = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase : Optional[int] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _UpperCAmelCase : int = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _UpperCAmelCase : List[Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _UpperCAmelCase : Tuple = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _UpperCAmelCase : Any = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,a_ ,*a_ ,a_=None ,a_=None ,**a_ ) -> Optional[int]: return super().__call__(__lowerCamelCase ,*__lowerCamelCase ,num_workers=__lowerCamelCase ,batch_size=__lowerCamelCase ,**__lowerCamelCase ) def _snake_case ( self ,a_ ,a_=64 ,a_ = 0 ,a_ = 512 / 1_500 ,a_ = 32 ,a_ = 1 ,) -> Dict: _UpperCAmelCase : str = load_image(__lowerCamelCase ) _UpperCAmelCase : Any = self.image_processor.size["""longest_edge"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.image_processor.generate_crop_boxes( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) _UpperCAmelCase : Any = self.image_processor(images=__lowerCamelCase ,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase : List[Any] = self.get_inference_context() with inference_context(): _UpperCAmelCase : List[Any] = self._ensure_tensor_on_device(__lowerCamelCase ,device=self.device ) _UpperCAmelCase : Optional[int] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _UpperCAmelCase : List[Any] = image_embeddings _UpperCAmelCase : Union[str, Any] = grid_points.shape[1] _UpperCAmelCase : List[Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 ,__lowerCamelCase ,__lowerCamelCase ): _UpperCAmelCase : Union[str, Any] = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase : Union[str, Any] = input_labels[:, i : i + points_per_batch] _UpperCAmelCase : int = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self ,a_ ,a_=0.88 ,a_=0.95 ,a_=0 ,a_=1 ,) -> Dict: _UpperCAmelCase : Optional[int] = model_inputs.pop("""input_boxes""" ) _UpperCAmelCase : Optional[Any] = model_inputs.pop("""is_last""" ) _UpperCAmelCase : List[Any] = model_inputs.pop("""original_sizes""" ).tolist() _UpperCAmelCase : Optional[Any] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _UpperCAmelCase : Optional[Any] = self.model(**__lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase : Optional[Any] = model_outputs["""pred_masks"""] _UpperCAmelCase : List[Any] = self.image_processor.post_process_masks( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,binarize=__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = model_outputs["""iou_scores"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self ,a_ ,a_=False ,a_=False ,a_=0.7 ,) -> List[str]: _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _UpperCAmelCase : List[str] = torch.cat(__lowerCamelCase ) _UpperCAmelCase : int = torch.cat(__lowerCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self.image_processor.post_process_for_mask_generation( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) _UpperCAmelCase : Optional[int] = defaultdict(__lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowerCamelCase ) _UpperCAmelCase : List[Any] = {} if output_rle_mask: _UpperCAmelCase : Tuple = rle_mask if output_bboxes_mask: _UpperCAmelCase : List[str] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowercase ( A_ ): """simple docstring""" UpperCAmelCase = """dpr""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_="absolute" ,a_ = 0 ,**a_ ,) -> Optional[int]: super().__init__(pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : int = projection_dim _UpperCAmelCase : List[Any] = position_embedding_type
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=2 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=3 ,a_=4 ,a_=None ,a_=0 ,) -> Any: _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : List[str] = use_token_type_ids _UpperCAmelCase : List[str] = use_labels _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = num_labels _UpperCAmelCase : int = num_choices _UpperCAmelCase : List[Any] = scope _UpperCAmelCase : Dict = projection_dim def _snake_case ( self ) -> int: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None if self.use_token_type_ids: _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : List[str] = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) _UpperCAmelCase : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : List[Any] = TFDPRContextEncoder(config=_a ) _UpperCAmelCase : List[str] = model(_a ,attention_mask=_a ,token_type_ids=_a ) _UpperCAmelCase : List[str] = model(_a ,token_type_ids=_a ) _UpperCAmelCase : Dict = model(_a ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Any = TFDPRQuestionEncoder(config=_a ) _UpperCAmelCase : str = model(_a ,attention_mask=_a ,token_type_ids=_a ) _UpperCAmelCase : int = model(_a ,token_type_ids=_a ) _UpperCAmelCase : Optional[Any] = model(_a ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : Optional[Any] = TFDPRReader(config=_a ) _UpperCAmelCase : Dict = model(_a ,attention_mask=_a ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Optional[int] = config_and_inputs _UpperCAmelCase : Dict = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = TFDPRModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def _snake_case ( self ) -> Any: self.config_tester.run_common_tests() def _snake_case ( self ) -> Any: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_a ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_a ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_a ) @slow def _snake_case ( self ) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = TFDPRReader.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) _UpperCAmelCase : int = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _UpperCAmelCase : Dict = model(_a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCAmelCase : List[str] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self ,a_ ,a_=7 ,a_=3 ,a_=18 ,a_=30 ,a_=400 ,a_=True ,a_=None ,a_=True ,) -> str: _UpperCAmelCase : int = size if size is not None else {"height": 18, "width": 18} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Tuple = image_size _UpperCAmelCase : Tuple = min_resolution _UpperCAmelCase : Optional[int] = max_resolution _UpperCAmelCase : str = do_resize _UpperCAmelCase : int = size _UpperCAmelCase : Tuple = apply_ocr def _snake_case ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase ( _a , unittest.TestCase ): """simple docstring""" UpperCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = LayoutLMvaImageProcessingTester(self ) @property def _snake_case ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a ,"""do_resize""" ) ) self.assertTrue(hasattr(_a ,"""size""" ) ) self.assertTrue(hasattr(_a ,"""apply_ocr""" ) ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) _UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def _snake_case ( self ) -> int: pass def _snake_case ( self ) -> str: # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a ,Image.Image ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_a ) self.assertIsInstance(encoding.boxes ,_a ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def _snake_case ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,numpify=_a ) for image in image_inputs: self.assertIsInstance(_a ,np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched _UpperCAmelCase : List[str] = image_processing(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def _snake_case ( self ) -> int: # Initialize image_processing _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,torchify=_a ) for image in image_inputs: self.assertIsInstance(_a ,torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched _UpperCAmelCase : Dict = image_processing(_a ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def _snake_case ( self ) -> Optional[Any]: # with apply_OCR = True _UpperCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) _UpperCAmelCase : Dict = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _UpperCAmelCase : List[Any] = image_processing(_a ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _UpperCAmelCase : List[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_a ) self.assertListEqual(encoding.boxes ,_a ) # with apply_OCR = False _UpperCAmelCase : Any = LayoutLMvaImageProcessor(apply_ocr=_a ) _UpperCAmelCase : Dict = image_processing(_a ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Tuple = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowercase ( __lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : int = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = 8 # DPR tok _UpperCAmelCase : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase : str = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(__lowercase ,exist_ok=__lowercase ) _UpperCAmelCase : Optional[int] = os.path.join(__lowercase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _UpperCAmelCase : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCAmelCase : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) _UpperCAmelCase : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase : int = {'''unk_token''': '''<unk>'''} _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(__lowercase ,exist_ok=__lowercase ) _UpperCAmelCase : Union[str, Any] = os.path.join(__lowercase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Any = os.path.join(__lowercase ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowercase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowercase ) ) def _snake_case ( self ) -> Optional[Any]: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def _snake_case ( self ) -> Dict: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def _snake_case ( self ) -> List[str]: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def _snake_case ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> int: _UpperCAmelCase : int = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = self.get_dummy_dataset() _UpperCAmelCase : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: _UpperCAmelCase : Union[str, Any] = dataset _UpperCAmelCase : str = RagRetriever( __lowercase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def _snake_case ( self ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = self.get_dummy_dataset() _UpperCAmelCase : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""custom""" ,) if from_disk: _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname ,"""dataset""" ) _UpperCAmelCase : Dict = os.path.join(self.tmpdirname ,"""index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname ,"""index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"""dataset""" ) ) del dataset _UpperCAmelCase : List[Any] = RagRetriever( __lowercase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: _UpperCAmelCase : Dict = RagRetriever( __lowercase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,__lowercase ) ,) return retriever def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) _UpperCAmelCase : Dict = os.path.join(self.tmpdirname ,"""hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" ,index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] ,open(index_file_name + """.index_meta.dpr""" ,"""wb""" ) ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname ,"""psgs_w100.tsv.pkl""" ) _UpperCAmelCase : Any = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__lowercase ,open(__lowercase ,"""wb""" ) ) _UpperCAmelCase : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""legacy""" ,index_path=self.tmpdirname ,) _UpperCAmelCase : Any = RagRetriever( __lowercase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : Optional[int] = retriever.retrieve(__lowercase ,n_docs=__lowercase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowercase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,__lowercase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: _UpperCAmelCase : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__lowercase ) _UpperCAmelCase : int = RagRetriever.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) _UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : Optional[int] = retriever.retrieve(__lowercase ,n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowercase ) _UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : List[str] = retriever.retrieve(__lowercase ,n_docs=__lowercase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowercase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,__lowercase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowercase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowercase ) _UpperCAmelCase : List[Any] = RagRetriever.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) _UpperCAmelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : str = retriever.retrieve(__lowercase ,n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowercase ) _UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : List[str] = retriever.retrieve(__lowercase ,n_docs=__lowercase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowercase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,__lowercase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__lowercase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowercase ) _UpperCAmelCase : Any = RagRetriever.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) _UpperCAmelCase : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : List[Any] = retriever.retrieve(__lowercase ,n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = self.get_dummy_legacy_index_retriever() _UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : int = retriever.retrieve(__lowercase ,n_docs=__lowercase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowercase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) ,__lowercase ) self.assertEqual(doc_dicts[0]["""text"""][0] ,"""bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] ,"""foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowercase ) _UpperCAmelCase : Tuple = RagRetriever.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) _UpperCAmelCase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : str = retriever.retrieve(__lowercase ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _snake_case ( self ) -> Any: import torch _UpperCAmelCase : Any = 1 _UpperCAmelCase : Any = self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : List[Any] = [[5, 7], [10, 11]] _UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : Tuple = retriever(__lowercase ,__lowercase ,prefix=retriever.config.generator.prefix ,n_docs=__lowercase ) _UpperCAmelCase : str = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertIsInstance(__lowercase ,np.ndarray ) _UpperCAmelCase : Union[str, Any] = retriever( __lowercase ,__lowercase ,prefix=retriever.config.generator.prefix ,n_docs=__lowercase ,return_tensors="""pt""" ,) _UpperCAmelCase : Dict = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowercase ,torch.Tensor ) self.assertIsInstance(__lowercase ,torch.Tensor ) self.assertIsInstance(__lowercase ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[Any] = self.get_dpr_ctx_encoder_tokenizer() _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowercase ) retriever.set_ctx_encoder_tokenizer(__lowercase ) _UpperCAmelCase : List[str] = [[5, 7], [10, 11]] _UpperCAmelCase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _UpperCAmelCase : Tuple = retriever(__lowercase ,__lowercase ,prefix=retriever.config.generator.prefix ,n_docs=__lowercase ) self.assertEqual( len(__lowercase ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) ,__lowercase ) # check for doc token related keys in dictionary.
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A_ : Tuple = logging.get_logger(__name__) class lowercase ( __UpperCamelCase ): """simple docstring""" def __init__( self ,*a_ ,**a_ ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" ,a_ ,) super().__init__(*a_ ,**a_ )
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A_ : Optional[Any] = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Dict = test_results.split(""" """ ) _UpperCAmelCase : int = 0 _UpperCAmelCase : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase : str = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = True _UpperCAmelCase : int = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): _UpperCAmelCase : Dict = line _UpperCAmelCase : Optional[int] = False return failures class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> int: _UpperCAmelCase : Optional[Any] = title _UpperCAmelCase : Optional[Any] = doc_test_results["""time_spent"""].split(""",""" )[0] _UpperCAmelCase : List[Any] = doc_test_results["""success"""] _UpperCAmelCase : Tuple = doc_test_results["""failures"""] _UpperCAmelCase : List[Any] = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase : int = doc_test_results @property def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = [self._time_spent] _UpperCAmelCase : str = 0 for time in time_spent: _UpperCAmelCase : int = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__SCREAMING_SNAKE_CASE ) == 1: _UpperCAmelCase : str = [0, 0, time_parts[0]] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : int = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f'''{int(__SCREAMING_SNAKE_CASE )}h{int(__SCREAMING_SNAKE_CASE )}m{int(__SCREAMING_SNAKE_CASE )}s''' @property def _snake_case ( self ) -> Optional[Any]: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self ) -> Optional[Any]: return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def _snake_case ( self ) -> Union[str, Any]: return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = 40 _UpperCAmelCase : int = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )} _UpperCAmelCase : Any = """""" for category, failures in category_failures.items(): if len(__SCREAMING_SNAKE_CASE ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__SCREAMING_SNAKE_CASE ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__SCREAMING_SNAKE_CASE ) @staticmethod def _snake_case ( ) -> str: _UpperCAmelCase : List[Any] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(__SCREAMING_SNAKE_CASE )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] ,text="""There was an issue running the tests.""" ,blocks=__SCREAMING_SNAKE_CASE ,) def _snake_case ( self ) -> Any: print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) _UpperCAmelCase : Optional[Any] = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" _UpperCAmelCase : Tuple = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] ,blocks=self.payload ,text=__SCREAMING_SNAKE_CASE ,) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : Dict = """""" for key, value in failures.items(): _UpperCAmelCase : Optional[int] = value[:200] + """ [Truncated]""" if len(__SCREAMING_SNAKE_CASE ) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' _UpperCAmelCase : Dict = job_name _UpperCAmelCase : int = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: _UpperCAmelCase : List[Any] = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self ) -> Union[str, Any]: if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) _UpperCAmelCase : Union[str, Any] = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) _UpperCAmelCase : Tuple = sorted(self.doc_test_results.items() ,key=lambda a_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): _UpperCAmelCase : List[Any] = f'''*Num failures* :{len(job_result['failed'] )} \n''' _UpperCAmelCase : Any = job_result["""failures"""] _UpperCAmelCase : List[str] = self.get_reply_blocks(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,text=__SCREAMING_SNAKE_CASE ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] ,text=f'''Results for {job}''' ,blocks=__SCREAMING_SNAKE_CASE ,thread_ts=self.thread_ts["""ts"""] ,) time.sleep(1 ) def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = os.environ["""GITHUB_RUN_ID"""] _UpperCAmelCase : str = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _UpperCAmelCase : str = requests.get(lowerCAmelCase_ ).json() _UpperCAmelCase : Any = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase : Optional[Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowerCAmelCase_ ) return {} def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Dict = {} if os.path.exists(lowerCAmelCase_ ): _UpperCAmelCase : Tuple = os.listdir(lowerCAmelCase_ ) for file in files: try: with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , encoding="""utf-8""" ) as f: _UpperCAmelCase : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )}.''' ) from e return _artifact def snake_case_ ( )-> Optional[int]: '''simple docstring''' class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[Any]: _UpperCAmelCase : Any = name _UpperCAmelCase : Tuple = [] def __str__( self ) -> Tuple: return self.name def _snake_case ( self ,a_ ) -> Optional[int]: self.paths.append({"""name""": self.name, """path""": path} ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Dict = filter(os.path.isdir , os.listdir() ) for directory in directories: _UpperCAmelCase : List[Any] = directory if artifact_name not in _available_artifacts: _UpperCAmelCase : Any = Artifact(lowerCAmelCase_ ) _available_artifacts[artifact_name].add_path(lowerCAmelCase_ ) return _available_artifacts if __name__ == "__main__": A_ : List[Any] = get_job_links() A_ : Dict = retrieve_available_artifacts() A_ : Dict = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A_ : Union[str, Any] = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job A_ : List[Any] = github_actions_job_links.get("""run_doctests""") A_ : Union[str, Any] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] A_ : str = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: A_ : Dict = handle_test_results(artifact["""stats"""]) A_ : Optional[int] = failed A_ : Any = success A_ : str = time_spent[1:-1] + """, """ A_ : str = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): A_ : Tuple = line.replace("""FAILED """, """""") A_ : int = line.split()[0].replace("""\n""", """""") if "::" in line: A_ : Optional[int] = line.split("""::""") else: A_ : Union[str, Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A_ : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) A_ : str = all_failures[test] if test in all_failures else """N/A""" A_ : Optional[int] = failure break A_ : Dict = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart A_ : List[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } A_ : Optional[int] = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } @lru_cache() def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _UpperCAmelCase : int = bs[:] _UpperCAmelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : str = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = set() _UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Dict = char return pairs class lowercase ( snake_case_ ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_ ,a_="replace" ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_=False ,**a_ ,) -> Dict: _UpperCAmelCase : Any = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else bos_token _UpperCAmelCase : Any = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else eos_token _UpperCAmelCase : Optional[Any] = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else sep_token _UpperCAmelCase : str = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else cls_token _UpperCAmelCase : Any = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else unk_token _UpperCAmelCase : Tuple = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Tuple = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else mask_token super().__init__( errors=a_ ,bos_token=a_ ,eos_token=a_ ,unk_token=a_ ,sep_token=a_ ,cls_token=a_ ,pad_token=a_ ,mask_token=a_ ,add_prefix_space=a_ ,**a_ ,) with open(a_ ,encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase : Tuple = json.load(a_ ) _UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : List[str] = errors # how to handle errors in decoding _UpperCAmelCase : Optional[Any] = bytes_to_unicode() _UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(a_ ,encoding="""utf-8""" ) as merges_handle: _UpperCAmelCase : Any = merges_handle.read().split("""\n""" )[1:-1] _UpperCAmelCase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : Optional[Any] = dict(zip(a_ ,range(len(a_ ) ) ) ) _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : str = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def _snake_case ( self ) -> List[Any]: return len(self.encoder ) def _snake_case ( self ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def _snake_case ( self ,a_ ) -> Optional[int]: if token in self.cache: return self.cache[token] _UpperCAmelCase : List[str] = tuple(a_ ) _UpperCAmelCase : int = get_pairs(a_ ) if not pairs: return token while True: _UpperCAmelCase : str = min(a_ ,key=lambda a_ : self.bpe_ranks.get(a_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase ,_UpperCAmelCase : Tuple = bigram _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = 0 while i < len(a_ ): try: _UpperCAmelCase : List[Any] = word.index(a_ ,a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : Dict = tuple(a_ ) _UpperCAmelCase : List[str] = new_word if len(a_ ) == 1: break else: _UpperCAmelCase : str = get_pairs(a_ ) _UpperCAmelCase : int = """ """.join(a_ ) _UpperCAmelCase : Optional[int] = word return word def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : Optional[int] = [] for token in re.findall(self.pat ,a_ ): _UpperCAmelCase : Dict = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(""" """ ) ) return bpe_tokens def _snake_case ( self ,a_ ) -> str: return self.encoder.get(a_ ,self.encoder.get(self.unk_token ) ) def _snake_case ( self ,a_ ) -> Optional[int]: return self.decoder.get(a_ ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = """""".join(a_ ) _UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Optional[int] = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=a_ ,ensure_ascii=a_ ) + """\n""" ) _UpperCAmelCase : Optional[Any] = 0 with open(a_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _UpperCAmelCase : Optional[Any] = token_index writer.write(""" """.join(a_ ) + """\n""" ) index += 1 return vocab_file, merge_file def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self ,a_ ,a_=False ,**a_ ) -> List[str]: _UpperCAmelCase : str = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()): _UpperCAmelCase : Any = """ """ + text return (text, kwargs)
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ = get_tests_dir("""fixtures""") class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = mock.Mock() _UpperCAmelCase : List[Any] = 500 _UpperCAmelCase : int = {} _UpperCAmelCase : Union[str, Any] = HTTPError _UpperCAmelCase : List[Any] = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : Dict = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" ,return_value=_lowerCAmelCase ) as mock_head: _UpperCAmelCase : Dict = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ) -> Dict: _UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(_lowerCAmelCase ) @classmethod def _snake_case ( cls ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("""test-feature-extractor""" ,use_auth_token=self._token ) _UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase ,getattr(_lowerCAmelCase ,_lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase ,repo_id="""test-feature-extractor""" ,push_to_hub=_lowerCAmelCase ,use_auth_token=self._token ) _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase ,getattr(_lowerCAmelCase ,_lowerCAmelCase ) ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" ,use_auth_token=self._token ) _UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase ,getattr(_lowerCAmelCase ,_lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase ,repo_id="""valid_org/test-feature-extractor-org""" ,push_to_hub=_lowerCAmelCase ,use_auth_token=self._token ) _UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase ,getattr(_lowerCAmelCase ,_lowerCAmelCase ) ) def _snake_case ( self ) -> Union[str, Any]: CustomFeatureExtractor.register_for_auto_class() _UpperCAmelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} ,) _UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' ,trust_remote_code=_lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,"""CustomFeatureExtractor""" )
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> list[float]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = coefficient_matrix.shape _UpperCAmelCase ,_UpperCAmelCase : int = constant_matrix.shape if rowsa != colsa: _UpperCAmelCase : List[Any] = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(_A ) if colsa != 1: _UpperCAmelCase : Union[str, Any] = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(_A ) if rowsa != rowsa: _UpperCAmelCase : List[str] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(_A ) if len(_A ) != rowsa: _UpperCAmelCase : Optional[int] = ( """Number of initial values must be equal to number of rows in coefficient """ F'''matrix but received {len(_A )} and {rowsa}''' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _UpperCAmelCase : int = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): _UpperCAmelCase : Optional[int] = [] for row in range(_A ): _UpperCAmelCase : Optional[Any] = 0 for col in range(_A ): if col == row: _UpperCAmelCase : Dict = table[row][col] elif col == cols - 1: _UpperCAmelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(_A ) _UpperCAmelCase : Dict = new_val return [float(_A ) for i in new_val] def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = table.shape _UpperCAmelCase : int = True for i in range(0 , _A ): _UpperCAmelCase : Optional[Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' import csv import tweepy # Twitter API credentials A_ : Optional[Any] = """""" A_ : str = """""" A_ : str = """""" A_ : Tuple = """""" def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = tweepy.OAuthHandler(lowerCAmelCase_ , lowerCAmelCase_ ) auth.set_access_token(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = tweepy.API(lowerCAmelCase_ ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase : List[str] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase : int = api.user_timeline(screen_name=lowerCAmelCase_ , count=200 ) # save most recent tweets alltweets.extend(lowerCAmelCase_ ) # save the id of the oldest tweet less one _UpperCAmelCase : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase_ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase : Optional[int] = api.user_timeline( screen_name=lowerCAmelCase_ , count=200 , max_id=lowerCAmelCase_ ) # save most recent tweets alltweets.extend(lowerCAmelCase_ ) # update the id of the oldest tweet less one _UpperCAmelCase : str = alltweets[-1].id - 1 print(F'''...{len(lowerCAmelCase_ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , """w""" ) as f: _UpperCAmelCase : List[Any] = csv.writer(lowerCAmelCase_ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowerCAmelCase_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' if isinstance(lowerCAmelCase_ , np.ndarray ): return list(tensor.shape ) _UpperCAmelCase : List[Any] = tf.shape(lowerCAmelCase_ ) if tensor.shape == tf.TensorShape(lowerCAmelCase_ ): return dynamic _UpperCAmelCase : Optional[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCAmelCase_ )] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None )-> Optional[Any]: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCAmelCase_ , name=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1e-5 , lowerCAmelCase_=-1 )-> List[Any]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized _UpperCAmelCase : Dict = tf.nn.moments(lowerCAmelCase_ , axes=[axis] , keepdims=lowerCAmelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _UpperCAmelCase : Tuple = [1] * inputs.shape.rank _UpperCAmelCase : List[str] = shape_list(lowerCAmelCase_ )[axis] _UpperCAmelCase : Union[str, Any] = tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) # Compute layer normalization using the batch_normalization # function. _UpperCAmelCase : List[Any] = tf.nn.batch_normalization( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , offset=lowerCAmelCase_ , scale=lowerCAmelCase_ , variance_epsilon=lowerCAmelCase_ , ) return outputs def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=0 , lowerCAmelCase_=-1 )-> Tuple: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _UpperCAmelCase : Union[str, Any] = tf.shape(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _UpperCAmelCase : Tuple = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' if not isinstance(lowerCAmelCase_ , tf.Tensor ): _UpperCAmelCase : int = tf.convert_to_tensor(lowerCAmelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _UpperCAmelCase : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _UpperCAmelCase : Any = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _UpperCAmelCase : Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = "input_ids" )-> Tuple: '''simple docstring''' tf.debugging.assert_less( lowerCAmelCase_ , tf.cast(lowerCAmelCase_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCAmelCase_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _UpperCAmelCase : List[str] = [x for x in data if len(lowerCAmelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _UpperCAmelCase : Optional[Any] = np.asarray(lowerCAmelCase_ ) _UpperCAmelCase : Any = 1 _UpperCAmelCase : Tuple = np.array_split(lowerCAmelCase_ , lowerCAmelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _UpperCAmelCase : Any = np.array_split(lowerCAmelCase_ , lowerCAmelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = chunk_data else: _UpperCAmelCase : List[Any] = data def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' if name in group.attrs: _UpperCAmelCase : List[Any] = [n.decode("""utf8""" ) if hasattr(lowerCAmelCase_ , """decode""" ) else n for n in group.attrs[name]] else: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Union[str, Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(lowerCAmelCase_ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' def _expand_single_ad_tensor(lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCAmelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCAmelCase_ )
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean A_ : List[Any] = 0 A_ : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right A_ : Dict = tuple[int, int] class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[Any]: _UpperCAmelCase : Dict = pos_x _UpperCAmelCase : List[Any] = pos_y _UpperCAmelCase : Dict = (pos_y, pos_x) _UpperCAmelCase : List[str] = goal_x _UpperCAmelCase : Union[str, Any] = goal_y _UpperCAmelCase : str = g_cost _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Dict = self.calculate_heuristic() _UpperCAmelCase : Union[str, Any] = self.g_cost + self.h_cost def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = self.pos_x - self.goal_x _UpperCAmelCase : int = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase__ ) + abs(lowercase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self ,a_ ) -> Any: return self.f_cost < other.f_cost class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Optional[Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowercase__ ) _UpperCAmelCase : Optional[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99_999 ,lowercase__ ) _UpperCAmelCase : List[str] = [self.start] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[int] = False def _snake_case ( self ) -> Tuple: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCAmelCase : List[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase__ ) self.closed_nodes.append(lowercase__ ) _UpperCAmelCase : List[str] = self.get_successors(lowercase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase__ ) else: # retrieve the best current path _UpperCAmelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase__ ) else: self.open_nodes.append(lowercase__ ) return [self.start.pos] def _snake_case ( self ,a_ ) -> str: _UpperCAmelCase : List[Any] = [] for action in delta: _UpperCAmelCase : Tuple = parent.pos_x + action[1] _UpperCAmelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase__ ,lowercase__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowercase__ ,) ) return successors def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = node _UpperCAmelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCAmelCase : Dict = current_node.parent path.reverse() return path class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> Tuple: _UpperCAmelCase : Optional[int] = AStar(lowercase__ ,lowercase__ ) _UpperCAmelCase : Optional[Any] = AStar(lowercase__ ,lowercase__ ) _UpperCAmelCase : List[Any] = False def _snake_case ( self ) -> str: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _UpperCAmelCase : Any = self.fwd_astar.open_nodes.pop(0 ) _UpperCAmelCase : Any = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase__ ,lowercase__ ) self.fwd_astar.closed_nodes.append(lowercase__ ) self.bwd_astar.closed_nodes.append(lowercase__ ) _UpperCAmelCase : List[str] = current_bwd_node _UpperCAmelCase : Union[str, Any] = current_fwd_node _UpperCAmelCase : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase__ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase__ ) else: # retrieve the best current path _UpperCAmelCase : Dict = astar.open_nodes.pop( astar.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase__ ) else: astar.open_nodes.append(lowercase__ ) return [self.fwd_astar.start.pos] def _snake_case ( self ,a_ ,a_ ) -> Tuple: _UpperCAmelCase : Optional[Any] = self.fwd_astar.retrace_path(lowercase__ ) _UpperCAmelCase : Dict = self.bwd_astar.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() _UpperCAmelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] A_ : List[Any] = (0, 0) A_ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A_ : str = time.time() A_ : Union[str, Any] = AStar(init, goal) A_ : Tuple = a_star.search() A_ : Dict = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") A_ : Optional[Any] = time.time() A_ : str = BidirectionalAStar(init, goal) A_ : str = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = UniSpeechSatForSequenceClassification.from_pretrained(a__ , config=a__ ) _UpperCAmelCase : Tuple = downstream_dict["""projector.weight"""] _UpperCAmelCase : str = downstream_dict["""projector.bias"""] _UpperCAmelCase : List[str] = downstream_dict["""model.post_net.linear.weight"""] _UpperCAmelCase : Dict = downstream_dict["""model.post_net.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ , config=a__ ) _UpperCAmelCase : List[Any] = downstream_dict["""model.linear.weight"""] _UpperCAmelCase : str = downstream_dict["""model.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = UniSpeechSatForXVector.from_pretrained(a__ , config=a__ ) _UpperCAmelCase : int = downstream_dict["""connector.weight"""] _UpperCAmelCase : Optional[Any] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase : Tuple = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase : str = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase : Optional[int] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] _UpperCAmelCase : Optional[int] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] _UpperCAmelCase : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] _UpperCAmelCase : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] _UpperCAmelCase : Tuple = downstream_dict["""objective.W"""] return model @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = torch.load(a__ , map_location="""cpu""" ) _UpperCAmelCase : Optional[int] = checkpoint["""Downstream"""] _UpperCAmelCase : Optional[int] = UniSpeechSatConfig.from_pretrained(a__ ) _UpperCAmelCase : Dict = WavaVecaFeatureExtractor.from_pretrained( a__ , return_attention_mask=a__ , do_normalize=a__ ) _UpperCAmelCase : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): _UpperCAmelCase : Any = convert_classification(a__ , a__ , a__ ) elif arch.endswith("""ForAudioFrameClassification""" ): _UpperCAmelCase : Optional[Any] = convert_diarization(a__ , a__ , a__ ) elif arch.endswith("""ForXVector""" ): _UpperCAmelCase : Union[str, Any] = convert_xvector(a__ , a__ , a__ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase : int = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A_ : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Tuple = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase ( __lowercase ): """simple docstring""" UpperCAmelCase = '''glpn''' def __init__( self ,a_=3 ,a_=4 ,a_=[2, 2, 2, 2] ,a_=[8, 4, 2, 1] ,a_=[32, 64, 160, 256] ,a_=[7, 3, 3, 3] ,a_=[4, 2, 2, 2] ,a_=[1, 2, 5, 8] ,a_=[4, 4, 4, 4] ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=0.1 ,a_=1E-6 ,a_=64 ,a_=10 ,a_=-1 ,**a_ ,) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : int = num_encoder_blocks _UpperCAmelCase : Tuple = depths _UpperCAmelCase : List[str] = sr_ratios _UpperCAmelCase : List[str] = hidden_sizes _UpperCAmelCase : str = patch_sizes _UpperCAmelCase : Optional[int] = strides _UpperCAmelCase : Tuple = mlp_ratios _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Any = drop_path_rate _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Optional[int] = decoder_hidden_size _UpperCAmelCase : List[str] = max_depth _UpperCAmelCase : Any = head_in_index
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class lowercase ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BICUBIC ,a_ = True ,a_ = None ,a_ = True ,a_ = 1 / 255 ,a_ = True ,a_ = IMAGENET_DEFAULT_MEAN ,a_ = IMAGENET_DEFAULT_STD ,**a_ ,) -> None: super().__init__(**_a ) _UpperCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase : int = get_size_dict(_a ,default_to_square=_a ) _UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : str = get_size_dict(_a ,param_name="""crop_size""" ) _UpperCAmelCase : Union[str, Any] = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : int = do_center_crop _UpperCAmelCase : str = crop_size _UpperCAmelCase : str = do_rescale _UpperCAmelCase : Any = rescale_factor _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BICUBIC ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : str = get_size_dict(_a ,default_to_square=_a ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((256 / 224) * size["""shortest_edge"""] ) _UpperCAmelCase : Any = get_resize_output_image_size(_a ,size=_a ,default_to_square=_a ) _UpperCAmelCase : int = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _a ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=_a ,data_format=_a ,**_a ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Dict = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> BatchFeature: _UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Any = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[str] = size if size is not None else self.size _UpperCAmelCase : Union[str, Any] = get_size_dict(_a ,default_to_square=_a ) _UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : str = get_size_dict(_a ,param_name="""crop_size""" ) _UpperCAmelCase : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Dict = [to_numpy_array(_a ) for image in images] if do_resize: _UpperCAmelCase : Dict = [self.resize(_a ,_a ,_a ) for image in images] if do_center_crop: _UpperCAmelCase : Tuple = [self.center_crop(_a ,_a ) for image in images] if do_rescale: _UpperCAmelCase : int = [self.rescale(_a ,_a ) for image in images] if do_normalize: _UpperCAmelCase : Union[str, Any] = [self.normalize(_a ,_a ,_a ) for image in images] _UpperCAmelCase : int = [to_channel_dimension_format(_a ,_a ) for image in images] _UpperCAmelCase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=_a ,tensor_type=_a )
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' from __future__ import annotations class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> str: _UpperCAmelCase ,_UpperCAmelCase : List[str] = text, pattern _UpperCAmelCase ,_UpperCAmelCase : List[str] = len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self ,a_ ) -> Any: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self ) -> Tuple: # searches pattern in text and returns index positions _UpperCAmelCase : Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCAmelCase : Tuple = self.mismatch_in_text(__SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase : str = self.match_in_pattern(self.text[mismatch_index] ) _UpperCAmelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ : int = 'ABAABA' A_ : Optional[Any] = 'AB' A_ : Any = BoyerMooreSearch(text, pattern) A_ : Any = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ShapEImgaImgPipeline UpperCAmelCase = ["""image"""] UpperCAmelCase = ["""image"""] UpperCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _snake_case ( self ) -> Any: return 32 @property def _snake_case ( self ) -> str: return 32 @property def _snake_case ( self ) -> List[str]: return self.time_input_dim * 4 @property def _snake_case ( self ) -> str: return 8 @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) _UpperCAmelCase : List[Any] = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ) -> int: _UpperCAmelCase : Union[str, Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_resize=_SCREAMING_SNAKE_CASE ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=224 ,) return image_processor @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : Any = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _UpperCAmelCase : int = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase : Any = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = self.dummy_prior _UpperCAmelCase : Dict = self.dummy_image_encoder _UpperCAmelCase : Tuple = self.dummy_image_processor _UpperCAmelCase : Any = self.dummy_renderer _UpperCAmelCase : Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" ,num_train_timesteps=1_024 ,prediction_type="""sample""" ,use_karras_sigmas=_SCREAMING_SNAKE_CASE ,clip_sample=_SCREAMING_SNAKE_CASE ,clip_sample_range=1.0 ,) _UpperCAmelCase : Tuple = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Dict: _UpperCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): _UpperCAmelCase : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Dict = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : int = "cpu" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : int = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase : List[str] = output.images[0] _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase : int = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ) -> int: _UpperCAmelCase : int = torch_device == "cpu" _UpperCAmelCase : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_SCREAMING_SNAKE_CASE ,relax_max_difference=_SCREAMING_SNAKE_CASE ,) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = 1 _UpperCAmelCase : Optional[int] = 2 _UpperCAmelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase : Dict = batch_size * [inputs[key]] _UpperCAmelCase : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE ,num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) _UpperCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) _UpperCAmelCase : List[str] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) _UpperCAmelCase : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _UpperCAmelCase : Any = pipe( _SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="""np""" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A_ : List[Any] = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: A_ : Union[str, Any] = json.load(f) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ,a_ ) -> List[str]: return FSMTTokenizer.from_pretrained(lowerCamelCase_ ) def _snake_case ( self ,a_ ) -> Dict: _UpperCAmelCase : Tuple = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _snake_case ( self ,a_ ,a_ ) -> int: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase : str = f'''facebook/wmt19-{pair}''' _UpperCAmelCase : Tuple = self.get_tokenizer(lowerCamelCase_ ) _UpperCAmelCase : str = self.get_model(lowerCamelCase_ ) _UpperCAmelCase : Union[str, Any] = bleu_data[pair]["""src"""] _UpperCAmelCase : Union[str, Any] = bleu_data[pair]["""tgt"""] _UpperCAmelCase : Optional[Any] = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ,truncation=lowerCamelCase_ ,padding="""longest""" ).to(lowerCamelCase_ ) _UpperCAmelCase : Tuple = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode( lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ ) _UpperCAmelCase : Optional[int] = calculate_bleu(lowerCamelCase_ ,lowerCamelCase_ ) print(lowerCamelCase_ ) self.assertGreaterEqual(scores["""bleu"""] ,lowerCamelCase_ )
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (DPMSolverSinglestepScheduler,) UpperCAmelCase = (("""num_inference_steps""", 25),) def _snake_case ( self ,**a_ ) -> Dict: _UpperCAmelCase : Union[str, Any] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_lowercase ) return config def _snake_case ( self ,a_=0 ,**a_ ) -> List[Any]: _UpperCAmelCase : Dict = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop('num_inference_steps' ,_lowercase ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Optional[int] = 0.1 * sample _UpperCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals _UpperCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase ,_UpperCAmelCase : int = sample, sample for t in range(_lowercase ,time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase : Union[str, Any] = scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self ,a_=0 ,**a_ ) -> Tuple: _UpperCAmelCase : str = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop('num_inference_steps' ,_lowercase ) _UpperCAmelCase : Optional[Any] = self.dummy_sample _UpperCAmelCase : List[Any] = 0.1 * sample _UpperCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) _UpperCAmelCase : Dict = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase : Any = scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step(_lowercase ,_lowercase ,_lowercase ,**_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ,a_=None ,**a_ ) -> List[str]: if scheduler is None: _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : Optional[int] = scheduler_class(**_lowercase ) _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(**_lowercase ) _UpperCAmelCase : Dict = scheduler_class(**_lowercase ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Any = model(_lowercase ,_lowercase ) _UpperCAmelCase : List[str] = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample return sample def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = 50 _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase : Dict = model(_lowercase ,_lowercase ) _UpperCAmelCase : str = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample _UpperCAmelCase : List[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> str: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _snake_case ( self ) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase : Tuple = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : str = self.full_loop(scheduler=_lowercase ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase : List[Any] = self.full_loop(scheduler=_lowercase ) _UpperCAmelCase : Dict = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> Optional[int]: self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase ,prediction_type=_lowercase ,sample_max_value=_lowercase ,algorithm_type='dpmsolver++' ,solver_order=_lowercase ,solver_type=_lowercase ,) def _snake_case ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _snake_case ( self ) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase ,solver_type=_lowercase ,prediction_type=_lowercase ,algorithm_type=_lowercase ,) _UpperCAmelCase : Optional[Any] = self.full_loop( solver_order=_lowercase ,solver_type=_lowercase ,prediction_type=_lowercase ,algorithm_type=_lowercase ,) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Tuple: self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def _snake_case ( self ) -> int: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> Union[str, Any]: self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type='learned_range' ) def _snake_case ( self ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_lowercase ,time_step=0 ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.full_loop() _UpperCAmelCase : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.full_loop(use_karras_sigmas=_lowercase ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = self.full_loop(prediction_type='v_prediction' ) _UpperCAmelCase : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.full_loop(prediction_type='v_prediction' ,use_karras_sigmas=_lowercase ) _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config(thresholding=_lowercase ,dynamic_thresholding_ratio=0 ) _UpperCAmelCase : Optional[Any] = scheduler_class(**_lowercase ) _UpperCAmelCase : int = 10 _UpperCAmelCase : int = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = model(_lowercase ,_lowercase ) _UpperCAmelCase : List[str] = scheduler.step(_lowercase ,_lowercase ,_lowercase ).prev_sample assert sample.dtype == torch.floataa
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=4 ,) -> List[str]: _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Tuple = use_attention_mask _UpperCAmelCase : List[str] = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : str = num_choices def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=_UpperCAmelCase ,) return config, input_ids, attention_mask def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowercase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[int] = FlaxDistilBertModelTester(self ) @slow def _snake_case ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _UpperCAmelCase : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _UpperCAmelCase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Optional[int] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase )[0] _UpperCAmelCase : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,_UpperCAmelCase ) _UpperCAmelCase : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_UpperCAmelCase ,atol=1E-4 ) )
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} A_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } A_ : List[Any] = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } A_ : List[str] = '''▁''' class lowercase ( _a ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_ = None ,**a_ ,) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : int = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token _UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) _UpperCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _UpperCAmelCase : Tuple = len(self.sp_model ) - 1 _UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _snake_case ( self ,a_ ,a_ = None ) -> Union[str, Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> Dict: _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ) -> str: return len(self.sp_model ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self ,a_ ) -> Any: return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def _snake_case ( self ,a_ ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _snake_case ( self ,a_ ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _snake_case ( self ,a_ ) -> List[str]: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : str = """""" _UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _UpperCAmelCase : List[str] = True _UpperCAmelCase : Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: _UpperCAmelCase : Tuple = self.__dict__.copy() _UpperCAmelCase : str = None return state def __setstate__( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : Any = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self ,a_ ,a_ = None ) -> Optional[Any]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,"""wb""" ) as fi: _UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(a__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a__ , a__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants A_ : List[Any] = 3_0_0 # TEMPERATURE (unit = K) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import math def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = input("""Enter message: """ ) _UpperCAmelCase : Tuple = int(input(F'''Enter key [2-{len(lowerCAmelCase_ ) - 1}]: ''' ) ) _UpperCAmelCase : List[str] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): _UpperCAmelCase : int = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): _UpperCAmelCase : Optional[int] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [''''''] * key for col in range(lowerCAmelCase_ ): _UpperCAmelCase : Any = col while pointer < len(lowerCAmelCase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = math.ceil(len(lowerCAmelCase_ ) / key ) _UpperCAmelCase : Union[str, Any] = key _UpperCAmelCase : Dict = (num_cols * num_rows) - len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = [''''''] * num_cols _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _UpperCAmelCase : Tuple = 0 row += 1 return "".join(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' from __future__ import annotations A_ : List[str] = 1_0 def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[int] = max(lowerCamelCase__ ) while placement <= max_digit: # declare and initialize empty buckets _UpperCAmelCase : Dict = [[] for _ in range(lowerCamelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: _UpperCAmelCase : Tuple = int((i / placement) % RADIX ) buckets[tmp].append(lowerCamelCase__ ) # put each buckets' contents into list_of_ints _UpperCAmelCase : Optional[int] = 0 for b in range(lowerCamelCase__ ): for i in buckets[b]: _UpperCAmelCase : Union[str, Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split A_ : List[Any] = datasets.load_iris() A_ : List[str] = np.array(data["""data"""]) A_ : List[Any] = np.array(data["""target"""]) A_ : Union[str, Any] = data["""target_names"""] A_ , A_ , A_ , A_ : str = train_test_split(X, y) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified _UpperCAmelCase : Tuple = [] for data_point in data: _UpperCAmelCase : int = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCAmelCase : List[Any] = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCAmelCase : Tuple = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' import csv import tweepy # Twitter API credentials A_ : List[Any] = '' A_ : Union[str, Any] = '' A_ : List[Any] = '' A_ : Optional[int] = '' def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = tweepy.OAuthHandler(UpperCamelCase__ , UpperCamelCase__ ) auth.set_access_token(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = tweepy.API(UpperCamelCase__ ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase : str = api.user_timeline(screen_name=UpperCamelCase__ , count=200 ) # save most recent tweets alltweets.extend(UpperCamelCase__ ) # save the id of the oldest tweet less one _UpperCAmelCase : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(UpperCamelCase__ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase : List[Any] = api.user_timeline( screen_name=UpperCamelCase__ , count=200 , max_id=UpperCamelCase__ ) # save most recent tweets alltweets.extend(UpperCamelCase__ ) # update the id of the oldest tweet less one _UpperCAmelCase : Tuple = alltweets[-1].id - 1 print(F'''...{len(UpperCamelCase__ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase : List[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , """w""" ) as f: _UpperCAmelCase : Any = csv.writer(UpperCamelCase__ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(UpperCamelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' from math import factorial def snake_case_ ( lowerCAmelCase_ = 20 )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase : int = n // 2 return int(factorial(UpperCAmelCase_ ) / (factorial(UpperCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ) -> str: _UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(a_ ) @classmethod def _snake_case ( cls ) -> Tuple: try: delete_repo(token=cls._token ,repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-config""" ) except HTTPError: pass def _snake_case ( self ) -> Tuple: _UpperCAmelCase : int = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub("""test-config""" ,use_auth_token=self._token ) _UpperCAmelCase : Optional[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ ,getattr(a_ ,a_ ) ) # Reset repo delete_repo(token=self._token ,repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a_ ,repo_id="""test-config""" ,push_to_hub=a_ ,use_auth_token=self._token ) _UpperCAmelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ ,getattr(a_ ,a_ ) ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" ,use_auth_token=self._token ) _UpperCAmelCase : Optional[Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ ,getattr(a_ ,a_ ) ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a_ ,repo_id="""valid_org/test-config-org""" ,push_to_hub=a_ ,use_auth_token=self._token ) _UpperCAmelCase : Dict = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a_ ,getattr(a_ ,a_ ) ) def _snake_case ( self ) -> int: CustomConfig.register_for_auto_class() _UpperCAmelCase : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{"""AutoConfig""": """custom_configuration.CustomConfig"""} ) _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' ,trust_remote_code=a_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,"""CustomConfig""" ) self.assertEqual(new_config.attribute ,42 ) class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase : Any = c.n_embd + 1 # int _UpperCAmelCase : List[Any] = c.resid_pdrop + 1.0 # float _UpperCAmelCase : Optional[int] = not c.scale_attn_weights # bool _UpperCAmelCase : str = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(a_ ,c.n_embd ,"""mismatch for key: n_embd""" ) self.assertEqual(a_ ,c.resid_pdrop ,"""mismatch for key: resid_pdrop""" ) self.assertEqual(a_ ,c.scale_attn_weights ,"""mismatch for key: scale_attn_weights""" ) self.assertEqual(a_ ,c.summary_type ,"""mismatch for key: summary_type""" ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[int] = PretrainedConfig() _UpperCAmelCase : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( a_ ,["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) _UpperCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(a_ ,a_ )] if len(a_ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f''' {', '.join(a_ )}.''' ) def _snake_case ( self ) -> Optional[int]: with self.assertRaises(a_ ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) _UpperCAmelCase : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ,subfolder="""bert""" ) self.assertIsNotNone(a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : int = mock.Mock() _UpperCAmelCase : Tuple = 500 _UpperCAmelCase : str = {} _UpperCAmelCase : Dict = HTTPError _UpperCAmelCase : Dict = {} # Download this model to make sure it's in the cache. _UpperCAmelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" ,return_value=a_ ) as mock_head: _UpperCAmelCase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = AutoConfig.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : Union[str, Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = 2 json.dump(configuration.to_dict() ,open(os.path.join(a_ ,"""config.4.0.0.json""" ) ,"""w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase : Dict = AutoConfig.from_pretrained(a_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase : Optional[Any] = ["config.42.0.0.json"] _UpperCAmelCase : Optional[int] = 768 configuration.save_pretrained(a_ ) shutil.move(os.path.join(a_ ,"""config.4.0.0.json""" ) ,os.path.join(a_ ,"""config.42.0.0.json""" ) ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(a_ ) self.assertEqual(new_configuration.hidden_size ,768 ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = "hf-internal-testing/test-two-configs" import transformers as new_transformers _UpperCAmelCase : Optional[int] = "v4.0.0" _UpperCAmelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( a_ ,return_unused_kwargs=a_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(a_ ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase : Union[str, Any] = "v3.0.0" _UpperCAmelCase : Dict = old_transformers.models.auto.AutoConfig.from_pretrained(a_ ) self.assertEqual(old_configuration.hidden_size ,768 )
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' A_ : Union[str, Any] = 8.314_4598 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A_ : Union[str, Any] = 3_0_0 A_ : Union[str, Any] = 2_8 A_ : List[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from __future__ import annotations class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase ,_UpperCAmelCase : List[Any] = text, pattern _UpperCAmelCase ,_UpperCAmelCase : Tuple = len(lowercase_ ), len(lowercase_ ) def _snake_case ( self ,a_ ) -> Optional[Any]: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _snake_case ( self ,a_ ) -> int: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _snake_case ( self ) -> Any: # searches pattern in text and returns index positions _UpperCAmelCase : Any = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCAmelCase : Optional[Any] = self.mismatch_in_text(lowercase_ ) if mismatch_index == -1: positions.append(lowercase_ ) else: _UpperCAmelCase : Union[str, Any] = self.match_in_pattern(self.text[mismatch_index] ) _UpperCAmelCase : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ : Tuple = 'ABAABA' A_ : Any = 'AB' A_ : Optional[int] = BoyerMooreSearch(text, pattern) A_ : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : str = AutoConfig.from_pretrained(lowercase_ ) _UpperCAmelCase : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) _UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(lowercase_ ) _UpperCAmelCase : int = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _UpperCAmelCase : Tuple = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase : Optional[int] = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase : Optional[Any] = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`""" """ attribute with a value from [\'local\', \'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase : Dict = F'''layers_{str(lowercase_ )}''' # Self-Attention _UpperCAmelCase : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _UpperCAmelCase : Union[str, Any] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _UpperCAmelCase : str = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _UpperCAmelCase : List[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase : Dict = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _UpperCAmelCase : Optional[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _UpperCAmelCase : Optional[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _UpperCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _UpperCAmelCase : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _UpperCAmelCase : int = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _UpperCAmelCase : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _UpperCAmelCase : List[Any] = flax_model.params["""encoder"""]["""block"""][str(lowercase_ )]["""layer"""] _UpperCAmelCase : Optional[Any] = tax_attention_key _UpperCAmelCase : Tuple = tax_attention_out _UpperCAmelCase : Optional[int] = tax_attention_query _UpperCAmelCase : str = tax_attention_value _UpperCAmelCase : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase : Optional[int] = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase : Optional[int] = tax_mlp_wi_a _UpperCAmelCase : Dict = tax_mlp_wi_a else: _UpperCAmelCase : List[Any] = tax_mlp_wi _UpperCAmelCase : Tuple = tax_mlp_wo _UpperCAmelCase : Optional[Any] = tax_mlp_layer_norm _UpperCAmelCase : Dict = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase : List[str] = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _UpperCAmelCase : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase : str = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _UpperCAmelCase : Optional[int] = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase : Union[str, Any] = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _UpperCAmelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase : Optional[int] = F'''layers_{str(lowercase_ )}''' # Self-Attention _UpperCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _UpperCAmelCase : int = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _UpperCAmelCase : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _UpperCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _UpperCAmelCase : int = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _UpperCAmelCase : Optional[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _UpperCAmelCase : int = tax_enc_dec_attention_module["""key"""]["""kernel"""] _UpperCAmelCase : List[Any] = tax_enc_dec_attention_module["""out"""]["""kernel"""] _UpperCAmelCase : Optional[int] = tax_enc_dec_attention_module["""query"""]["""kernel"""] _UpperCAmelCase : List[str] = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _UpperCAmelCase : Union[str, Any] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _UpperCAmelCase : Dict = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _UpperCAmelCase : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _UpperCAmelCase : Tuple = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _UpperCAmelCase : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _UpperCAmelCase : Tuple = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _UpperCAmelCase : List[Any] = flax_model.params["""decoder"""]["""block"""][str(lowercase_ )]["""layer"""] _UpperCAmelCase : Any = tax_attention_key _UpperCAmelCase : Tuple = tax_attention_out _UpperCAmelCase : Union[str, Any] = tax_attention_query _UpperCAmelCase : Tuple = tax_attention_value _UpperCAmelCase : List[Any] = tax_pre_attention_layer_norm _UpperCAmelCase : int = tax_enc_dec_attention_key _UpperCAmelCase : Any = tax_enc_dec_attention_out _UpperCAmelCase : Union[str, Any] = tax_enc_dec_attention_query _UpperCAmelCase : Dict = tax_enc_dec_attention_value _UpperCAmelCase : Tuple = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase : Optional[int] = tax_mlp_wi_a _UpperCAmelCase : List[str] = tax_mlp_wi_a else: _UpperCAmelCase : int = tax_mlp_wi _UpperCAmelCase : str = tax_mlp_wo _UpperCAmelCase : List[Any] = txa_mlp_layer_norm _UpperCAmelCase : Tuple = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase : Tuple = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _UpperCAmelCase : List[Any] = txa_decoder_norm # Only for layer 0: _UpperCAmelCase : Optional[Any] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _UpperCAmelCase : int = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase : Optional[Any] = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _UpperCAmelCase : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase : int = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(lowercase_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) A_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : List[Any] = """▁""" A_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} A_ : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } A_ : str = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_ = None ,**a_ ,) -> None: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken(__A ,lstrip=__A ,rstrip=__A ) if isinstance(__A ,__A ) else mask_token _UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A ,eos_token=__A ,unk_token=__A ,sep_token=__A ,cls_token=__A ,pad_token=__A ,mask_token=__A ,sp_model_kwargs=self.sp_model_kwargs ,**__A ,) _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) _UpperCAmelCase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : int = len(self.sp_model ) + self.fairseq_offset _UpperCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> int: _UpperCAmelCase : Any = self.__dict__.copy() _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,a_ ) -> Tuple: _UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] _UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A ,token_ids_a=__A ,already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : List[Any] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ) -> int: _UpperCAmelCase : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self ,a_ ) -> List[str]: return self.sp_model.encode(__A ,out_type=__A ) def _snake_case ( self ,a_ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : str = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self ,a_ ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self ,a_ ) -> List[Any]: _UpperCAmelCase : str = """""".join(__A ).replace(__A ,""" """ ).strip() return out_string def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( __A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A ,"""wb""" ) as fi: _UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase = ['vqvae'] def __init__( self ,a_ ,a_ ,a_ ,a_ ,) -> Any: super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE ,scheduler=_SCREAMING_SNAKE_CASE ,mel=_SCREAMING_SNAKE_CASE ,vqvae=_SCREAMING_SNAKE_CASE ) def _snake_case ( self ) -> int: return 50 if isinstance(self.scheduler ,_SCREAMING_SNAKE_CASE ) else 1_000 @torch.no_grad() def __call__( self ,a_ = 1 ,a_ = None ,a_ = None ,a_ = 0 ,a_ = 0 ,a_ = None ,a_ = None ,a_ = 0 ,a_ = 0 ,a_ = None ,a_ = 0 ,a_ = None ,a_ = None ,a_=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _UpperCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _UpperCAmelCase : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCAmelCase : List[str] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_SCREAMING_SNAKE_CASE ,device=self.device ,) _UpperCAmelCase : List[str] = noise _UpperCAmelCase : Tuple = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = np.frombuffer(input_image.tobytes() ,dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _UpperCAmelCase : str = (input_image / 255) * 2 - 1 _UpperCAmelCase : List[str] = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _UpperCAmelCase : List[str] = self.vqvae.encode(torch.unsqueeze(_SCREAMING_SNAKE_CASE ,0 ) ).latent_dist.sample( generator=_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase : List[str] = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCAmelCase : int = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,self.scheduler.timesteps[start_step - 1] ) _UpperCAmelCase : Optional[int] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCAmelCase : Optional[int] = int(mask_start_secs * pixels_per_second ) _UpperCAmelCase : Tuple = int(mask_end_secs * pixels_per_second ) _UpperCAmelCase : Dict = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = self.unet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )["""sample"""] else: _UpperCAmelCase : int = self.unet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )["""sample"""] if isinstance(self.scheduler ,_SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE ,timestep=_SCREAMING_SNAKE_CASE ,sample=_SCREAMING_SNAKE_CASE ,eta=_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,)["""prev_sample"""] else: _UpperCAmelCase : Optional[Any] = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE ,timestep=_SCREAMING_SNAKE_CASE ,sample=_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,)["""prev_sample"""] if mask is not None: if mask_start > 0: _UpperCAmelCase : Union[str, Any] = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCAmelCase : int = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCAmelCase : List[Any] = 1 / self.vqvae.config.scaling_factor * images _UpperCAmelCase : Dict = self.vqvae.decode(_SCREAMING_SNAKE_CASE )["""sample"""] _UpperCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _UpperCAmelCase : Union[str, Any] = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _UpperCAmelCase : int = (images * 255).round().astype("""uint8""" ) _UpperCAmelCase : Optional[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_SCREAMING_SNAKE_CASE ,mode="""RGB""" ).convert("""L""" ) for _ in images) ) _UpperCAmelCase : List[Any] = [self.mel.image_to_audio(_SCREAMING_SNAKE_CASE ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_SCREAMING_SNAKE_CASE )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_SCREAMING_SNAKE_CASE ) ) @torch.no_grad() def _snake_case ( self ,a_ ,a_ = 50 ) -> np.ndarray: assert isinstance(self.scheduler ,_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = np.array( [np.frombuffer(image.tobytes() ,dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _UpperCAmelCase : str = (sample / 255) * 2 - 1 _UpperCAmelCase : int = torch.Tensor(_SCREAMING_SNAKE_CASE ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _UpperCAmelCase : Any = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCAmelCase : Tuple = self.scheduler.alphas_cumprod[t] _UpperCAmelCase : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCAmelCase : List[str] = 1 - alpha_prod_t _UpperCAmelCase : Dict = self.unet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )["""sample"""] _UpperCAmelCase : str = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCAmelCase : List[str] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCAmelCase : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _snake_case ( a_ ,a_ ,a_ ) -> torch.Tensor: _UpperCAmelCase : Optional[int] = acos(torch.dot(torch.flatten(_SCREAMING_SNAKE_CASE ) ,torch.flatten(_SCREAMING_SNAKE_CASE ) ) / torch.norm(_SCREAMING_SNAKE_CASE ) / torch.norm(_SCREAMING_SNAKE_CASE ) ) return sin((1 - alpha) * theta ) * xa / sin(_SCREAMING_SNAKE_CASE ) + sin(alpha * theta ) * xa / sin(_SCREAMING_SNAKE_CASE )
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : int = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) _UpperCAmelCase : Any = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[Any] = f'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() _UpperCAmelCase : int = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() )
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = get_activation("""swish""" ) self.assertIsInstance(snake_case__ ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Any = get_activation("""silu""" ) self.assertIsInstance(snake_case__ ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = get_activation("""mish""" ) self.assertIsInstance(snake_case__ ,nn.Mish ) self.assertEqual(act(torch.tensor(-200 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Dict = get_activation("""gelu""" ) self.assertIsInstance(snake_case__ ,nn.GELU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def snake_case_ ( lowerCAmelCase_ )-> tuple: '''simple docstring''' return (data["data"], data["target"]) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> XGBClassifier: '''simple docstring''' _UpperCAmelCase : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : List[str] = load_iris() _UpperCAmelCase : Optional[int] = data_handling(_lowercase ) _UpperCAmelCase : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.2_5 ) _UpperCAmelCase : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCAmelCase : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = b.T _UpperCAmelCase : Optional[int] = np.sum(np.square(lowerCAmelCase_ ) , axis=1 ) _UpperCAmelCase : Union[str, Any] = np.sum(np.square(lowerCAmelCase_ ) , axis=0 ) _UpperCAmelCase : Optional[int] = np.matmul(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = x.reshape(-1 , 3 ) _UpperCAmelCase : List[Any] = squared_euclidean_distance(lowerCAmelCase_ , lowerCAmelCase_ ) return np.argmin(lowerCAmelCase_ , axis=1 ) class lowercase ( lowerCAmelCase__ ): """simple docstring""" UpperCAmelCase = ["pixel_values"] def __init__( self ,a_ = None ,a_ = True ,a_ = None ,a_ = PILImageResampling.BILINEAR ,a_ = True ,a_ = True ,**a_ ,) -> Dict: super().__init__(**a__ ) _UpperCAmelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _UpperCAmelCase : Dict = get_size_dict(a__ ) _UpperCAmelCase : List[str] = np.array(a__ ) if clusters is not None else None _UpperCAmelCase : Dict = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : str = resample _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : Dict = do_color_quantize def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BILINEAR ,a_ = None ,**a_ ,) -> Optional[Any]: _UpperCAmelCase : Optional[int] = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( a__ ,size=(size["""height"""], size["""width"""]) ,resample=a__ ,data_format=a__ ,**a__ ) def _snake_case ( self ,a_ ,a_ = None ,) -> int: _UpperCAmelCase : List[str] = rescale(image=a__ ,scale=1 / 127.5 ,data_format=a__ ) _UpperCAmelCase : Any = image - 1 return image def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> List[str]: _UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Union[str, Any] = size if size is not None else self.size _UpperCAmelCase : List[str] = get_size_dict(a__ ) _UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample _UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase : Union[str, Any] = clusters if clusters is not None else self.clusters _UpperCAmelCase : Tuple = np.array(a__ ) _UpperCAmelCase : Any = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Dict = [to_numpy_array(a__ ) for image in images] if do_resize: _UpperCAmelCase : Tuple = [self.resize(image=a__ ,size=a__ ,resample=a__ ) for image in images] if do_normalize: _UpperCAmelCase : Dict = [self.normalize(image=a__ ) for image in images] if do_color_quantize: _UpperCAmelCase : Tuple = [to_channel_dimension_format(a__ ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase : Optional[Any] = np.array(a__ ) _UpperCAmelCase : Any = color_quantize(a__ ,a__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _UpperCAmelCase : Tuple = images.shape[0] _UpperCAmelCase : Any = images.reshape(a__ ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase : Optional[Any] = list(a__ ) else: _UpperCAmelCase : Any = [to_channel_dimension_format(a__ ,a__ ) for image in images] _UpperCAmelCase : Optional[int] = {"""input_ids""": images} return BatchFeature(data=a__ ,tensor_type=a__ )
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A_ : Union[str, Any] = random.Random() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=1.0 , lowerCAmelCase_=None , lowerCAmelCase_=None )-> Dict: '''simple docstring''' if rng is None: _UpperCAmelCase : List[str] = global_rng _UpperCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self ,a_ ,a_=7 ,a_=400 ,a_=2_000 ,a_=2_048 ,a_=128 ,a_=1 ,a_=512 ,a_=30 ,a_=44_100 ,) -> str: _UpperCAmelCase : List[str] = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Optional[Any] = min_seq_length _UpperCAmelCase : Dict = max_seq_length _UpperCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : Tuple = spectrogram_length _UpperCAmelCase : Tuple = feature_size _UpperCAmelCase : Union[str, Any] = num_audio_channels _UpperCAmelCase : Optional[int] = hop_length _UpperCAmelCase : List[str] = chunk_length _UpperCAmelCase : str = sampling_rate def _snake_case ( self ) -> List[str]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _snake_case ( self ,a_=False ,a_=False ) -> int: def _flatten(a_ ): return list(itertools.chain(*lowerCAmelCase_ ) ) if equal_length: _UpperCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _UpperCAmelCase : Tuple = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = TvltFeatureExtractor def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[Any] = TvltFeatureExtractionTester(self ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ ,"""sampling_rate""" ) ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[Any] = feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = feat_extract_first.to_dict() _UpperCAmelCase : Dict = feat_extract_second.to_dict() _UpperCAmelCase : Any = dict_first.pop("""mel_filters""" ) _UpperCAmelCase : List[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCAmelCase_ ,lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ ,lowerCAmelCase_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase_ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) _UpperCAmelCase : Dict = self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = feat_extract_first.to_dict() _UpperCAmelCase : Any = feat_extract_second.to_dict() _UpperCAmelCase : Dict = dict_first.pop("""mel_filters""" ) _UpperCAmelCase : List[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCAmelCase_ ,lowerCAmelCase_ ) ) self.assertEqual(lowerCAmelCase_ ,lowerCAmelCase_ ) def _snake_case ( self ) -> Dict: # Initialize feature_extractor _UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _UpperCAmelCase : Optional[int] = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _UpperCAmelCase : Optional[Any] = feature_extractor(lowerCAmelCase_ ,return_tensors="""np""" ,sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _UpperCAmelCase : int = feature_extractor( lowerCAmelCase_ ,return_tensors="""np""" ,sampling_rate=44_100 ,mask_audio=lowerCAmelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = feature_extractor(lowerCAmelCase_ ,return_tensors="""np""" ,sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _snake_case ( self ,a_ ) -> Optional[Any]: _UpperCAmelCase : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech _UpperCAmelCase : Union[str, Any] = ds.sort("""id""" ).select(range(lowerCAmelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _snake_case ( self ) -> int: _UpperCAmelCase : int = self._load_datasamples(1 ) _UpperCAmelCase : List[Any] = TvltFeatureExtractor() _UpperCAmelCase : Tuple = feature_extractor(lowerCAmelCase_ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) _UpperCAmelCase : str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCAmelCase_ ,atol=1E-4 ) )
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ : Dict = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(_lowerCAmelCase ) class lowercase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = """rag""" UpperCAmelCase = True def __init__( self ,a_=None ,a_=True ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=" / " ,a_=" // " ,a_=5 ,a_=300 ,a_=768 ,a_=8 ,a_="wiki_dpr" ,a_="train" ,a_="compressed" ,a_=None ,a_=None ,a_=False ,a_=False ,a_=0.0 ,a_=True ,a_=False ,a_=False ,a_=False ,a_=True ,a_=None ,**a_ ,) -> str: super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_ ,pad_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,decoder_start_token_id=SCREAMING_SNAKE_CASE_ ,forced_eos_token_id=SCREAMING_SNAKE_CASE_ ,is_encoder_decoder=SCREAMING_SNAKE_CASE_ ,prefix=SCREAMING_SNAKE_CASE_ ,vocab_size=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCAmelCase : Optional[Any] = kwargs.pop('question_encoder' ) _UpperCAmelCase : Tuple = question_encoder_config.pop('model_type' ) _UpperCAmelCase : List[Any] = kwargs.pop('generator' ) _UpperCAmelCase : List[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _UpperCAmelCase : List[str] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = reduce_loss _UpperCAmelCase : List[Any] = label_smoothing _UpperCAmelCase : Optional[Any] = exclude_bos_score _UpperCAmelCase : Optional[Any] = do_marginalize _UpperCAmelCase : Union[str, Any] = title_sep _UpperCAmelCase : int = doc_sep _UpperCAmelCase : Dict = n_docs _UpperCAmelCase : List[Any] = max_combined_length _UpperCAmelCase : Dict = dataset _UpperCAmelCase : Optional[int] = dataset_split _UpperCAmelCase : Optional[int] = index_name _UpperCAmelCase : List[Any] = retrieval_vector_size _UpperCAmelCase : List[str] = retrieval_batch_size _UpperCAmelCase : Optional[int] = passages_path _UpperCAmelCase : Optional[int] = index_path _UpperCAmelCase : Optional[Any] = use_dummy_dataset _UpperCAmelCase : Optional[Any] = output_retrieved _UpperCAmelCase : Tuple = do_deduplication _UpperCAmelCase : Optional[int] = use_cache if self.forced_eos_token_id is None: _UpperCAmelCase : Optional[Any] = getattr(self.generator ,'forced_eos_token_id' ,SCREAMING_SNAKE_CASE_ ) @classmethod def _snake_case ( cls ,a_ ,a_ ,**a_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.question_encoder.to_dict() _UpperCAmelCase : Tuple = self.generator.to_dict() _UpperCAmelCase : Any = self.__class__.model_type return output
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ : int = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' A_ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } A_ : str = {value: key for key, value in encode_dict.items()} def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' if set(lowerCamelCase_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only \'A\', \'B\' and spaces""" ) _UpperCAmelCase : Optional[int] = '' for word in coded.split(): while len(lowerCamelCase_ ) != 0: decoded += decode_dict[word[:5]] _UpperCAmelCase : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( __a ): """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=False ,a_=True ,a_="None" ,a_=3 ,a_=4 ,a_=None ,) -> Dict: _UpperCAmelCase : str = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : List[Any] = relative_attention _UpperCAmelCase : Optional[int] = position_biased_input _UpperCAmelCase : Optional[Any] = pos_att_type _UpperCAmelCase : Any = scope def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Optional[int]: return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = self.get_config() _UpperCAmelCase : Optional[Any] = 300 return config def _snake_case ( self ,a_ ) -> str: self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : Union[str, Any] = DebertaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Dict = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ )[0] _UpperCAmelCase : List[Any] = model(UpperCamelCase__ ,token_type_ids=UpperCamelCase__ )[0] _UpperCAmelCase : Any = model(UpperCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : str = DebertaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : Tuple = self.num_labels _UpperCAmelCase : str = DebertaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Any = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase__ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Any = DebertaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : Optional[Any] = DebertaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,start_positions=UpperCamelCase__ ,end_positions=UpperCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ) -> Any: _UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : Dict = config_and_inputs _UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( __a , __a , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> Any: _UpperCAmelCase : Tuple = DebertaModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self ,config_class=UpperCamelCase__ ,hidden_size=37 ) def _snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase__ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase__ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase__ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase__ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase__ ) @slow def _snake_case ( self ) -> Optional[int]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = DebertaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def _snake_case ( self ) -> Tuple: pass @slow def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : int = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) _UpperCAmelCase : List[str] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _UpperCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(UpperCamelCase__ ,attention_mask=UpperCamelCase__ )[0] # compare the actual values for a slice. _UpperCAmelCase : Dict = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,UpperCamelCase__ ,atol=1E-4 ) ,f'''{output[:, 1:4, 1:4]}''' )
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None )-> Dict: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' _UpperCAmelCase : Union[str, Any] = nn.Parameter(snake_case_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' _UpperCAmelCase : Tuple = nn.Parameter(snake_case_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = np.asarray(weights[0] ) _UpperCAmelCase : Tuple = np.asarray(weights[1] ) _UpperCAmelCase : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case_ ).view(-1 , snake_case_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = np.asarray(weights[0] ) _UpperCAmelCase : List[Any] = np.asarray(weights[1] ) _UpperCAmelCase : Optional[Any] = np.asarray(weights[2] ) _UpperCAmelCase : Union[str, Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case_ ).view(-1 , snake_case_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = weights[0][0][0] _UpperCAmelCase : int = np.asarray(layer_norm_a[0] ) _UpperCAmelCase : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # lsh weights + output _UpperCAmelCase : Optional[int] = weights[0][1] if len(snake_case_ ) < 4: set_layer_weights_in_torch_lsh(snake_case_ , torch_block.attention , snake_case_ ) else: set_layer_weights_in_torch_local(snake_case_ , torch_block.attention , snake_case_ ) # intermediate weighs _UpperCAmelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case_ ) == 4: _UpperCAmelCase : int = intermediate_weights[2] # layernorm 2 _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[0][0] ) _UpperCAmelCase : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # intermediate dense _UpperCAmelCase : List[str] = np.asarray(intermediate_weights[1][0] ) _UpperCAmelCase : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) # intermediate out _UpperCAmelCase : Any = np.asarray(intermediate_weights[4][0] ) _UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = torch_model.reformer # word embeds _UpperCAmelCase : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case_ ) , ) if isinstance(weights[3] , snake_case_ ): _UpperCAmelCase : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCAmelCase : str = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' _UpperCAmelCase : int = nn.Parameter(torch.tensor(snake_case_ ) ) _UpperCAmelCase : Union[str, Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCAmelCase : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case_ , snake_case_ , snake_case_ ) # output layer norm _UpperCAmelCase : Any = np.asarray(weights[7][0] ) _UpperCAmelCase : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # output embeddings _UpperCAmelCase : Tuple = np.asarray(weights[9][0] ) _UpperCAmelCase : Optional[int] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = ReformerConfig.from_json_file(snake_case_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase : Dict = ReformerModelWithLMHead(snake_case_ ) with open(snake_case_ , """rb""" ) as f: _UpperCAmelCase : Tuple = pickle.load(snake_case_ )["""weights"""] set_model_weights_in_torch(snake_case_ , snake_case_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ : Any = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowercase ( _a ): """simple docstring""" UpperCAmelCase = """philschmid/bart-large-cnn-samsum""" UpperCAmelCase = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCAmelCase = """summarizer""" UpperCAmelCase = AutoTokenizer UpperCAmelCase = AutoModelForSeqaSeqLM UpperCAmelCase = ["""text"""] UpperCAmelCase = ["""text"""] def _snake_case ( self ,a_ ) -> Dict: return self.pre_processor(__lowerCAmelCase ,return_tensors="""pt""" ,truncation=__lowerCAmelCase ) def _snake_case ( self ,a_ ) -> Optional[Any]: return self.model.generate(**__lowerCAmelCase )[0] def _snake_case ( self ,a_ ) -> Optional[int]: return self.pre_processor.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' import numpy as np def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) _UpperCAmelCase : Union[str, Any] = """The dog is cute and lives in the garden house""" _UpperCAmelCase : int = jnp.array([tokenizer.encode(a_ )] ) _UpperCAmelCase : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase : Optional[int] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _UpperCAmelCase : Optional[Any] = model(a_ )["""last_hidden_state"""] self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,a_ ,atol=1E-3 ) )
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(lowerCAmelCase__ ) , """Postfix""".center(lowerCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , ("""""".join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": _UpperCAmelCase : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase : List[Any] = '''(''' # change ")" to "(" return (infix_2_postfix("""""".join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : str = input("""\nEnter an Infix Equation = """) # Input an Infix equation A_ : Any = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer A_ : Dict = logging.get_logger(__name__) A_ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : List[str] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } A_ : Optional[Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } A_ : Optional[int] = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self ,a_=None ,a_=None ,a_=True ,a_="[UNK]" ,a_="[SEP]" ,a_="[PAD]" ,a_="[CLS]" ,a_="[MASK]" ,a_=True ,a_=None ,**a_ ,) -> Optional[int]: super().__init__( a_ ,tokenizer_file=a_ ,do_lower_case=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,tokenize_chinese_chars=a_ ,strip_accents=a_ ,**a_ ,) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,a_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,a_ ) != tokenize_chinese_chars ): _UpperCAmelCase : List[str] = getattr(a_ ,normalizer_state.pop("""type""" ) ) _UpperCAmelCase : Dict = do_lower_case _UpperCAmelCase : Optional[int] = strip_accents _UpperCAmelCase : Dict = tokenize_chinese_chars _UpperCAmelCase : int = normalizer_class(**a_ ) _UpperCAmelCase : Union[str, Any] = do_lower_case def _snake_case ( self ,a_ ,a_=None ) -> str: _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: _UpperCAmelCase : List[str] = self._tokenizer.model.save(a_ ,name=a_ ) return tuple(a_ )
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A_ = False, False, False @dataclass class lowercase : """simple docstring""" UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = None # Automatically constructed UpperCAmelCase = "dict" UpperCAmelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase = field(default="""Audio""" , init=lowercase_ , repr=lowercase_ ) def __call__( self ) -> Tuple: return self.pa_type def _snake_case ( self ,a_ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(a__ ,a__ ): return {"bytes": None, "path": value} elif isinstance(a__ ,a__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _UpperCAmelCase : List[str] = BytesIO() sf.write(a__ ,value["""array"""] ,value["""sampling_rate"""] ,format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _UpperCAmelCase : List[Any] = np.frombuffer(value["""bytes"""] ,dtype=np.intaa ).astype(np.floataa ) / 32_767 else: _UpperCAmelCase : Optional[Any] = np.memmap(value["""path"""] ,dtype="""h""" ,mode="""r""" ).astype(np.floataa ) / 32_767 _UpperCAmelCase : Dict = BytesIO(bytes() ) sf.write(a__ ,a__ ,value["""sampling_rate"""] ,format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _snake_case ( self ,a_ ,a_ = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) _UpperCAmelCase ,_UpperCAmelCase : List[Any] = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err _UpperCAmelCase : int = xsplitext(a__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: _UpperCAmelCase : str = token_per_repo_id or {} _UpperCAmelCase : Optional[int] = path.split("""::""" )[-1] try: _UpperCAmelCase : Optional[Any] = string_to_dict(a__ ,config.HUB_DATASETS_URL )["""repo_id"""] _UpperCAmelCase : Tuple = token_per_repo_id[repo_id] except (ValueError, KeyError): _UpperCAmelCase : Dict = None with xopen(a__ ,"""rb""" ,use_auth_token=a__ ) as f: _UpperCAmelCase ,_UpperCAmelCase : str = sf.read(a__ ) else: _UpperCAmelCase ,_UpperCAmelCase : str = sf.read(a__ ) _UpperCAmelCase : Any = array.T if self.mono: _UpperCAmelCase : List[str] = librosa.to_mono(a__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _UpperCAmelCase : List[Any] = librosa.resample(a__ ,orig_sr=a__ ,target_sr=self.sampling_rate ) _UpperCAmelCase : int = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _snake_case ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _snake_case ( self ,a_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): _UpperCAmelCase : str = pa.array([None] * len(a__ ) ,type=pa.binary() ) _UpperCAmelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _UpperCAmelCase : List[Any] = pa.array([None] * len(a__ ) ,type=pa.string() ) _UpperCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): _UpperCAmelCase : Dict = pa.array([Audio().encode_example(a__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _UpperCAmelCase : List[str] = storage.field("""bytes""" ) else: _UpperCAmelCase : int = pa.array([None] * len(a__ ) ,type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _UpperCAmelCase : Tuple = storage.field("""path""" ) else: _UpperCAmelCase : Optional[int] = pa.array([None] * len(a__ ) ,type=pa.string() ) _UpperCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) return array_cast(a__ ,self.pa_type ) def _snake_case ( self ,a_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(a_ ): with xopen(a__ ,"""rb""" ) as f: _UpperCAmelCase : Tuple = f.read() return bytes_ _UpperCAmelCase : Optional[int] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) _UpperCAmelCase : Dict = pa.array( [os.path.basename(a__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] ,type=pa.string() ,) _UpperCAmelCase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=bytes_array.is_null() ) return array_cast(a__ ,self.pa_type )
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> Union[str, Any]: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[Any] = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase_ ) _UpperCAmelCase : int = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCAmelCase : List[Any] = dataset_size < in_memory_max_size else: _UpperCAmelCase : List[Any] = False _UpperCAmelCase : str = is_small_dataset(UpperCAmelCase_ ) assert result == expected
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[str] = start _UpperCAmelCase : List[Any] = end _UpperCAmelCase : List[Any] = val _UpperCAmelCase : Any = (start + end) // 2 _UpperCAmelCase : str = left _UpperCAmelCase : str = right def __repr__( self ) -> Any: return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ) -> Tuple: _UpperCAmelCase : str = collection _UpperCAmelCase : List[str] = function if self.collection: _UpperCAmelCase : Union[str, Any] = self._build_tree(0 ,len(__snake_case ) - 1 ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: self._update_tree(self.root ,__snake_case ,__snake_case ) def _snake_case ( self ,a_ ,a_ ) -> Tuple: return self._query_range(self.root ,__snake_case ,__snake_case ) def _snake_case ( self ,a_ ,a_ ) -> Dict: if start == end: return SegmentTreeNode(__snake_case ,__snake_case ,self.collection[start] ) _UpperCAmelCase : List[str] = (start + end) // 2 _UpperCAmelCase : Union[str, Any] = self._build_tree(__snake_case ,__snake_case ) _UpperCAmelCase : Dict = self._build_tree(mid + 1 ,__snake_case ) return SegmentTreeNode(__snake_case ,__snake_case ,self.fn(left.val ,right.val ) ,__snake_case ,__snake_case ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Optional[int]: if node.start == i and node.end == i: _UpperCAmelCase : Optional[int] = val return if i <= node.mid: self._update_tree(node.left ,__snake_case ,__snake_case ) else: self._update_tree(node.right ,__snake_case ,__snake_case ) _UpperCAmelCase : str = self.fn(node.left.val ,node.right.val ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Union[str, Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,__snake_case ,__snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,__snake_case ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,__snake_case ) ,) else: # range in right child tree return self._query_range(node.right ,__snake_case ,__snake_case ) def _snake_case ( self ) -> Any: if self.root is not None: _UpperCAmelCase : Dict = Queue() queue.put(self.root ) while not queue.empty(): _UpperCAmelCase : Union[str, Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 5_0) A_ : Union[str, Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = 2 _UpperCAmelCase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class lowercase ( __a ): """simple docstring""" UpperCAmelCase = ["""input_features"""] def __init__( self ,a_=80 ,a_=16_000 ,a_=160 ,a_=30 ,a_=400 ,a_=0.0 ,a_=False ,**a_ ,) -> List[Any]: super().__init__( feature_size=a__ ,sampling_rate=a__ ,padding_value=a__ ,return_attention_mask=a__ ,**a__ ,) _UpperCAmelCase : Any = n_fft _UpperCAmelCase : List[Any] = hop_length _UpperCAmelCase : List[Any] = chunk_length _UpperCAmelCase : Optional[int] = chunk_length * sampling_rate _UpperCAmelCase : Any = self.n_samples // hop_length _UpperCAmelCase : Union[str, Any] = sampling_rate _UpperCAmelCase : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=a__ ,min_frequency=0.0 ,max_frequency=8_000.0 ,sampling_rate=a__ ,norm="""slaney""" ,mel_scale="""slaney""" ,) def _snake_case ( self ,a_ ) -> List[str]: _UpperCAmelCase : str = spectrogram( a__ ,window_function(self.n_fft ,"""hann""" ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel="""log10""" ,) _UpperCAmelCase : Optional[Any] = log_spec[:, :-1] _UpperCAmelCase : Union[str, Any] = np.maximum(a__ ,log_spec.max() - 8.0 ) _UpperCAmelCase : List[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _snake_case ( a_ ,a_ ,a_ = 0.0 ) -> Dict: if attention_mask is not None: _UpperCAmelCase : Optional[Any] = np.array(a__ ,np.intaa ) _UpperCAmelCase : Optional[Any] = [] for vector, length in zip(a__ ,attention_mask.sum(-1 ) ): _UpperCAmelCase : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _UpperCAmelCase : str = padding_value normed_input_values.append(a__ ) else: _UpperCAmelCase : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self ,a_ ,a_ = True ,a_ = None ,a_ = None ,a_ = None ,a_ = "max_length" ,a_ = None ,a_ = None ,a_ = None ,**a_ ,) -> List[str]: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : Optional[Any] = isinstance(a__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _UpperCAmelCase : str = is_batched_numpy or ( isinstance(a__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Dict = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a__ ,np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(a__ ,dtype=np.floataa ) elif isinstance(a__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [np.asarray([raw_speech] ).T] _UpperCAmelCase : Any = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _UpperCAmelCase : Any = self.pad( a__ ,padding=a__ ,max_length=max_length if max_length else self.n_samples ,truncation=a__ ,pad_to_multiple_of=a__ ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: _UpperCAmelCase : int = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] ,attention_mask=padded_inputs["""attention_mask"""] ,padding_value=self.padding_value ,) _UpperCAmelCase : Any = np.stack(padded_inputs["""input_features"""] ,axis=0 ) # make sure list is in array format _UpperCAmelCase : str = padded_inputs.get("""input_features""" ).transpose(2 ,0 ,1 ) _UpperCAmelCase : int = [self._np_extract_fbank_features(a__ ) for waveform in input_features[0]] if isinstance(input_features[0] ,a__ ): _UpperCAmelCase : List[str] = [np.asarray(a__ ,dtype=np.floataa ) for feature in input_features] else: _UpperCAmelCase : Optional[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _UpperCAmelCase : str = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _UpperCAmelCase : Any = padded_inputs.convert_to_tensors(a__ ) return padded_inputs def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' def get_masked_lm_array(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCAmelCase : Optional[int] = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) if "kernel" in name: _UpperCAmelCase : List[Any] = array.transpose() return torch.from_numpy(lowerCAmelCase_ ) def get_encoder_array(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCAmelCase : str = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) if "kernel" in name: _UpperCAmelCase : List[str] = array.transpose() return torch.from_numpy(lowerCAmelCase_ ) def get_encoder_layer_array(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCAmelCase : Optional[Any] = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) if "kernel" in name: _UpperCAmelCase : List[str] = array.transpose() return torch.from_numpy(lowerCAmelCase_ ) def get_encoder_attention_layer_array(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCAmelCase : int = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = array.reshape(lowerCAmelCase_ ) if "kernel" in name: _UpperCAmelCase : List[str] = array.transpose() return torch.from_numpy(lowerCAmelCase_ ) print(F'''Loading model based on config from {config_path}...''' ) _UpperCAmelCase : Any = BertConfig.from_json_file(lowerCAmelCase_ ) _UpperCAmelCase : int = BertForMaskedLM(lowerCAmelCase_ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _UpperCAmelCase : BertSelfAttention = layer.attention.self _UpperCAmelCase : int = get_encoder_attention_layer_array( lowerCAmelCase_ , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _UpperCAmelCase : Dict = get_encoder_attention_layer_array( lowerCAmelCase_ , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _UpperCAmelCase : Any = get_encoder_attention_layer_array( lowerCAmelCase_ , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _UpperCAmelCase : List[str] = get_encoder_attention_layer_array( lowerCAmelCase_ , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _UpperCAmelCase : Dict = get_encoder_attention_layer_array( lowerCAmelCase_ , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _UpperCAmelCase : Any = get_encoder_attention_layer_array( lowerCAmelCase_ , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _UpperCAmelCase : BertSelfOutput = layer.attention.output _UpperCAmelCase : Optional[int] = get_encoder_attention_layer_array( lowerCAmelCase_ , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _UpperCAmelCase : Tuple = get_encoder_attention_layer_array( lowerCAmelCase_ , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _UpperCAmelCase : int = get_encoder_layer_array(lowerCAmelCase_ , """_attention_layer_norm/gamma""" ) _UpperCAmelCase : Any = get_encoder_layer_array(lowerCAmelCase_ , """_attention_layer_norm/beta""" ) # Intermediate _UpperCAmelCase : BertIntermediate = layer.intermediate _UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCAmelCase_ , """_intermediate_dense/kernel""" ) _UpperCAmelCase : Dict = get_encoder_layer_array(lowerCAmelCase_ , """_intermediate_dense/bias""" ) # Output _UpperCAmelCase : BertOutput = layer.output _UpperCAmelCase : Any = get_encoder_layer_array(lowerCAmelCase_ , """_output_dense/kernel""" ) _UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCAmelCase_ , """_output_dense/bias""" ) _UpperCAmelCase : List[Any] = get_encoder_layer_array(lowerCAmelCase_ , """_output_layer_norm/gamma""" ) _UpperCAmelCase : Any = get_encoder_layer_array(lowerCAmelCase_ , """_output_layer_norm/beta""" ) # Embeddings _UpperCAmelCase : Optional[Any] = get_encoder_array("""_position_embedding_layer/embeddings""" ) _UpperCAmelCase : List[Any] = get_encoder_array("""_type_embedding_layer/embeddings""" ) _UpperCAmelCase : Any = get_encoder_array("""_embedding_norm_layer/gamma""" ) _UpperCAmelCase : Optional[Any] = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _UpperCAmelCase : Dict = model.cls.predictions.transform _UpperCAmelCase : Any = get_masked_lm_array("""dense/kernel""" ) _UpperCAmelCase : List[Any] = get_masked_lm_array("""dense/bias""" ) _UpperCAmelCase : Dict = get_masked_lm_array("""layer_norm/gamma""" ) _UpperCAmelCase : Any = get_masked_lm_array("""layer_norm/beta""" ) _UpperCAmelCase : List[Any] = get_masked_lm_array("""embedding_table""" ) # Pooling _UpperCAmelCase : str = BertPooler(config=lowerCAmelCase_ ) _UpperCAmelCase : BertPooler = get_encoder_array("""_pooler_layer/kernel""" ) _UpperCAmelCase : BertPooler = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase_ ) # Integration test - should load without any errors ;) _UpperCAmelCase : str = BertForMaskedLM.from_pretrained(lowerCAmelCase_ ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) A_ : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_MASKED_LM_MAPPING def _snake_case ( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""tf""" ) _UpperCAmelCase : int = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser"""}, ] ,) _UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser""", }, ] ,) _UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-0_5, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,top_k=2 ,framework="""pt""" ) _UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] ,) _UpperCAmelCase : Any = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ {"""sequence""": """My name is Patrick""", """score""": 2.1E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-0_5, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, ] ,) _UpperCAmelCase : Tuple = unmasker("""My name is <mask> <mask>""" ,top_k=2 ) self.assertEqual( nested_simplify(__a ,decimals=6 ) ,[ [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] ,) @require_torch_gpu def _snake_case ( self ) -> int: _UpperCAmelCase : str = pipeline("""fill-mask""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,device=0 ,framework="""pt""" ) # convert model to fp16 pipe.model.half() _UpperCAmelCase : List[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__a ,__a ) @slow @require_torch def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""pt""" ) self.run_large_test(__a ) @slow @require_tf def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[Any] = pipeline(task="""fill-mask""" ,model="""distilroberta-base""" ,top_k=2 ,framework="""tf""" ) self.run_large_test(__a ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__a ) ,[ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] ,) _UpperCAmelCase : List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__a ) ,[ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] ,) _UpperCAmelCase : List[Any] = unmasker("""My name is <mask>""" ,targets=[""" Patrick""", """ Clara""", """ Teven"""] ,top_k=3 ) self.assertEqual( nested_simplify(__a ) ,[ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] ,) @require_torch def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""pt""" ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Dict = None self.run_pipeline_test(__a ,[] ) @require_tf def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Any = pipeline(task="""fill-mask""" ,model="""sshleifer/tiny-distilroberta-base""" ,framework="""tf""" ) _UpperCAmelCase : Dict = None _UpperCAmelCase : str = None self.run_pipeline_test(__a ,[] ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__a ,tokenizer=__a ) _UpperCAmelCase : Union[str, Any] = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _snake_case ( self ,a_ ,a_ ) -> str: _UpperCAmelCase : Union[str, Any] = fill_masker.tokenizer _UpperCAmelCase : Tuple = fill_masker.model _UpperCAmelCase : Dict = fill_masker( f'''This is a {tokenizer.mask_token}''' ,) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) _UpperCAmelCase : Tuple = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) _UpperCAmelCase : Any = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __a ,[ [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], ] ,) with self.assertRaises(__a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__a ): fill_masker("""This is""" ) self.run_test_top_k(__a ,__a ) self.run_test_targets(__a ,__a ) self.run_test_top_k_targets(__a ,__a ) self.fill_mask_with_duplicate_targets_and_top_k(__a ,__a ) self.fill_mask_with_multiple_masks(__a ,__a ) def _snake_case ( self ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : List[Any] = tokenizer.get_vocab() _UpperCAmelCase : Optional[Any] = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase : int = FillMaskPipeline(model=__a ,tokenizer=__a ,targets=__a ) _UpperCAmelCase : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) _UpperCAmelCase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,__a ) _UpperCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(__a ) ) # Call argument _UpperCAmelCase : Dict = FillMaskPipeline(model=__a ,tokenizer=__a ) _UpperCAmelCase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__a ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) _UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} ,__a ) _UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} ,set(__a ) ) # Score equivalence _UpperCAmelCase : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__a ) _UpperCAmelCase : int = [top_mask["""token_str"""] for top_mask in outputs] _UpperCAmelCase : Optional[int] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ) == set(__a ): _UpperCAmelCase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=__a ) _UpperCAmelCase : List[Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) # Raises with invalid with self.assertRaises(__a ): _UpperCAmelCase : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__a ): _UpperCAmelCase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets=[""""""] ) with self.assertRaises(__a ): _UpperCAmelCase : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,targets="""""" ) def _snake_case ( self ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__a ,tokenizer=__a ,top_k=2 ) _UpperCAmelCase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) _UpperCAmelCase : Tuple = FillMaskPipeline(model=__a ,tokenizer=__a ) _UpperCAmelCase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __a ,[ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ] ,) self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Union[str, Any] = tokenizer.get_vocab() _UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__a ,tokenizer=__a ) # top_k=2, ntargets=3 _UpperCAmelCase : int = sorted(vocab.keys() )[:3] _UpperCAmelCase : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=2 ,targets=__a ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase : int = [el["""token_str"""] for el in sorted(__a ,key=lambda a_ : x["score"] ,reverse=__a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__a ).issubset(__a ): _UpperCAmelCase : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ,top_k=3 ,targets=__a ) # They should yield exactly the same result self.assertEqual(nested_simplify(__a ) ,nested_simplify(__a ) ) def _snake_case ( self ,a_ ,a_ ) -> Dict: _UpperCAmelCase : Dict = FillMaskPipeline(model=__a ,tokenizer=__a ) _UpperCAmelCase : int = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase : Any = sorted(vocab.keys() )[:3] _UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase : str = fill_masker(f'''My name is {tokenizer.mask_token}''' ,targets=__a ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__a ) ,3 ) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : str = FillMaskPipeline(model=__a ,tokenizer=__a ) _UpperCAmelCase : str = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' ,top_k=2 ) self.assertEqual( __a ,[ [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], [ {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, {"""sequence""": ANY(__a ), """score""": ANY(__a ), """token""": ANY(__a ), """token_str""": ANY(__a )}, ], ] ,)
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( _snake_case , unittest.TestCase ): """simple docstring""" UpperCAmelCase = MobileBertTokenizer UpperCAmelCase = MobileBertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = filter_non_english UpperCAmelCase = """google/mobilebert-uncased""" def _snake_case ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _UpperCAmelCase : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case ( self ,a_ ) -> Dict: _UpperCAmelCase : Dict = """UNwant\u00E9d,running""" _UpperCAmelCase : str = """unwanted, running""" return input_text, output_text def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def _snake_case ( self ) -> Dict: if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = """UNwant\u00E9d,running""" _UpperCAmelCase : List[str] = tokenizer.tokenize(UpperCamelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) # With lower casing _UpperCAmelCase : Dict = self.get_tokenizer(do_lower_case=UpperCamelCase__ ) _UpperCAmelCase : str = self.get_rust_tokenizer(do_lower_case=UpperCamelCase__ ) _UpperCAmelCase : List[str] = """UNwant\u00E9d,running""" _UpperCAmelCase : str = tokenizer.tokenize(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=UpperCamelCase__ ,strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=UpperCamelCase__ ,strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=UpperCamelCase__ ,strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = BasicTokenizer(do_lower_case=UpperCamelCase__ ,strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> str: _UpperCAmelCase : str = BasicTokenizer(do_lower_case=UpperCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _UpperCAmelCase : Optional[Any] = {} for i, token in enumerate(UpperCamelCase__ ): _UpperCAmelCase : List[str] = i _UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=UpperCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def _snake_case ( self ) -> Union[str, Any]: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _snake_case ( self ) -> List[str]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _snake_case ( self ) -> Any: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase : Any = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ,UpperCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _snake_case ( self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCAmelCase : Optional[Any] = tokenizer_r.encode_plus( UpperCamelCase__ ,return_attention_mask=UpperCamelCase__ ,return_token_type_ids=UpperCamelCase__ ,return_offsets_mapping=UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ,) _UpperCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(UpperCamelCase__ ,"""do_lower_case""" ) else False _UpperCAmelCase : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Optional[int] = ["""的""", """人""", """有"""] _UpperCAmelCase : List[str] = """""".join(UpperCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : str = True _UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase : int = tokenizer_p.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : Tuple = tokenizer_r.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) _UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase : Dict = tokenizer_r.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : Any = tokenizer_p.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) _UpperCAmelCase : Dict = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCAmelCase : Dict = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCamelCase__ ) ] self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ )
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run A_ : Dict = True except (ImportError, AttributeError): A_ : List[Any] = object def snake_case_ ( *lowerCAmelCase_ , **lowerCAmelCase_ )-> List[Any]: '''simple docstring''' pass A_ : str = False A_ : Optional[int] = logging.get_logger("""transformers-cli/serving""") def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE_ , args.host , args.port , args.workers ) class lowercase ( snake_case__ ): """simple docstring""" UpperCAmelCase = 42 class lowercase ( snake_case__ ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase ( snake_case__ ): """simple docstring""" UpperCAmelCase = 42 class lowercase ( snake_case__ ): """simple docstring""" UpperCAmelCase = 42 class lowercase ( snake_case__ ): """simple docstring""" @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = parser.add_parser( """serve""" ,help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" ,type=_A ,choices=get_supported_tasks() ,help="""The task to run the pipeline on""" ,) serve_parser.add_argument("""--host""" ,type=_A ,default="""localhost""" ,help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" ,type=_A ,default=8_888 ,help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" ,type=_A ,default=1 ,help="""Number of http workers""" ) serve_parser.add_argument("""--model""" ,type=_A ,help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" ,type=_A ,help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" ,type=_A ,help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" ,type=_A ,default=-1 ,help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" ,) serve_parser.set_defaults(func=_A ) def __init__( self ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : List[str] = pipeline _UpperCAmelCase : Any = host _UpperCAmelCase : Optional[Any] = port _UpperCAmelCase : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f'''Serving model over {host}:{port}''' ) _UpperCAmelCase : Union[str, Any] = FastAPI( routes=[ APIRoute( """/""" ,self.model_info ,response_model=_A ,response_class=_A ,methods=["""GET"""] ,), APIRoute( """/tokenize""" ,self.tokenize ,response_model=_A ,response_class=_A ,methods=["""POST"""] ,), APIRoute( """/detokenize""" ,self.detokenize ,response_model=_A ,response_class=_A ,methods=["""POST"""] ,), APIRoute( """/forward""" ,self.forward ,response_model=_A ,response_class=_A ,methods=["""POST"""] ,), ] ,timeout=600 ,) def _snake_case ( self ) -> Any: run(self._app ,host=self.host ,port=self.port ,workers=self.workers ) def _snake_case ( self ) -> Any: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _snake_case ( self ,a_ = Body(_A ,embed=_A ) ,a_ = Body(_A ,embed=_A ) ) -> Optional[int]: try: _UpperCAmelCase : Dict = self._pipeline.tokenizer.tokenize(_A ) if return_ids: _UpperCAmelCase : Tuple = self._pipeline.tokenizer.convert_tokens_to_ids(_A ) return ServeTokenizeResult(tokens=_A ,tokens_ids=_A ) else: return ServeTokenizeResult(tokens=_A ) except Exception as e: raise HTTPException(status_code=500 ,detail={"""model""": """""", """error""": str(_A )} ) def _snake_case ( self ,a_ = Body(_A ,embed=_A ) ,a_ = Body(_A ,embed=_A ) ,a_ = Body(_A ,embed=_A ) ,) -> List[str]: try: _UpperCAmelCase : Optional[int] = self._pipeline.tokenizer.decode(_A ,_A ,_A ) return ServeDeTokenizeResult(model="""""" ,text=_A ) except Exception as e: raise HTTPException(status_code=500 ,detail={"""model""": """""", """error""": str(_A )} ) async def _snake_case ( self ,a_=Body(_A ,embed=_A ) ) -> Optional[int]: if len(_A ) == 0: return ServeForwardResult(output=[] ,attention=[] ) try: # Forward through the model _UpperCAmelCase : str = self._pipeline(_A ) return ServeForwardResult(output=_A ) except Exception as e: raise HTTPException(500 ,{"""error""": str(_A )} )
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : Optional[int] = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["""DeiTFeatureExtractor"""] A_ : Optional[int] = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( )-> Iterator[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def snake_case_ ( lowerCAmelCase_ = 2000000 )-> int: '''simple docstring''' return sum(takewhile(lambda lowerCAmelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand A_ : Tuple = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) A_ : Union[str, Any] = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) A_ : Union[str, Any] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) A_ : Optional[int] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) A_ : Optional[int] = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) A_ : Tuple = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) A_ : int = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = randrange(len(lowerCAmelCase_ ) ), randrange(len(lowerCAmelCase_ ) ) _UpperCAmelCase : List[str] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] _UpperCAmelCase : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def snake_case_ ( lowerCAmelCase_ = 100 )-> List[str]: '''simple docstring''' return (generate_random_hand() for _ in range(lowerCAmelCase_ )) @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' assert PokerHand(lowerCAmelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' assert PokerHand(lowerCAmelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = PokerHand(lowerCAmelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' assert PokerHand(lowerCAmelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' assert PokerHand(lowerCAmelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' assert PokerHand(lowerCAmelCase_ ).compare_with(PokerHand(lowerCAmelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' assert PokerHand(lowerCAmelCase_ ).compare_with(PokerHand(lowerCAmelCase_ ) ) == expected def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = [PokerHand(lowerCAmelCase_ ) for hand in SORTED_HANDS] _UpperCAmelCase : Tuple = poker_hands.copy() shuffle(lowerCAmelCase_ ) _UpperCAmelCase : int = chain(sorted(lowerCAmelCase_ ) ) for index, hand in enumerate(lowerCAmelCase_ ): assert hand == poker_hands[index] def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowerCAmelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = PokerHand("""2C 4S AS 3D 5C""" ) _UpperCAmelCase : List[Any] = True _UpperCAmelCase : List[str] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(lowerCAmelCase_ ) ) _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase_ , """poker_hands.txt""" ) with open(lowerCAmelCase_ ) as file_hand: for line in file_hand: _UpperCAmelCase : Union[str, Any] = line[:14].strip() _UpperCAmelCase : Union[str, Any] = line[15:].strip() _UpperCAmelCase : List[Any] = PokerHand(lowerCAmelCase_ ), PokerHand(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = player.compare_with(lowerCAmelCase_ ) if output == "Win": answer += 1 assert answer == 376
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' A_ : int = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] A_ : Union[str, Any] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] A_ : Optional[int] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] A_ : str = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] A_ : int = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] A_ : Optional[Any] = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] A_ : Optional[int] = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] A_ : Tuple = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' from __future__ import annotations A_ : Dict = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] A_ : Any = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def snake_case_ ( lowerCAmelCase_ )-> list[float]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : int = len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : float = -1 for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] < arr[j]: _UpperCAmelCase : List[Any] = arr[j] break result.append(lowerCAmelCase_ ) return result def snake_case_ ( lowerCAmelCase_ )-> list[float]: '''simple docstring''' _UpperCAmelCase : Any = [] for i, outer in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _UpperCAmelCase : Any = inner break result.append(lowerCAmelCase_ ) return result def snake_case_ ( lowerCAmelCase_ )-> list[float]: '''simple docstring''' _UpperCAmelCase : List[Any] = len(lowerCAmelCase_ ) _UpperCAmelCase : list[float] = [] _UpperCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _UpperCAmelCase : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) A_ : Tuple = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
369
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( __snake_case , unittest.TestCase ): """simple docstring""" UpperCAmelCase = CodeGenTokenizer UpperCAmelCase = CodeGenTokenizerFast UpperCAmelCase = True UpperCAmelCase = {"""add_prefix_space""": True} UpperCAmelCase = False def _snake_case ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCAmelCase : List[Any] = dict(zip(UpperCamelCase__ ,range(len(UpperCamelCase__ ) ) ) ) _UpperCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase : Optional[int] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def _snake_case ( self ,**a_ ) -> Any: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def _snake_case ( self ,**a_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Any = "lower newer" _UpperCAmelCase : Dict = "lower newer" return input_text, output_text def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _UpperCAmelCase : Union[str, Any] = "lower newer" _UpperCAmelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCamelCase__ ,add_prefix_space=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) _UpperCAmelCase : Tuple = tokens + [tokenizer.unk_token] _UpperCAmelCase : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) ,UpperCamelCase__ ) def _snake_case ( self ) -> Any: if not self.test_rust_tokenizer: return _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : str = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__ ) _UpperCAmelCase : List[Any] = "lower newer" # Testing tokenization _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ,add_prefix_space=UpperCamelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) # Testing conversion to ids without special tokens _UpperCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ,add_prefix_space=UpperCamelCase__ ) _UpperCAmelCase : str = rust_tokenizer.encode(UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) # Testing conversion to ids with special tokens _UpperCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase__ ,add_prefix_space=UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ ) # Testing the unknown token _UpperCAmelCase : Any = tokens + [rust_tokenizer.unk_token] _UpperCAmelCase : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) ,UpperCamelCase__ ) def _snake_case ( self ,*a_ ,**a_ ) -> str: pass def _snake_case ( self ,a_=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ ,**UpperCamelCase__ ) # Simple input _UpperCAmelCase : Optional[int] = "This is a simple input" _UpperCAmelCase : Dict = ["This is a simple input 1", "This is a simple input 2"] _UpperCAmelCase : Tuple = ("This is a simple input", "This is a pair") _UpperCAmelCase : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase__ ,tokenizer_r.encode ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase__ ,tokenizer_r.encode_plus ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase__ ,tokenizer_r.batch_encode_plus ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ,) # Pair input self.assertRaises(UpperCamelCase__ ,tokenizer_r.encode ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase__ ,tokenizer_r.encode_plus ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase__ ,tokenizer_r.batch_encode_plus ,UpperCamelCase__ ,max_length=UpperCamelCase__ ,padding="""max_length""" ,) def _snake_case ( self ) -> str: _UpperCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="""<pad>""" ) # Simple input _UpperCAmelCase : Dict = "This is a simple input" _UpperCAmelCase : List[str] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCAmelCase : str = ("This is a simple input", "This is a pair") _UpperCAmelCase : Tuple = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCAmelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCAmelCase : List[Any] = tokenizer(UpperCamelCase__ ,padding="""max_length""" ,max_length=30 ,return_tensors="""np""" ) _UpperCAmelCase : List[Any] = tokenizer(UpperCamelCase__ ,padding=UpperCamelCase__ ,truncate=UpperCamelCase__ ,return_tensors="""np""" ) _UpperCAmelCase : Dict = tokenizer(*UpperCamelCase__ ,padding="""max_length""" ,max_length=60 ,return_tensors="""np""" ) _UpperCAmelCase : Dict = tokenizer(UpperCamelCase__ ,padding=UpperCamelCase__ ,truncate=UpperCamelCase__ ,return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = "$$$" _UpperCAmelCase : Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=UpperCamelCase__ ,add_bos_token=UpperCamelCase__ ) _UpperCAmelCase : int = "This is a simple input" _UpperCAmelCase : int = ["This is a simple input 1", "This is a simple input 2"] _UpperCAmelCase : int = tokenizer.bos_token_id _UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase__ ) _UpperCAmelCase : List[str] = tokenizer(UpperCamelCase__ ) self.assertEqual(out_s.input_ids[0] ,UpperCamelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCAmelCase : Tuple = tokenizer.decode(out_s.input_ids ) _UpperCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,UpperCamelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _UpperCAmelCase : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _UpperCAmelCase : int = "\nif len_a > len_b: result = a\nelse: result = b" _UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = ["^#", re.escape("""<|endoftext|>""" ), "^'''", "^\"\"\"", "\n\n\n"] _UpperCAmelCase : Tuple = tokenizer.decode(UpperCamelCase__ ,truncate_before_pattern=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ ,UpperCamelCase__ ) def _snake_case ( self ) -> str: pass
370
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase : Any = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase : Union[str, Any] = DisjunctiveConstraint(__snake_case ) self.assertTrue(isinstance(dc.token_ids ,__snake_case ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case ( self ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase : Any = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__snake_case ): DisjunctiveConstraint(__snake_case ) # fails here def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase : Optional[int] = DisjunctiveConstraint(__snake_case ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = dc.update(1 ) _UpperCAmelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = dc.update(2 ) _UpperCAmelCase : List[str] = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = dc.update(3 ) _UpperCAmelCase : List[str] = stepped is True and completed is True and reset is False self.assertTrue(__snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase : List[str] = DisjunctiveConstraint(__snake_case ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
371
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
0
'''simple docstring''' import logging import os from .state import PartialState class lowercase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _snake_case ( a_ ) -> Any: _UpperCAmelCase : Optional[int] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self ,a_ ,a_ ,*a_ ,**a_ ) -> Any: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) _UpperCAmelCase : List[Any] = kwargs.pop("""main_process_only""" ,a_ ) _UpperCAmelCase : Tuple = kwargs.pop("""in_order""" ,a_ ) if self.isEnabledFor(a_ ): if self._should_log(a_ ): _UpperCAmelCase : List[Any] = self.process(a_ ,a_ ) self.logger.log(a_ ,a_ ,*a_ ,**a_ ) elif in_order: _UpperCAmelCase : Tuple = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase : List[str] = self.process(a_ ,a_ ) self.logger.log(a_ ,a_ ,*a_ ,**a_ ) state.wait_for_everyone() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = None )-> Tuple: '''simple docstring''' if log_level is None: _UpperCAmelCase : Dict = os.environ.get("""ACCELERATE_LOG_LEVEL""" , lowerCAmelCase_ ) _UpperCAmelCase : Dict = logging.getLogger(lowerCAmelCase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCAmelCase_ , {} )
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionSAGPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = False def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) _UpperCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : str = CLIPTextModel(a_ ) _UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Any: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(a_ ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : Optional[int] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) _UpperCAmelCase : Dict = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """.""" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Dict = sag_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Optional[int] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : Tuple = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """.""" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : str = sag_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Any = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : List[Any] = sag_pipe.to(a_ ) sag_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """.""" _UpperCAmelCase : Dict = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = sag_pipe( [prompt] ,width=768 ,height=512 ,generator=a_ ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type="""np""" ,) _UpperCAmelCase : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
351
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_=3 ,a_=3 ,a_=("DownEncoderBlock2D",) ,a_=(64,) ,a_=2 ,a_=32 ,a_="silu" ,a_=True ,) -> Dict: super().__init__() _UpperCAmelCase : List[Any] = layers_per_block _UpperCAmelCase : Tuple = torch.nn.Convad( a_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) _UpperCAmelCase : str = None _UpperCAmelCase : int = nn.ModuleList([] ) # down _UpperCAmelCase : Tuple = block_out_channels[0] for i, down_block_type in enumerate(a_ ): _UpperCAmelCase : Union[str, Any] = output_channel _UpperCAmelCase : Any = block_out_channels[i] _UpperCAmelCase : List[Any] = i == len(a_ ) - 1 _UpperCAmelCase : Tuple = get_down_block( a_ ,num_layers=self.layers_per_block ,in_channels=a_ ,out_channels=a_ ,add_downsample=not is_final_block ,resnet_eps=1E-6 ,downsample_padding=0 ,resnet_act_fn=a_ ,resnet_groups=a_ ,attention_head_dim=a_ ,temb_channels=a_ ,) self.down_blocks.append(a_ ) # mid _UpperCAmelCase : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=a_ ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" ,attention_head_dim=block_out_channels[-1] ,resnet_groups=a_ ,temb_channels=a_ ,) # out _UpperCAmelCase : List[str] = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=a_ ,eps=1E-6 ) _UpperCAmelCase : List[Any] = nn.SiLU() _UpperCAmelCase : int = 2 * out_channels if double_z else out_channels _UpperCAmelCase : Optional[Any] = nn.Convad(block_out_channels[-1] ,a_ ,3 ,padding=1 ) _UpperCAmelCase : Optional[Any] = False def _snake_case ( self ,a_ ) -> Optional[Any]: _UpperCAmelCase : Any = x _UpperCAmelCase : int = self.conv_in(a_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(a_ ): def custom_forward(*a_ ): return module(*a_ ) return custom_forward # down if is_torch_version(""">=""" ,"""1.11.0""" ): for down_block in self.down_blocks: _UpperCAmelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(a_ ) ,a_ ,use_reentrant=a_ ) # middle _UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,a_ ,use_reentrant=a_ ) else: for down_block in self.down_blocks: _UpperCAmelCase : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(a_ ) ,a_ ) # middle _UpperCAmelCase : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,a_ ) else: # down for down_block in self.down_blocks: _UpperCAmelCase : Tuple = down_block(a_ ) # middle _UpperCAmelCase : Dict = self.mid_block(a_ ) # post-process _UpperCAmelCase : str = self.conv_norm_out(a_ ) _UpperCAmelCase : Dict = self.conv_act(a_ ) _UpperCAmelCase : Optional[int] = self.conv_out(a_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_=3 ,a_=3 ,a_=("UpDecoderBlock2D",) ,a_=(64,) ,a_=2 ,a_=32 ,a_="silu" ,a_="group" ,) -> List[Any]: super().__init__() _UpperCAmelCase : List[str] = layers_per_block _UpperCAmelCase : int = nn.Convad( a_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) _UpperCAmelCase : Dict = None _UpperCAmelCase : List[str] = nn.ModuleList([] ) _UpperCAmelCase : Optional[Any] = in_channels if norm_type == """spatial""" else None # mid _UpperCAmelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=a_ ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=a_ ,temb_channels=a_ ,) # up _UpperCAmelCase : str = list(reversed(a_ ) ) _UpperCAmelCase : str = reversed_block_out_channels[0] for i, up_block_type in enumerate(a_ ): _UpperCAmelCase : str = output_channel _UpperCAmelCase : Optional[int] = reversed_block_out_channels[i] _UpperCAmelCase : Dict = i == len(a_ ) - 1 _UpperCAmelCase : List[str] = get_up_block( a_ ,num_layers=self.layers_per_block + 1 ,in_channels=a_ ,out_channels=a_ ,prev_output_channel=a_ ,add_upsample=not is_final_block ,resnet_eps=1E-6 ,resnet_act_fn=a_ ,resnet_groups=a_ ,attention_head_dim=a_ ,temb_channels=a_ ,resnet_time_scale_shift=a_ ,) self.up_blocks.append(a_ ) _UpperCAmelCase : Union[str, Any] = output_channel # out if norm_type == "spatial": _UpperCAmelCase : Optional[Any] = SpatialNorm(block_out_channels[0] ,a_ ) else: _UpperCAmelCase : List[str] = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=a_ ,eps=1E-6 ) _UpperCAmelCase : Optional[int] = nn.SiLU() _UpperCAmelCase : Any = nn.Convad(block_out_channels[0] ,a_ ,3 ,padding=1 ) _UpperCAmelCase : List[Any] = False def _snake_case ( self ,a_ ,a_=None ) -> Any: _UpperCAmelCase : Optional[Any] = z _UpperCAmelCase : List[str] = self.conv_in(a_ ) _UpperCAmelCase : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a_ ): def custom_forward(*a_ ): return module(*a_ ) return custom_forward if is_torch_version(""">=""" ,"""1.11.0""" ): # middle _UpperCAmelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,a_ ,a_ ,use_reentrant=a_ ) _UpperCAmelCase : Optional[Any] = sample.to(a_ ) # up for up_block in self.up_blocks: _UpperCAmelCase : int = torch.utils.checkpoint.checkpoint( create_custom_forward(a_ ) ,a_ ,a_ ,use_reentrant=a_ ) else: # middle _UpperCAmelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,a_ ,a_ ) _UpperCAmelCase : Dict = sample.to(a_ ) # up for up_block in self.up_blocks: _UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(a_ ) ,a_ ,a_ ) else: # middle _UpperCAmelCase : List[Any] = self.mid_block(a_ ,a_ ) _UpperCAmelCase : str = sample.to(a_ ) # up for up_block in self.up_blocks: _UpperCAmelCase : Union[str, Any] = up_block(a_ ,a_ ) # post-process if latent_embeds is None: _UpperCAmelCase : Optional[Any] = self.conv_norm_out(a_ ) else: _UpperCAmelCase : Optional[Any] = self.conv_norm_out(a_ ,a_ ) _UpperCAmelCase : Optional[Any] = self.conv_act(a_ ) _UpperCAmelCase : List[str] = self.conv_out(a_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_=None ,a_="random" ,a_=False ,a_=True ) -> List[str]: super().__init__() _UpperCAmelCase : Dict = n_e _UpperCAmelCase : Any = vq_embed_dim _UpperCAmelCase : Union[str, Any] = beta _UpperCAmelCase : Tuple = legacy _UpperCAmelCase : List[Any] = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) _UpperCAmelCase : str = remap if self.remap is not None: self.register_buffer("""used""" ,torch.tensor(np.load(self.remap ) ) ) _UpperCAmelCase : Optional[Any] = self.used.shape[0] _UpperCAmelCase : str = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCAmelCase : Tuple = self.re_embed _UpperCAmelCase : int = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCAmelCase : Any = n_e _UpperCAmelCase : Dict = sane_index_shape def _snake_case ( self ,a_ ) -> Tuple: _UpperCAmelCase : Optional[Any] = inds.shape assert len(a_ ) > 1 _UpperCAmelCase : str = inds.reshape(ishape[0] ,-1 ) _UpperCAmelCase : List[Any] = self.used.to(a_ ) _UpperCAmelCase : Any = (inds[:, :, None] == used[None, None, ...]).long() _UpperCAmelCase : List[Any] = match.argmax(-1 ) _UpperCAmelCase : str = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCAmelCase : int = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: _UpperCAmelCase : str = self.unknown_index return new.reshape(a_ ) def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = inds.shape assert len(a_ ) > 1 _UpperCAmelCase : int = inds.reshape(ishape[0] ,-1 ) _UpperCAmelCase : Union[str, Any] = self.used.to(a_ ) if self.re_embed > self.used.shape[0]: # extra token _UpperCAmelCase : Tuple = 0 # simply set to zero _UpperCAmelCase : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,a_ ) return back.reshape(a_ ) def _snake_case ( self ,a_ ) -> Union[str, Any]: # reshape z -> (batch, height, width, channel) and flatten _UpperCAmelCase : Optional[int] = z.permute(0 ,2 ,3 ,1 ).contiguous() _UpperCAmelCase : Optional[Any] = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCAmelCase : Dict = torch.argmin(torch.cdist(a_ ,self.embedding.weight ) ,dim=1 ) _UpperCAmelCase : List[Any] = self.embedding(a_ ).view(z.shape ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None # compute loss for embedding if not self.legacy: _UpperCAmelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCAmelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCAmelCase : Any = z + (z_q - z).detach() # reshape back to match original input shape _UpperCAmelCase : Optional[Any] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: _UpperCAmelCase : Union[str, Any] = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis _UpperCAmelCase : str = self.remap_to_used(a_ ) _UpperCAmelCase : Dict = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: _UpperCAmelCase : Union[str, Any] = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _snake_case ( self ,a_ ,a_ ) -> str: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCAmelCase : List[Any] = indices.reshape(shape[0] ,-1 ) # add batch axis _UpperCAmelCase : Dict = self.unmap_to_all(a_ ) _UpperCAmelCase : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCAmelCase : Optional[Any] = self.embedding(a_ ) if shape is not None: _UpperCAmelCase : int = z_q.view(a_ ) # reshape back to match original input shape _UpperCAmelCase : str = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_=False ) -> List[str]: _UpperCAmelCase : Any = parameters _UpperCAmelCase : Optional[Any] = torch.chunk(a_ ,2 ,dim=1 ) _UpperCAmelCase : List[Any] = torch.clamp(self.logvar ,-30.0 ,20.0 ) _UpperCAmelCase : List[str] = deterministic _UpperCAmelCase : Tuple = torch.exp(0.5 * self.logvar ) _UpperCAmelCase : List[str] = torch.exp(self.logvar ) if self.deterministic: _UpperCAmelCase : List[str] = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _snake_case ( self ,a_ = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCAmelCase : str = randn_tensor( self.mean.shape ,generator=a_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) _UpperCAmelCase : Optional[Any] = self.mean + self.std * sample return x def _snake_case ( self ,a_=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _snake_case ( self ,a_ ,a_=[1, 2, 3] ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) _UpperCAmelCase : Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=a_ ) def _snake_case ( self ) -> Optional[int]: return self.mean
352
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
0
'''simple docstring''' import random def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = a[left_index] _UpperCAmelCase : Optional[int] = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: _UpperCAmelCase : Any = a[i], a[j] i += 1 _UpperCAmelCase : Any = a[i - 1], a[left_index] return i - 1 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if left < right: _UpperCAmelCase : Tuple = random.randint(lowerCAmelCase_ , right - 1 ) _UpperCAmelCase : Optional[int] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase : Tuple = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : str = input("""Enter numbers separated by a comma:\n""" ).strip() _UpperCAmelCase : int = [int(lowerCAmelCase_ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ = 10**9 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = 0 _UpperCAmelCase : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _UpperCAmelCase : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
0
'''simple docstring''' A_ : List[str] = [0, 2, 4, 6, 8] A_ : List[Any] = [1, 3, 5, 7, 9] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : List[str] = 0 for digit in range(10 ): _UpperCAmelCase : List[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase_ , lowerCAmelCase_ ) return result _UpperCAmelCase : str = 0 for digita in range(10 ): _UpperCAmelCase : str = digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : Any = ODD_DIGITS else: _UpperCAmelCase : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : Optional[int] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase_ , lowerCAmelCase_ , ) return result def snake_case_ ( lowerCAmelCase_ = 9 )-> int: '''simple docstring''' _UpperCAmelCase : str = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase_ , 0 , [0] * length , lowerCAmelCase_ ) return result if __name__ == "__main__": print(f"""{solution() = }""")
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = int(lowerCAmelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = divmod(lowerCAmelCase_ , 2 ) return binary_recursive(lowerCAmelCase_ ) + str(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Any = str(lowerCAmelCase_ ).strip() if not number: raise ValueError("""No input value was provided""" ) _UpperCAmelCase : Optional[Any] = """-""" if number.startswith("""-""" ) else """""" _UpperCAmelCase : Tuple = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(lowerCAmelCase_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : int = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Optional[Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase_ , id=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if exitstatus == 5: _UpperCAmelCase : List[str] = 0 # Doctest custom flag to ignore output. A_ : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") A_ : Tuple = doctest.OutputChecker class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,a_ ,a_ ,a_ ) A_ : str = CustomOutputChecker A_ : str = HfDoctestModule A_ : Optional[Any] = HfDocTestParser
357
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
0
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( lowerCAmelCase_ = "AAPL" )-> str: '''simple docstring''' _UpperCAmelCase : Any = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _UpperCAmelCase : Tuple = BeautifulSoup(requests.get(lowerCAmelCase_ ).text , """html.parser""" ) _UpperCAmelCase : List[Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
358
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) _UpperCAmelCase : Optional[int] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_euler""" ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : int = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : Tuple = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_euler""" ) _UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Optional[int] = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : List[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type="""np""" ,use_karras_sigmas=a_ ,) _UpperCAmelCase : int = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Dict = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _snake_case ( self ) -> Any: super().setUp() _UpperCAmelCase : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _UpperCAmelCase : List[str] = dict(zip(a_ ,range(len(a_ ) ) ) ) _UpperCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def _snake_case ( self ,**a_ ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,**a_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> int: return "lower newer", "lower newer" @cached_property def _snake_case ( self ) -> str: return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _snake_case ( self ) -> List[Any]: return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _UpperCAmelCase : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = tokenizer(a_ ,max_length=len(a_ ) ,padding=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _UpperCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(a_ ,a_ ) @require_torch def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : int = tokenizer(a_ ,padding=a_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,a_ ) self.assertIn("""attention_mask""" ,a_ ) self.assertNotIn("""labels""" ,a_ ) self.assertNotIn("""decoder_attention_mask""" ,a_ ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Optional[int] = tokenizer(text_target=a_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[str] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization."""] _UpperCAmelCase : str = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Any = tokenizer(a_ ,return_tensors="""pt""" ) _UpperCAmelCase : Any = tokenizer(text_target=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : List[str] = inputs["""input_ids"""] _UpperCAmelCase : int = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self ) -> List[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = ["""Summary of the text.""", """Another summary."""] _UpperCAmelCase : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _UpperCAmelCase : Any = tokenizer(a_ ,padding=a_ ) _UpperCAmelCase : Any = [[0] * len(a_ ) for x in encoded_output["""input_ids"""]] _UpperCAmelCase : Optional[int] = tokenizer.pad(a_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,a_ ) def _snake_case ( self ) -> List[str]: pass def _snake_case ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : int = """A, <mask> AllenNLP sentence.""" _UpperCAmelCase : str = tokenizer_r.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) _UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _UpperCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase ( _lowerCamelCase ): """simple docstring""" @staticmethod def _snake_case ( a_ ) -> Union[str, Any]: _UpperCAmelCase : Dict = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" ,type=a_ ,default=a_ ,help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,) download_parser.add_argument("""model""" ,type=a_ ,help="""Name of the model to download""" ) download_parser.set_defaults(func=a_ ) def __init__( self ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Optional[Any] = model _UpperCAmelCase : Tuple = cache _UpperCAmelCase : Dict = force _UpperCAmelCase : Dict = trust_remote_code def _snake_case ( self ) -> Union[str, Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
362
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if "metadata" in layer: _UpperCAmelCase : List[str] = layer.split("""metadata""" ) _UpperCAmelCase : int = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Any = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase : Tuple = layer.split("""kvstore""" ) _UpperCAmelCase : List[str] = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase : str = layer.split("""/""" ) _UpperCAmelCase : Optional[int] = """/""".join(split_layer[:-1] ) _UpperCAmelCase : int = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase : Union[str, Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase : Any = """file""" else: _UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = rename_keys(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = {} for k, v in current_block.items(): _UpperCAmelCase : List[str] = v _UpperCAmelCase : Optional[int] = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = convert_file_size_to_int(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase : List[str] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase : Dict = flatten_dict(lowerCAmelCase_ , sep="""/""" ) _UpperCAmelCase : List[str] = {} for layer in checkpoint_info.keys(): _UpperCAmelCase : int = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase : str = content else: _UpperCAmelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase : List[Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Tuple = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = {} for idx, shard in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = shard for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : str = {"""total_size""": total_size} _UpperCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase : Tuple = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A_ : str = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case_ ( )-> Tuple: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase : Tuple = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase : Dict = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase : List[str] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _UpperCAmelCase : Any = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """trocr""" UpperCAmelCase = ["""past_key_values"""] UpperCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self ,a_=50_265 ,a_=1_024 ,a_=12 ,a_=16 ,a_=4_096 ,a_="gelu" ,a_=512 ,a_=0.1 ,a_=0.0 ,a_=0.0 ,a_=2 ,a_=0.02 ,a_=0.0 ,a_=True ,a_=False ,a_=True ,a_=True ,a_=1 ,a_=0 ,a_=2 ,**a_ ,) -> str: _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : str = d_model _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : int = activation_function _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Tuple = attention_dropout _UpperCAmelCase : List[str] = activation_dropout _UpperCAmelCase : Optional[Any] = init_std _UpperCAmelCase : List[Any] = decoder_layerdrop _UpperCAmelCase : Optional[Any] = use_cache _UpperCAmelCase : Union[str, Any] = scale_embedding _UpperCAmelCase : str = use_learned_position_embeddings _UpperCAmelCase : Optional[int] = layernorm_embedding super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,decoder_start_token_id=a_ ,**a_ ,)
364
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
0
import math import qiskit def snake_case_ ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 )-> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _UpperCAmelCase : List[str] = qiskit.QuantumRegister(4 , """qr""" ) _UpperCAmelCase : str = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _UpperCAmelCase : Optional[int] = [input_a, input_a, carry_in] _UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase_ ) # measure the last two qbits _UpperCAmelCase : List[str] = qiskit.Aer.get_backend("""aer_simulator""" ) _UpperCAmelCase : List[Any] = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
365
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
366
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False )-> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = len(set_a.intersection(lowerCAmelCase_ ) ) if alternative_union: _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) else: _UpperCAmelCase : Union[str, Any] = len(set_a.union(lowerCAmelCase_ ) ) return intersection / union if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(lowerCAmelCase_ , (list, tuple) ): _UpperCAmelCase : Any = [element for element in set_a if element in set_b] if alternative_union: _UpperCAmelCase : List[Any] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / union else: _UpperCAmelCase : str = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return None if __name__ == "__main__": A_ : List[str] = {"""a""", """b""", """c""", """d""", """e"""} A_ : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
367
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (DDPMParallelScheduler,) def _snake_case ( self ,**a_ ) -> Dict: _UpperCAmelCase : List[Any] = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**a_ ) return config def _snake_case ( self ) -> str: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ) def _snake_case ( self ) -> List[str]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=a_ ,beta_end=a_ ) def _snake_case ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def _snake_case ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a_ ) def _snake_case ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=a_ ) def _snake_case ( self ) -> Any: self.check_over_configs(thresholding=a_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a_ ,prediction_type=a_ ,sample_max_value=a_ ,) def _snake_case ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def _snake_case ( self ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : List[Any] = scheduler_class(**a_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**a_ ) _UpperCAmelCase : int = len(a_ ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter _UpperCAmelCase : List[str] = self.dummy_sample_deter + 0.1 _UpperCAmelCase : Optional[Any] = self.dummy_sample_deter - 0.1 _UpperCAmelCase : Union[str, Any] = samplea.shape[0] _UpperCAmelCase : Dict = torch.stack([samplea, samplea, samplea] ,dim=0 ) _UpperCAmelCase : List[str] = torch.arange(a_ )[0:3, None].repeat(1 ,a_ ) _UpperCAmelCase : Any = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _UpperCAmelCase : List[Any] = scheduler.batch_step_no_noise(a_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) _UpperCAmelCase : str = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Any: _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**a_ ) _UpperCAmelCase : int = len(a_ ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : Dict = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Optional[Any] = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample _UpperCAmelCase : int = pred_prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = len(a_ ) _UpperCAmelCase : Tuple = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : List[Any] = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[Any] = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample _UpperCAmelCase : Any = pred_prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : List[Any] = scheduler_class(**a_ ) _UpperCAmelCase : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a_ ) _UpperCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(a_ ): if i == len(a_ ) - 1: _UpperCAmelCase : List[Any] = -1 else: _UpperCAmelCase : int = timesteps[i + 1] _UpperCAmelCase : Dict = scheduler.previous_timestep(a_ ) _UpperCAmelCase : str = prev_t.item() self.assertEqual(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(a_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = [100, 87, 50, 1, 0] _UpperCAmelCase : Tuple = len(a_ ) with self.assertRaises(a_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=a_ ,timesteps=a_ ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**a_ ) _UpperCAmelCase : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( a_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=a_ )
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0