code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __lowerCAmelCase = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __lowerCAmelCase = f'''https://www.google.com/search?q={query}&num=100''' __lowerCAmelCase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __lowerCAmelCase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __lowerCAmelCase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ,_a : Optional[int] ,_a : int=13 ,_a : Optional[int]=7 ,_a : str=True ,_a : Union[str, Any]=True ,_a : List[str]=True ,_a : int=True ,_a : str=99 ,_a : str=24 ,_a : str=2 ,_a : Tuple=6 ,_a : str=37 ,_a : Any="gelu" ,_a : Tuple=0.1 ,_a : Any=0.1 ,_a : Optional[Any]=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Any=3 ,_a : Union[str, Any]=None ,_a : List[Any]=1000 ,): '''simple docstring''' _a : int = parent _a : List[str] = batch_size _a : List[str] = seq_length _a : str = is_training _a : Union[str, Any] = use_input_mask _a : Dict = use_token_type_ids _a : int = use_labels _a : Any = vocab_size _a : List[Any] = hidden_size _a : List[str] = num_hidden_layers _a : Dict = num_attention_heads _a : Union[str, Any] = intermediate_size _a : int = hidden_act _a : List[Any] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Union[str, Any] = max_position_embeddings _a : str = type_vocab_size _a : Dict = type_sequence_label_size _a : Optional[Any] = initializer_range _a : Any = num_labels _a : List[Any] = scope _a : Dict = range_bbox def __lowercase ( self : Any ): '''simple docstring''' _a : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : int = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : List[Any] = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : str = bbox[i, j, 2] _a : List[str] = bbox[i, j, 0] _a : Optional[Any] = t _a : str = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _a : List[str] = None if self.use_token_type_ids: _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : int = None _a : Dict = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Union[str, Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : str ,_a : int ,_a : Dict ,_a : List[Any] ,_a : str ,_a : Optional[int] ,): '''simple docstring''' _a : List[Any] = LiltModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ) _a : Optional[Any] = model(_a ,bbox=_a ,token_type_ids=_a ) _a : List[Any] = model(_a ,bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowercase ( self : int ,_a : int ,_a : List[str] ,_a : Union[str, Any] ,_a : str ,_a : Optional[int] ,_a : Tuple ,_a : List[str] ,): '''simple docstring''' _a : str = self.num_labels _a : str = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model( _a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : List[Any] ,_a : Tuple ,_a : Any ,_a : List[str] ,_a : Union[str, Any] ,): '''simple docstring''' _a : int = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model( _a ,bbox=_a ,attention_mask=_a ,token_type_ids=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = self.prepare_config_and_inputs() ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : Union[str, Any] = config_and_inputs _a : Tuple = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : Tuple = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False def __lowercase ( self : Union[str, Any] ,_a : Optional[int] ,_a : Tuple ,_a : Any ,_a : Dict ,_a : Dict ): '''simple docstring''' return True def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_a ) _a : Optional[int] = torch.tensor([[1, 2]] ,device=_a ) _a : Dict = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=_a ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=_a ,bbox=_a ) _a : Any = torch.Size([1, 2, 768] ) _a : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] ,device=_a ,) self.assertTrue(outputs.last_hidden_state.shape ,_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,_a ,atol=1E-3 ) )
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : str = 1 @register_to_config def __init__( self : Dict ,_a : Dict=2000 ,_a : Tuple=0.1 ,_a : List[str]=20 ,_a : Union[str, Any]=1E-3 ): '''simple docstring''' _a : Dict = None _a : Dict = None _a : Any = None def __lowercase ( self : List[Any] ,_a : int ,_a : Union[str, torch.device] = None ): '''simple docstring''' _a : List[str] = torch.linspace(1 ,self.config.sampling_eps ,_a ,device=_a ) def __lowercase ( self : List[str] ,_a : Dict ,_a : Optional[Any] ,_a : List[str] ,_a : List[Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _a : List[Any] = std.unsqueeze(-1 ) _a : Dict = -score / std # compute _a : Optional[Any] = -1.0 / len(self.timesteps ) _a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a : str = beta_t.unsqueeze(-1 ) _a : Optional[Any] = -0.5 * beta_t * x _a : Tuple = torch.sqrt(_a ) _a : Optional[int] = drift - diffusion**2 * score _a : Optional[int] = x + drift * dt # add noise _a : str = randn_tensor(x.shape ,layout=x.layout ,generator=_a ,device=x.device ,dtype=x.dtype ) _a : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : str ): '''simple docstring''' return self.config.num_train_timesteps
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Optional[Any] ,_a : Optional[int]=13 ,_a : List[Any]=7 ,_a : Tuple=True ,_a : List[Any]=True ,_a : int=True ,_a : List[str]=True ,_a : List[str]=99 ,_a : Optional[int]=32 ,_a : Dict=2 ,_a : Optional[int]=4 ,_a : List[str]=37 ,_a : Any="gelu" ,_a : str=0.1 ,_a : List[Any]=0.1 ,_a : List[str]=512 ,_a : Union[str, Any]=16 ,_a : Tuple=2 ,_a : Any=0.02 ,_a : int=3 ,_a : Union[str, Any]=4 ,_a : List[Any]=None ,): '''simple docstring''' _a : Optional[Any] = parent _a : str = 13 _a : Optional[int] = 7 _a : Optional[int] = True _a : str = True _a : int = True _a : int = True _a : Optional[Any] = 99 _a : Dict = 32 _a : Any = 2 _a : int = 4 _a : Optional[int] = 37 _a : Any = 'gelu' _a : Optional[Any] = 0.1 _a : Optional[int] = 0.1 _a : Tuple = 512 _a : Tuple = 16 _a : Optional[Any] = 2 _a : Dict = 0.02 _a : Tuple = 3 _a : Optional[Any] = 4 _a : Any = None def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Union[str, Any] = None if self.use_input_mask: _a : int = random_attention_mask([self.batch_size, self.seq_length] ) _a : Any = None if self.use_token_type_ids: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : Tuple = None _a : Tuple = None _a : Tuple = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) _a : Any = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=_a ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Dict ,_a : int ,_a : Optional[int] ,_a : List[str] ,_a : Tuple ,_a : Union[str, Any] ,_a : Dict ,_a : Optional[int] ): '''simple docstring''' _a : Optional[int] = TFRoFormerModel(config=_a ) _a : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a : Any = [input_ids, input_mask] _a : Optional[Any] = model(_a ) _a : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Tuple ,_a : int ,_a : Optional[int] ,_a : List[str] ,_a : List[Any] ,_a : Tuple ,_a : Dict ,_a : int ): '''simple docstring''' _a : str = True _a : List[Any] = TFRoFormerForCausalLM(config=_a ) _a : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Optional[Any] = model(_a )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) ,[self.batch_size, self.seq_length, self.vocab_size] ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : int ,_a : Any ,_a : List[str] ,_a : Dict ,_a : int ,_a : List[str] ): '''simple docstring''' _a : List[Any] = TFRoFormerForMaskedLM(config=_a ) _a : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Tuple = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Dict ,_a : int ,_a : List[Any] ,_a : List[str] ,_a : Optional[int] ): '''simple docstring''' _a : Dict = self.num_labels _a : List[str] = TFRoFormerForSequenceClassification(config=_a ) _a : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : str = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ,_a : Tuple ,_a : Optional[Any] ,_a : Union[str, Any] ,_a : List[str] ,_a : int ,_a : Any ): '''simple docstring''' _a : Optional[int] = self.num_choices _a : Tuple = TFRoFormerForMultipleChoice(config=_a ) _a : Dict = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) _a : Optional[Any] = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) _a : int = tf.tile(tf.expand_dims(_a ,1 ) ,(1, self.num_choices, 1) ) _a : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _a : Any = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Dict ,_a : Optional[int] ,_a : List[str] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : int ,_a : List[str] ,_a : List[str] ): '''simple docstring''' _a : Optional[int] = self.num_labels _a : Union[str, Any] = TFRoFormerForTokenClassification(config=_a ) _a : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Any = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : int ,_a : Any ,_a : Any ,_a : Any ,_a : Optional[Any] ,_a : Any ,_a : Union[str, Any] ,_a : Any ): '''simple docstring''' _a : Dict = TFRoFormerForQuestionAnswering(config=_a ) _a : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Tuple = model(_a ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = self.prepare_config_and_inputs() ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : Tuple = config_and_inputs _a : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False def __lowercase ( self : str ,_a : str ,_a : List[Any] ,_a : Any ,_a : str ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = TFRoFormerModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(_a ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : List[str] ): '''simple docstring''' _a : Dict = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _a : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _a : str = model(_a )[0] # TODO Replace vocab size _a : List[str] = 5_0000 _a : int = [1, 6, vocab_size] self.assertEqual(output.shape ,_a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _a : str = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,_a ,atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 1e-4 def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = tf.constant([[4, 10]] ) _a : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 ,embedding_dim=6 ) _a : str = emba(input_ids.shape ) _a : str = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(_a ,_a ,atol=self.tolerance ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _a : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 ,embedding_dim=512 ) emba([2, 16, 512] ) _a : Optional[Any] = emba.weight[:3, :5] tf.debugging.assert_near(_a ,_a ,atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 1e-4 def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 _a : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 _a : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 ,embedding_dim=64 ) _a : str = embed_positions([2, 16, 768] )[None, None, :, :] _a, _a : Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a ,_a ,_a ) _a : Tuple = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _a : List[str] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] ,_a ,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] ,_a ,atol=self.tolerance )
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") __lowerCAmelCase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __lowerCAmelCase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __lowerCAmelCase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __lowerCAmelCase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __lowerCAmelCase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __lowerCAmelCase = [] __lowerCAmelCase = [] def UpperCAmelCase_ (__a : List[str] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Optional[Any] ): """simple docstring""" for attribute in key.split('.' ): _a : Any = getattr(__a , __a ) if weight_type is not None: _a : Optional[int] = getattr(__a , __a ).shape else: _a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : int = value elif weight_type == "weight_g": _a : List[Any] = value elif weight_type == "weight_v": _a : str = value elif weight_type == "bias": _a : Optional[int] = value elif weight_type == "running_mean": _a : List[Any] = value elif weight_type == "running_var": _a : Dict = value elif weight_type == "num_batches_tracked": _a : Dict = value elif weight_type == "weight_ih_l0": _a : List[Any] = value elif weight_type == "weight_hh_l0": _a : List[Any] = value elif weight_type == "bias_ih_l0": _a : Optional[int] = value elif weight_type == "bias_hh_l0": _a : Optional[Any] = value elif weight_type == "weight_ih_l1": _a : Optional[int] = value elif weight_type == "weight_hh_l1": _a : Optional[Any] = value elif weight_type == "bias_ih_l1": _a : Dict = value elif weight_type == "bias_hh_l1": _a : Optional[Any] = value else: _a : int = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def UpperCAmelCase_ (__a : Tuple , __a : Any ): """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a, _a : Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ (__a : str , __a : Any , __a : Union[str, Any] ): """simple docstring""" _a : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": _a : Optional[Any] = MAPPING_24K elif model_name == "encodec_48khz": _a : Optional[int] = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue _a : List[str] = False for key, mapped_key in MAPPING.items(): if "*" in key: _a, _a : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: _a : Union[str, Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _a : Optional[int] = True if "*" in mapped_key: _a : List[Any] = name.split(__a )[0].split('.' )[-2] _a : Dict = mapped_key.replace('*' , __a ) if "weight_g" in name: _a : int = 'weight_g' elif "weight_v" in name: _a : int = 'weight_v' elif "weight_ih_l0" in name: _a : List[Any] = 'weight_ih_l0' elif "weight_hh_l0" in name: _a : List[Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: _a : Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: _a : List[str] = 'bias_hh_l0' elif "weight_ih_l1" in name: _a : List[str] = 'weight_ih_l1' elif "weight_hh_l1" in name: _a : Union[str, Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: _a : str = 'bias_ih_l1' elif "bias_hh_l1" in name: _a : Any = 'bias_hh_l1' elif "bias" in name: _a : Optional[int] = 'bias' elif "weight" in name: _a : Tuple = 'weight' elif "running_mean" in name: _a : Any = 'running_mean' elif "running_var" in name: _a : Optional[int] = 'running_var' elif "num_batches_tracked" in name: _a : Union[str, Any] = 'num_batches_tracked' else: _a : int = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : Tuple , __a : str=None , __a : Dict=None , ): """simple docstring""" if config_path is not None: _a : List[str] = EncodecConfig.from_pretrained(__a ) else: _a : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a : Optional[int] = [8, 5, 4, 4] _a : Any = [2.2] _a : Dict = 6_4 _a : Dict = 3_2_0_0_0 _a : Optional[int] = 2_0_4_8 _a : Tuple = False _a : Optional[int] = False _a : List[Any] = False elif model_name == "encodec_48khz": _a : int = [8, 5, 4, 2] _a : Any = [3.0, 6.0, 12.0, 24.0] _a : List[str] = 4_8_0_0_0 _a : str = 2 _a : List[str] = False _a : Optional[Any] = 'time_group_norm' _a : Optional[int] = True _a : Tuple = 1.0 _a : Optional[int] = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) _a : Any = EncodecModel(__a ) _a : Optional[int] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) _a : Dict = torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a : Tuple = original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,_a : int = 16 ,_a : int = 88 ,_a : Optional[int] = None ,_a : int = 1 ,_a : float = 0.0 ,_a : int = 32 ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : str = "geglu" ,_a : Optional[int] = None ,): '''simple docstring''' super().__init__() _a : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_a ,attention_head_dim=_a ,in_channels=_a ,num_layers=_a ,dropout=_a ,norm_num_groups=_a ,cross_attention_dim=_a ,attention_bias=_a ,sample_size=_a ,num_vector_embeds=_a ,activation_fn=_a ,num_embeds_ada_norm=_a ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _a : Dict = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _a : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _a : List[str] = [1, 0] def __lowercase ( self : Dict ,_a : str ,_a : int ,_a : Any=None ,_a : List[str]=None ,_a : str=None ,_a : bool = True ,): '''simple docstring''' _a : List[Any] = hidden_states _a : int = [] _a : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _a : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _a : Union[str, Any] = self.transformer_index_for_condition[i] _a : Any = self.transformers[transformer_index]( _a ,encoder_hidden_states=_a ,timestep=_a ,cross_attention_kwargs=_a ,return_dict=_a ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _a : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _a : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_a )
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from typing import Any import numpy as np def UpperCAmelCase_ (__a : np.ndarray ): """simple docstring""" return np.array_equal(__a , matrix.conjugate().T ) def UpperCAmelCase_ (__a : np.ndarray , __a : np.ndarray ): """simple docstring""" _a : Tuple = v.conjugate().T _a : int = v_star.dot(__a ) assert isinstance(__a , np.ndarray ) return (v_star_dot.dot(__a )) / (v_star.dot(__a )) def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _a : Any = np.array([[1], [2], [3]] ) assert is_hermitian(__a ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__a , __a ) ) _a : List[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__a ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__a , __a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0 , __a : int = 1_0 ): """simple docstring""" _a : defaultdict = defaultdict(__a ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _a : List[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _a : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__a , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=__a , default=__a , required=__a , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=__a , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=__a , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=__a , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=__a , default=0 , help='cuda_id.' , ) _a : Optional[Any] = parser.parse_args() return args def UpperCAmelCase_ (__a : Optional[int] , __a : Optional[Any] , __a : Union[str, Any] ): """simple docstring""" if not len(__a ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) _a, _a : Tuple = imgs[0].size _a : Dict = Image.new('RGB' , size=(cols * w, rows * h) ) _a, _a : Tuple = grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any]="robotic cat with wings" , __a : Tuple=7.5 , __a : Optional[Any]=5_0 , __a : Dict=1 , __a : Union[str, Any]=4_2 , ): """simple docstring""" _a : Union[str, Any] = torch.Generator(pipeline.device ).manual_seed(__a ) _a : Optional[int] = pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images _a : Any = int(math.sqrt(__a ) ) _a : List[Any] = image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __lowerCAmelCase = parse_args() # Load models and create wrapper for stable diffusion __lowerCAmelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") __lowerCAmelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") __lowerCAmelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") __lowerCAmelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") __lowerCAmelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __lowerCAmelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): __lowerCAmelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: __lowerCAmelCase = unet.to(torch.device("""cuda""", args.cuda_id)) __lowerCAmelCase = pipeline.to(unet.device) __lowerCAmelCase , __lowerCAmelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) __lowerCAmelCase = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' # flake8: noqa # Lint as: python3 __lowerCAmelCase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = '''perceiver''' def __init__( self : Any ,_a : Dict=256 ,_a : List[Any]=1280 ,_a : Optional[Any]=768 ,_a : Optional[Any]=1 ,_a : Optional[int]=26 ,_a : str=8 ,_a : Union[str, Any]=8 ,_a : List[Any]=None ,_a : Union[str, Any]=None ,_a : Union[str, Any]="kv" ,_a : Tuple=1 ,_a : int=1 ,_a : Dict="gelu" ,_a : Optional[Any]=0.1 ,_a : Tuple=0.02 ,_a : Dict=1E-12 ,_a : Optional[Any]=True ,_a : int=262 ,_a : Tuple=2048 ,_a : str=56 ,_a : Tuple=[368, 496] ,_a : List[str]=16 ,_a : Any=1920 ,_a : Tuple=16 ,_a : List[Any]=[1, 16, 224, 224] ,**_a : Tuple ,): '''simple docstring''' super().__init__(**_a ) _a : List[Any] = num_latents _a : Dict = d_latents _a : Dict = d_model _a : Tuple = num_blocks _a : List[str] = num_self_attends_per_block _a : Tuple = num_self_attention_heads _a : Dict = num_cross_attention_heads _a : int = qk_channels _a : Optional[Any] = v_channels _a : int = cross_attention_shape_for_attention _a : List[Any] = self_attention_widening_factor _a : List[Any] = cross_attention_widening_factor _a : int = hidden_act _a : Optional[Any] = attention_probs_dropout_prob _a : str = initializer_range _a : int = layer_norm_eps _a : Union[str, Any] = use_query_residual # masked language modeling attributes _a : Any = vocab_size _a : List[Any] = max_position_embeddings # image classification attributes _a : Any = image_size # flow attributes _a : Any = train_size # multimodal autoencoding attributes _a : int = num_frames _a : int = audio_samples_per_frame _a : List[str] = samples_per_patch _a : str = output_shape class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __lowercase ( self : str ): '''simple docstring''' return 1E-4 def __lowercase ( self : Tuple ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional[TensorType] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,): '''simple docstring''' if isinstance(_a ,_a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a : Optional[Any] = compute_effective_axis_dimension( _a ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a : Optional[int] = preprocessor.num_special_tokens_to_add(_a ) _a : int = compute_effective_axis_dimension( _a ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence _a : Tuple = [' '.join(['a'] ) * seq_length] * batch_size _a : Union[str, Any] = dict(preprocessor(_a ,return_tensors=_a ) ) _a : Any = inputs.pop('input_ids' ) return inputs elif isinstance(_a ,_a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a : Tuple = compute_effective_axis_dimension(_a ,fixed_dimension=OnnxConfig.default_fixed_batch ) _a : Any = self._generate_dummy_images(_a ,_a ,_a ,_a ) _a : Optional[Any] = dict(preprocessor(images=_a ,return_tensors=_a ) ) _a : Optional[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
5
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase_ (__a : BertModel , __a : str , __a : str ): """simple docstring""" _a : Optional[Any] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _a : str = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__a ): os.makedirs(__a ) _a : List[str] = model.state_dict() def to_tf_var_name(__a : str ): for patt, repl in iter(__a ): _a : Optional[int] = name.replace(__a , __a ) return f"""bert/{name}""" def create_tf_var(__a : np.ndarray , __a : str , __a : tf.Session ): _a : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) _a : Union[str, Any] = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a : str = to_tf_var_name(__a ) _a : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a : str = torch_tensor.T _a : str = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) _a : Optional[Any] = session.run(__a ) print(f"""Successfully created {tf_name}: {np.allclose(__a , __a )}""" ) _a : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace('-' , '_' ) + '.ckpt' ) ) def UpperCAmelCase_ (__a : Union[str, Any]=None ): """simple docstring""" _a : Dict = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , required=__a , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=__a , default=__a , required=__a , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=__a , required=__a , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=__a , required=__a , help='Directory in which to save tensorflow model' ) _a : Dict = parser.parse_args(__a ) _a : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
5
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
1
'''simple docstring''' import logging from transformers import PretrainedConfig __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Tuple = '''bertabs''' def __init__( self : Union[str, Any] ,_a : Optional[int]=3_0522 ,_a : List[Any]=512 ,_a : Any=6 ,_a : Union[str, Any]=512 ,_a : List[Any]=8 ,_a : int=512 ,_a : Union[str, Any]=0.2 ,_a : Union[str, Any]=6 ,_a : Union[str, Any]=768 ,_a : str=8 ,_a : str=2048 ,_a : str=0.2 ,**_a : List[str] ,): '''simple docstring''' super().__init__(**_a ) _a : Any = vocab_size _a : List[Any] = max_pos _a : Union[str, Any] = enc_layers _a : Optional[Any] = enc_hidden_size _a : Dict = enc_heads _a : List[Any] = enc_ff_size _a : Any = enc_dropout _a : Any = dec_layers _a : List[str] = dec_hidden_size _a : Dict = dec_heads _a : Optional[int] = dec_ff_size _a : Optional[int] = dec_dropout
5
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Union[str, Any] ,_a : Tuple=13 ,_a : Union[str, Any]=7 ,_a : Tuple=True ,_a : int=True ,_a : int=True ,_a : str=True ,_a : Optional[int]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : Any="gelu" ,_a : Dict=0.1 ,_a : List[Any]=0.1 ,_a : List[str]=512 ,_a : str=16 ,_a : Optional[int]=2 ,_a : Optional[Any]=0.02 ,_a : int=False ,_a : Tuple=True ,_a : Dict="None" ,_a : Optional[Any]=3 ,_a : Dict=4 ,_a : Any=None ,): '''simple docstring''' _a : int = parent _a : str = batch_size _a : Dict = seq_length _a : Optional[int] = is_training _a : Union[str, Any] = use_input_mask _a : Optional[int] = use_token_type_ids _a : Tuple = use_labels _a : Optional[int] = vocab_size _a : str = hidden_size _a : Dict = num_hidden_layers _a : Dict = num_attention_heads _a : List[Any] = intermediate_size _a : int = hidden_act _a : Dict = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : str = type_vocab_size _a : Any = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : Union[str, Any] = num_labels _a : List[str] = num_choices _a : Optional[Any] = relative_attention _a : Dict = position_biased_input _a : Optional[int] = pos_att_type _a : List[Any] = scope def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : int = None if self.use_input_mask: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : Optional[Any] = None _a : List[Any] = None _a : List[str] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : int = ids_tensor([self.batch_size] ,self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_config() _a : Optional[int] = 300 return config def __lowercase ( self : Dict ,_a : str ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def __lowercase ( self : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : Any ,_a : int ,_a : Optional[int] ,_a : Dict ,_a : List[Any] ): '''simple docstring''' _a : List[str] = DebertaModel(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,token_type_ids=_a )[0] _a : Optional[int] = model(_a ,token_type_ids=_a )[0] _a : Tuple = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def __lowercase ( self : int ,_a : Optional[int] ,_a : Tuple ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : str ,_a : Union[str, Any] ): '''simple docstring''' _a : Any = DebertaForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : str = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[str] ,_a : str ,_a : List[str] ,_a : int ,_a : Any ,_a : Tuple ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : List[Any] = self.num_labels _a : List[str] = DebertaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : str = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def __lowercase ( self : Any ,_a : Dict ,_a : Optional[int] ,_a : Dict ,_a : List[Any] ,_a : int ,_a : Any ,_a : Optional[Any] ): '''simple docstring''' _a : Tuple = self.num_labels _a : List[str] = DebertaForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple ,_a : List[str] ,_a : Tuple ,_a : Tuple ,_a : int ,_a : List[Any] ,_a : Union[str, Any] ,_a : Optional[int] ): '''simple docstring''' _a : Dict = DebertaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : int = model( _a ,attention_mask=_a ,token_type_ids=_a ,start_positions=_a ,end_positions=_a ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : str = config_and_inputs _a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = True __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = False def __lowercase ( self : str ): '''simple docstring''' _a : Any = DebertaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = DebertaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a : Optional[int] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _a : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : Dict = model(_a ,attention_mask=_a )[0] # compare the actual values for a slice. _a : int = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_a ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
5
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
1
'''simple docstring''' from typing import Any def UpperCAmelCase_ (__a : list , __a : list , __a : dict , __a : dict , __a : dict , ): """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step _a : dict = {} _a : dict = {} for state in states_space: _a : List[str] = observations_space[0] _a : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _a : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): _a : List[Any] = observations_space[o] _a : List[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _a : Tuple = '' _a : Tuple = -1 for k_state in states_space: _a : Dict = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _a : Any = probability _a : Optional[int] = k_state # Update probabilities and pointers dicts _a : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _a : Any = arg_max # The final observation _a : str = observations_space[len(__a ) - 1] # argmax for given final observation _a : str = '' _a : Any = -1 for k_state in states_space: _a : int = probabilities[(k_state, final_observation)] if probability > max_probability: _a : Tuple = probability _a : Optional[int] = k_state _a : str = arg_max # Process pointers backwards _a : Union[str, Any] = last_state _a : Optional[int] = [] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) _a : List[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , __a : Any , __a : Any , ): """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , __a : Any , __a : Any , ): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def UpperCAmelCase_ (__a : Any , __a : Any ): """simple docstring""" _validate_list(__a , 'observations_space' ) _validate_list(__a , 'states_space' ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" if not isinstance(_object , __a ): _a : Any = f"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): _a : Union[str, Any] = f"""{var_name} must be a list of strings""" raise ValueError(__a ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Any , ): """simple docstring""" _validate_dict(__a , 'initial_probabilities' , __a ) _validate_nested_dict(__a , 'transition_probabilities' ) _validate_nested_dict(__a , 'emission_probabilities' ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def UpperCAmelCase_ (__a : Any , __a : str , __a : type , __a : bool = False ): """simple docstring""" if not isinstance(_object , __a ): _a : List[Any] = f"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): _a : Union[str, Any] = f"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): _a : str = 'nested dictionary ' if nested else '' _a : Union[str, Any] = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
5
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Any ): """simple docstring""" inspect_dataset(__a , __a ) _a : List[Any] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[str] ): """simple docstring""" inspect_metric(__a , __a ) _a : Optional[int] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : str , __a : List[str] , __a : List[str] ): """simple docstring""" _a : List[Any] = get_dataset_config_info(__a , config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase_ (__a : Dict , __a : Optional[Any] , __a : Optional[int] ): """simple docstring""" with pytest.raises(__a ): get_dataset_config_info(__a , config_name=__a ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] ): """simple docstring""" _a : str = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[int] , __a : Any ): """simple docstring""" _a : List[Any] = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs _a : List[Any] = expected_configs[0] assert expected_config in infos _a : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : List[Any] , __a : Optional[int] ): """simple docstring""" _a : Optional[Any] = get_dataset_infos(__a ) assert expected_config in infos _a : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[str] , __a : Optional[int] ): """simple docstring""" with pytest.raises(__a ): get_dataset_split_names(__a , config_name=__a )
5
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,_a : Optional[int] ): '''simple docstring''' _a : Dict = data def __iter__( self : Any ): '''simple docstring''' for element in self.data: yield element def UpperCAmelCase_ (__a : Dict=True ): """simple docstring""" _a : Tuple = Accelerator(even_batches=__a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase_ (__a : Accelerator , __a : int , __a : int , __a : bool = False ): """simple docstring""" if iterable: _a : Dict = DummyIterableDataset(torch.as_tensor(range(__a ) ) ) else: _a : str = TensorDataset(torch.as_tensor(range(__a ) ) ) _a : List[str] = DataLoader(__a , batch_size=__a ) _a : Any = accelerator.prepare(__a ) return dl def UpperCAmelCase_ (__a : Accelerator , __a : int , __a : int , __a : List[int] , __a : List[int] , ): """simple docstring""" _a : Dict = create_dataloader(accelerator=__a , dataset_size=__a , batch_size=__a ) _a : Any = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = create_accelerator(even_batches=__a ) verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase_ (): """simple docstring""" _a : str = create_accelerator(even_batches=__a ) _a : int = torch.nn.Linear(1 , 1 ) _a : int = accelerator.prepare(__a ) _a : Optional[int] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) _a : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__a ): _a : int = ddp_model(batch[0].float() ) _a : str = output.sum() loss.backward() batch_idxs.append(__a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __a ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase_ (): """simple docstring""" _a : Optional[Any] = True _a : List[Any] = False _a : str = create_accelerator(even_batches=__a ) _a : int = torch.nn.Linear(1 , 1 ) _a : Union[str, Any] = accelerator.prepare(__a ) _a : Dict = create_dataloader(__a , dataset_size=3 , batch_size=1 ) _a : Dict = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): _a : List[str] = train_dl.batch_sampler.even_batches _a : List[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ (): """simple docstring""" _a : Dict = True _a : Optional[int] = False _a : Union[str, Any] = create_accelerator(even_batches=__a ) _a : Optional[int] = torch.nn.Linear(1 , 1 ) _a : List[Any] = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) _a : Union[str, Any] = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): _a : str = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ (): """simple docstring""" _a : int = create_accelerator() _a : str = torch.nn.Linear(1 , 1 ) _a : Optional[Any] = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): pass assert issubclass(w[-1].category , __a ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase_ (): """simple docstring""" _a : Optional[Any] = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _a : Union[str, Any] = accelerator.state.distributed_type _a : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__a ) _a : List[Any] = original_state if __name__ == "__main__": main()
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = ["""model.decoder.embed_positions.weights"""] def UpperCAmelCase_ (__a : Any ): """simple docstring""" if "emb" in name: _a : str = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: _a : Optional[int] = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: _a : List[str] = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: _a : Any = name.replace('linear1' , 'fc1' ) if "linear2" in name: _a : Optional[int] = name.replace('linear2' , 'fc2' ) if "norm1" in name: _a : Any = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: _a : Union[str, Any] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: _a : Dict = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: _a : Optional[int] = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: _a : Any = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: _a : Optional[Any] = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCAmelCase_ (__a : OrderedDict , __a : int ): """simple docstring""" _a : List[str] = list(state_dict.keys() ) _a : int = {} for key in keys: _a : Union[str, Any] = state_dict.pop(__a ) _a : Dict = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj _a : Dict = val[:hidden_size, :] _a : Union[str, Any] = val[hidden_size : 2 * hidden_size, :] _a : Optional[int] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _a : int = val else: _a : Any = val return state_dict, enc_dec_proj_state_dict def UpperCAmelCase_ (__a : str ): """simple docstring""" if checkpoint == "small": # default config values _a : str = 1_0_2_4 _a : int = 2_4 _a : Tuple = 1_6 elif checkpoint == "medium": _a : Dict = 1_5_3_6 _a : List[Any] = 4_8 _a : Optional[int] = 2_4 elif checkpoint == "large": _a : int = 2_0_4_8 _a : Optional[int] = 4_8 _a : Union[str, Any] = 3_2 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) _a : str = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def UpperCAmelCase_ (__a : List[Any] , __a : int=None , __a : Any=None , __a : Optional[Any]="cpu" ): """simple docstring""" _a : Any = MusicGen.get_pretrained(__a , device=__a ) _a : Dict = decoder_config_from_checkpoint(__a ) _a : Any = fairseq_model.lm.state_dict() _a, _a : Optional[Any] = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) _a : Any = TaEncoderModel.from_pretrained('t5-base' ) _a : Union[str, Any] = EncodecModel.from_pretrained('facebook/encodec_32khz' ) _a : Tuple = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _a, _a : Dict = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(__a ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model _a : Tuple = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass _a : List[str] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _a : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _a : Tuple = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor _a : int = AutoTokenizer.from_pretrained('t5-base' ) _a : Any = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) _a : int = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids _a : Any = 2_0_4_8 _a : List[str] = 2_0_4_8 # set other default generation config params _a : str = int(3_0 * audio_encoder.config.frame_rate ) _a : Optional[Any] = True _a : Any = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __lowerCAmelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : List[Any] ,_a : int ,_a : int ,_a : float ,**_a : List[str] ): '''simple docstring''' _a : Union[str, Any] = feature_size _a : Union[str, Any] = sampling_rate _a : Optional[Any] = padding_value _a : Tuple = kwargs.pop('padding_side' ,'right' ) _a : List[Any] = kwargs.pop('return_attention_mask' ,_a ) super().__init__(**_a ) def __lowercase ( self : int ,_a : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,_a : Union[bool, str, PaddingStrategy] = True ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[Union[str, TensorType]] = None ,): '''simple docstring''' if isinstance(_a ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): _a : List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _a : Any = processed_features[self.model_input_names[0]] _a : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_a ) == 0: if return_attention_mask: _a : Tuple = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _a : List[Any] = required_input[0] if isinstance(_a ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _a : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_a ): _a : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(_a ): _a : Any = 'tf' elif is_torch_tensor(_a ): _a : int = 'pt' elif isinstance(_a ,(int, float, list, tuple, np.ndarray) ): _a : Tuple = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(_a )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): _a : Optional[Any] = to_numpy(_a ) else: _a : int = [to_numpy(_a ) for v in value] # Convert padding_strategy in PaddingStrategy _a : Dict = self._get_padding_strategies(padding=_a ,max_length=_a ) _a : Optional[Any] = processed_features[self.model_input_names[0]] _a : Optional[Any] = len(_a ) if not all(len(_a ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _a : str = [] for i in range(_a ): _a : Any = {k: v[i] for k, v in processed_features.items()} # truncation _a : List[Any] = self._truncate( _a ,max_length=_a ,pad_to_multiple_of=_a ,truncation=_a ,) truncated_inputs.append(_a ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _a : Dict = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _a : Union[str, Any] = PaddingStrategy.MAX_LENGTH _a : List[str] = {} for i in range(_a ): # padding _a : Optional[Any] = self._pad( truncated_inputs[i] ,max_length=_a ,padding_strategy=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,) for key, value in outputs.items(): if key not in batch_outputs: _a : List[str] = [] if value.dtype is np.dtype(np.floataa ): _a : Any = value.astype(np.floataa ) batch_outputs[key].append(_a ) return BatchFeature(_a ,tensor_type=_a ) def __lowercase ( self : Optional[Any] ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' _a : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _a : int = len(_a ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_a ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _a : List[str] = np.ones(len(_a ) ,dtype=np.intaa ) if needs_to_be_padded: _a : Any = max_length - len(_a ) if self.padding_side == "right": if return_attention_mask: _a : Optional[int] = np.pad( processed_features['attention_mask'] ,(0, difference) ) _a : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _a : Dict = np.pad( _a ,_a ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _a : Any = np.pad( processed_features['attention_mask'] ,(difference, 0) ) _a : str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _a : Union[str, Any] = np.pad( _a ,_a ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowercase ( self : Dict ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _a : str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : Dict = len(_a ) > max_length if needs_to_be_truncated: _a : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _a : str = processed_features['attention_mask'][:max_length] return processed_features def __lowercase ( self : Optional[Any] ,_a : Any=False ,_a : Optional[Any]=None ): '''simple docstring''' if padding is not False: if padding is True: _a : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_a ,_a ): _a : Tuple = PaddingStrategy(_a ) elif isinstance(_a ,_a ): _a : int = padding else: _a : int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCAmelCase_ (__a : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] , __a : Union[str, Any] ): """simple docstring""" for attribute in key.split('.' ): _a : Dict = getattr(__a , __a ) if weight_type is not None: _a : Tuple = getattr(__a , __a ).shape else: _a : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : Union[str, Any] = value elif weight_type == "weight_g": _a : Dict = value elif weight_type == "weight_v": _a : str = value elif weight_type == "bias": _a : Any = value else: _a : Optional[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[int] ): """simple docstring""" _a : Union[str, Any] = [] _a : str = fairseq_model.state_dict() _a : Optional[int] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _a : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) _a : List[str] = True else: for key, mapped_key in MAPPING.items(): _a : List[str] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue _a : Dict = True if "*" in mapped_key: _a : Optional[Any] = name.split(__a )[0].split('.' )[-2] _a : Optional[int] = mapped_key.replace('*' , __a ) if "weight_g" in name: _a : int = 'weight_g' elif "weight_v" in name: _a : Tuple = 'weight_v' elif "bias" in name: _a : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a : Union[str, Any] = 'weight' else: _a : str = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCAmelCase_ (__a : List[str] , __a : Any , __a : Optional[int] , __a : List[Any] , __a : Tuple ): """simple docstring""" _a : Optional[int] = full_name.split('conv_layers.' )[-1] _a : Union[str, Any] = name.split('.' ) _a : List[str] = int(items[0] ) _a : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) _a : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Any , __a : Union[str, Any]=None , __a : Dict=None , __a : Union[str, Any]=True ): """simple docstring""" if config_path is not None: _a : Optional[int] = UniSpeechSatConfig.from_pretrained(__a ) else: _a : Tuple = UniSpeechSatConfig() _a : int = '' if is_finetuned: _a : Optional[int] = UniSpeechSatForCTC(__a ) else: _a : Optional[int] = UniSpeechSatForPreTraining(__a ) _a, _a, _a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) _a : List[Any] = model[0].eval() recursively_load_weights(__a , __a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar("""T""") __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings( lowercase__ , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lowercase ( self : Dict ,_a : GenericTensor ): '''simple docstring''' if self.framework == "tf": _a : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=_a ) else: raise ValueError('Unsupported framework' ) return masked_index def __lowercase ( self : int ,_a : GenericTensor ): '''simple docstring''' _a : Dict = self.get_masked_index(_a ) _a : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' ,self.model.base_model_prefix ,F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" ,) def __lowercase ( self : Dict ,_a : GenericTensor ): '''simple docstring''' if isinstance(_a ,_a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self : str ,_a : Optional[Any] ,_a : List[Any]=None ,**_a : Any ): '''simple docstring''' if return_tensors is None: _a : Tuple = self.framework _a : Any = self.tokenizer(_a ,return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self : Optional[Any] ,_a : Dict ): '''simple docstring''' _a : List[Any] = self.model(**_a ) _a : Dict = model_inputs['input_ids'] return model_outputs def __lowercase ( self : Tuple ,_a : int ,_a : int=5 ,_a : Dict=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _a : str = target_ids.shape[0] _a : List[str] = model_outputs['input_ids'][0] _a : Optional[Any] = model_outputs['logits'] if self.framework == "tf": _a : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : Dict = outputs.numpy() _a : Any = outputs[0, masked_index, :] _a : Union[str, Any] = stable_softmax(_a ,axis=-1 ) if target_ids is not None: _a : str = tf.gather_nd(tf.squeeze(_a ,0 ) ,target_ids.reshape(-1 ,1 ) ) _a : Dict = tf.expand_dims(_a ,0 ) _a : List[str] = tf.math.top_k(_a ,k=_a ) _a, _a : List[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : Optional[int] = logits.softmax(dim=-1 ) if target_ids is not None: _a : Optional[Any] = probs[..., target_ids] _a, _a : int = probs.topk(_a ) _a : Optional[Any] = [] _a : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): _a : Tuple = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place _a : List[Any] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : int = p # Filter padding out: _a : Optional[int] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : Any = self.tokenizer.decode(_a ,skip_special_tokens=_a ) _a : str = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self : Any ,_a : int ,_a : Tuple=None ): '''simple docstring''' if isinstance(_a ,_a ): _a : Optional[Any] = [targets] try: _a : Optional[int] = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : str = [] for target in targets: _a : Optional[int] = vocab.get(_a ,_a ) if id_ is None: _a : List[Any] = self.tokenizer( _a ,add_special_tokens=_a ,return_attention_mask=_a ,return_token_type_ids=_a ,max_length=1 ,truncation=_a ,)['input_ids'] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue _a : Optional[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : Optional[Any] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('At least one target must be provided when passed.' ) _a : Dict = np.array(_a ) return target_ids def __lowercase ( self : str ,_a : int=None ,_a : int=None ): '''simple docstring''' _a : Optional[Any] = {} if targets is not None: _a : Optional[Any] = self.get_target_ids(_a ,_a ) _a : Optional[int] = target_ids if top_k is not None: _a : Dict = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' ,self.model.base_model_prefix ,'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Dict ,_a : Any ,*_a : List[str] ,**_a : Optional[int] ): '''simple docstring''' _a : Dict = super().__call__(_a ,**_a ) if isinstance(_a ,_a ) and len(_a ) == 1: return outputs[0] return outputs
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = '''AutoTokenizer''' __UpperCAmelCase : str = ['''tokenizer'''] __UpperCAmelCase : List[str] = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Dict ,_a : Any ,_a : Optional[int]=None ): '''simple docstring''' super().__init__(_a ) _a : Dict = speaker_embeddings @classmethod def __lowercase ( cls : Tuple ,_a : Any ,_a : Dict="speaker_embeddings_path.json" ,**_a : Any ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _a : Optional[Any] = get_file_from_repo( _a ,_a ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(_a ,_a )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _a : Tuple = None else: with open(_a ) as speaker_embeddings_json: _a : Tuple = json.load(_a ) else: _a : Any = None _a : Dict = AutoTokenizer.from_pretrained(_a ,**_a ) return cls(tokenizer=_a ,speaker_embeddings=_a ) def __lowercase ( self : str ,_a : Tuple ,_a : List[str]="speaker_embeddings_path.json" ,_a : Tuple="speaker_embeddings" ,_a : bool = False ,**_a : List[Any] ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_a ,_a ,'v2' ) ,exist_ok=_a ) _a : Optional[int] = {} _a : int = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _a : Tuple = self._load_voice_preset(_a ) _a : List[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,_a ,F"""{prompt_key}_{key}""" ) ,voice_preset[key] ,allow_pickle=_a ,) _a : Optional[Any] = os.path.join(_a ,F"""{prompt_key}_{key}.npy""" ) _a : Optional[int] = tmp_dict with open(os.path.join(_a ,_a ) ,'w' ) as fp: json.dump(_a ,_a ) super().save_pretrained(_a ,_a ,**_a ) def __lowercase ( self : Optional[Any] ,_a : str = None ,**_a : Dict ): '''simple docstring''' _a : Dict = self.speaker_embeddings[voice_preset] _a : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _a : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,_a ) ,cache_dir=kwargs.pop('cache_dir' ,_a ) ,force_download=kwargs.pop('force_download' ,_a ) ,proxies=kwargs.pop('proxies' ,_a ) ,resume_download=kwargs.pop('resume_download' ,_a ) ,local_files_only=kwargs.pop('local_files_only' ,_a ) ,use_auth_token=kwargs.pop('use_auth_token' ,_a ) ,revision=kwargs.pop('revision' ,_a ) ,) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _a : int = np.load(_a ) return voice_preset_dict def __lowercase ( self : Dict ,_a : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : int ,_a : str=None ,_a : Optional[Any]=None ,_a : Optional[Any]="pt" ,_a : List[Any]=256 ,_a : List[Any]=False ,_a : str=True ,_a : Optional[Any]=False ,**_a : str ,): '''simple docstring''' if voice_preset is not None and not isinstance(_a ,_a ): if ( isinstance(_a ,_a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _a : Tuple = self._load_voice_preset(_a ) else: if isinstance(_a ,_a ) and not voice_preset.endswith('.npz' ): _a : int = voice_preset + '.npz' _a : Dict = np.load(_a ) if voice_preset is not None: self._validate_voice_preset_dict(_a ,**_a ) _a : List[str] = BatchFeature(data=_a ,tensor_type=_a ) _a : List[str] = self.tokenizer( _a ,return_tensors=_a ,padding='max_length' ,max_length=_a ,return_attention_mask=_a ,return_token_type_ids=_a ,add_special_tokens=_a ,**_a ,) if voice_preset is not None: _a : Any = voice_preset return encoded_text
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(__a )[-1_0:] if __name__ == "__main__": print(solution())
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = '''data2vec-audio''' def __init__( self : str ,_a : Optional[Any]=32 ,_a : Tuple=768 ,_a : List[Any]=12 ,_a : int=12 ,_a : Union[str, Any]=3072 ,_a : Tuple="gelu" ,_a : Dict=0.1 ,_a : Tuple=0.1 ,_a : Dict=0.1 ,_a : str=0.0 ,_a : Union[str, Any]=0.1 ,_a : List[Any]=0.1 ,_a : Tuple=0.02 ,_a : int=1E-5 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=(512, 512, 512, 512, 512, 512, 512) ,_a : Optional[int]=(5, 2, 2, 2, 2, 2, 2) ,_a : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) ,_a : int=False ,_a : Optional[int]=16 ,_a : Optional[Any]=19 ,_a : str=5 ,_a : List[Any]=0.05 ,_a : Dict=10 ,_a : Optional[int]=2 ,_a : Tuple=0.0 ,_a : Tuple=10 ,_a : Optional[int]=0 ,_a : Optional[int]="sum" ,_a : str=False ,_a : Union[str, Any]=False ,_a : Dict=256 ,_a : Any=(512, 512, 512, 512, 1500) ,_a : Any=(5, 3, 3, 1, 1) ,_a : Dict=(1, 2, 3, 1, 1) ,_a : Tuple=512 ,_a : Optional[int]=0 ,_a : Tuple=1 ,_a : int=2 ,_a : Optional[Any]=False ,_a : List[str]=3 ,_a : int=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=None ,**_a : Tuple ,): '''simple docstring''' super().__init__(**_a ,pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ) _a : Optional[int] = hidden_size _a : str = feat_extract_activation _a : List[Any] = list(_a ) _a : str = list(_a ) _a : Optional[int] = list(_a ) _a : List[Any] = conv_bias _a : Optional[Any] = num_conv_pos_embeddings _a : Tuple = num_conv_pos_embedding_groups _a : Any = conv_pos_kernel_size _a : List[Any] = len(self.conv_dim ) _a : Tuple = num_hidden_layers _a : Any = intermediate_size _a : Any = hidden_act _a : List[Any] = num_attention_heads _a : Dict = hidden_dropout _a : str = attention_dropout _a : Union[str, Any] = activation_dropout _a : List[Any] = feat_proj_dropout _a : Optional[Any] = final_dropout _a : Tuple = layerdrop _a : List[str] = layer_norm_eps _a : Tuple = initializer_range _a : str = vocab_size _a : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : List[str] = mask_time_prob _a : List[str] = mask_time_length _a : Dict = mask_time_min_masks _a : List[Any] = mask_feature_prob _a : Optional[int] = mask_feature_length _a : Optional[Any] = mask_feature_min_masks # ctc loss _a : Union[str, Any] = ctc_loss_reduction _a : Dict = ctc_zero_infinity # adapter _a : Optional[int] = add_adapter _a : Tuple = adapter_kernel_size _a : int = adapter_stride _a : Union[str, Any] = num_adapter_layers _a : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a : Optional[Any] = list(_a ) _a : str = list(_a ) _a : Union[str, Any] = list(_a ) _a : List[Any] = xvector_output_dim @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return math.prod(self.conv_stride )
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' from collections import deque def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : Any = len(__a ) _a : Optional[Any] = deque() _a : Any = [False for _ in range(__a )] _a : Dict = [-1 for _ in range(__a )] _a : str = index_of[:] def strong_connect(__a : Tuple , __a : List[Any] , __a : Union[str, Any] ): _a : Union[str, Any] = index # the number when this node is seen _a : Tuple = index # lowest rank node reachable from here index += 1 stack.append(__a ) _a : str = True for w in g[v]: if index_of[w] == -1: _a : Optional[Any] = strong_connect(__a , __a , __a ) _a : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _a : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _a : Any = [] _a : List[Any] = stack.pop() _a : Optional[int] = False component.append(__a ) while w != v: _a : Optional[int] = stack.pop() _a : Optional[Any] = False component.append(__a ) components.append(__a ) return index _a : Dict = [] for v in range(__a ): if index_of[v] == -1: strong_connect(__a , 0 , __a ) return components def UpperCAmelCase_ (__a : Any , __a : Union[str, Any] ): """simple docstring""" _a : str = [[] for _ in range(__a )] for u, v in edges: g[u].append(__a ) return g if __name__ == "__main__": # Test __lowerCAmelCase = 7 __lowerCAmelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] __lowerCAmelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] __lowerCAmelCase = [(u, v) for u, v in zip(source, target)] __lowerCAmelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase = 2_5_0_0_0_4 __lowerCAmelCase = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = MBartaaTokenizer __UpperCAmelCase : str = MBartaaTokenizerFast __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[Any] = True def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _a : int = MBartaaTokenizer(_a ,src_lang='en_XX' ,tgt_lang='ro_RO' ,keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = '<s>' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) ,_a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_a ) ,1054 ) def __lowercase ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1054 ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = MBartaaTokenizer(_a ,src_lang='en_XX' ,tgt_lang='ro_RO' ,keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _a : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _a ,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] ,) _a : int = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) _a : int = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a ,[SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] ,) @slow def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a ,model_name='facebook/mbart-large-50' ,revision='d3913889c59cd5c9e456b269c376325eabad57e2' ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _a : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_a ,**_a ) _a : Tuple = self.tokenizer_class.from_pretrained(_a ,**_a ) _a : Optional[int] = tempfile.mkdtemp() _a : Tuple = tokenizer_r.save_pretrained(_a ) _a : Optional[int] = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _a : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_a ,_a ) # Checks everything loads correctly in the same way _a : Optional[int] = tokenizer_r.from_pretrained(_a ) _a : str = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a ,_a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True _a : Union[str, Any] = tempfile.mkdtemp() _a : Optional[Any] = tokenizer_r.save_pretrained(_a ,legacy_format=_a ) _a : List[str] = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a ,_a ) # Checks everything loads correctly in the same way _a : Optional[Any] = tokenizer_r.from_pretrained(_a ) _a : Optional[int] = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a ,_a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False _a : int = tempfile.mkdtemp() _a : str = tokenizer_r.save_pretrained(_a ,legacy_format=_a ) _a : Optional[int] = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _a : int = tokenizer_r.from_pretrained(_a ) _a : Tuple = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a ,_a ) ) shutil.rmtree(_a ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = '''facebook/mbart-large-50-one-to-many-mmt''' __UpperCAmelCase : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __UpperCAmelCase : Union[str, Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __UpperCAmelCase : Any = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def __lowercase ( cls : Optional[int] ): '''simple docstring''' _a : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='en_XX' ,tgt_lang='ro_RO' ) _a : Union[str, Any] = 1 return cls def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] ,25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] ,25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] ,25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] ,25_0038 ) def __lowercase ( self : int ): '''simple docstring''' _a : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_a ) def __lowercase ( self : str ): '''simple docstring''' self.assertIn(_a ,self.tokenizer.all_special_ids ) _a : Optional[int] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _a : Dict = self.tokenizer.decode(_a ,skip_special_tokens=_a ) _a : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_a ) self.assertEqual(_a ,_a ) self.assertNotIn(self.tokenizer.eos_token ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,_a ) _a : str = 10 _a : Tuple = self.tokenizer(_a ,max_length=_a ,truncation=_a ).input_ids[0] self.assertEqual(ids[0] ,_a ) self.assertEqual(ids[-1] ,2 ) self.assertEqual(len(_a ) ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[25_0053, 25_0001] ) def __lowercase ( self : int ): '''simple docstring''' _a : Dict = tempfile.mkdtemp() _a : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) _a : Optional[int] = MBartaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_a ) @require_torch def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=_a ,return_tensors='pt' ) _a : List[str] = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=_a ,truncation=_a ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) _a : Optional[int] = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) self.assertIsInstance(_a ,_a ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) _a : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,_a ) self.assertEqual(2 ,batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = self.tokenizer(self.src_text ,padding=_a ,truncation=_a ,max_length=3 ,return_tensors='pt' ) _a : Union[str, Any] = self.tokenizer( text_target=self.tgt_text ,padding=_a ,truncation=_a ,max_length=10 ,return_tensors='pt' ) _a : Optional[int] = targets['input_ids'] _a : Any = shift_tokens_right(_a ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='en_XX' ,tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(_a ) ,{ # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } ,)
5
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''mgp-str''' def __init__( self : str ,_a : Any=[32, 128] ,_a : Any=4 ,_a : int=3 ,_a : int=27 ,_a : Union[str, Any]=38 ,_a : List[Any]=5_0257 ,_a : str=3_0522 ,_a : Any=768 ,_a : Union[str, Any]=12 ,_a : Any=12 ,_a : int=4.0 ,_a : Dict=True ,_a : Any=False ,_a : Any=1E-5 ,_a : Optional[Any]=0.0 ,_a : Dict=0.0 ,_a : List[Any]=0.0 ,_a : Optional[int]=False ,_a : Optional[Any]=0.02 ,**_a : List[str] ,): '''simple docstring''' super().__init__(**_a ) _a : List[Any] = image_size _a : List[str] = patch_size _a : str = num_channels _a : Optional[Any] = max_token_length _a : Dict = num_character_labels _a : Union[str, Any] = num_bpe_labels _a : Tuple = num_wordpiece_labels _a : int = hidden_size _a : int = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Optional[int] = mlp_ratio _a : List[str] = distilled _a : str = layer_norm_eps _a : int = drop_rate _a : List[Any] = qkv_bias _a : List[Any] = attn_drop_rate _a : Dict = drop_path_rate _a : Union[str, Any] = output_aa_attentions _a : Optional[int] = initializer_range
5
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = DanceDiffusionPipeline __UpperCAmelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } __UpperCAmelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = False def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _a : Dict = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_a ,use_timestep_embedding=_a ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _a : List[Any] = IPNDMScheduler() _a : str = { 'unet': unet, 'scheduler': scheduler, } return components def __lowercase ( self : Union[str, Any] ,_a : Dict ,_a : Union[str, Any]=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): _a : List[Any] = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : Any = DanceDiffusionPipeline(**_a ) _a : List[str] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Dict = self.get_dummy_inputs(_a ) _a : List[Any] = pipe(**_a ) _a : Tuple = output.audios _a : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _a : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowercase ( self : List[str] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowercase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowercase ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : List[str] ): '''simple docstring''' _a : Tuple = torch_device _a : str = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _a : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : int = torch.manual_seed(0 ) _a : Union[str, Any] = pipe(generator=_a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) _a : Tuple = output.audios _a : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a : Any = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : List[str] ): '''simple docstring''' _a : List[str] = torch_device _a : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _a : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : List[Any] = torch.manual_seed(0 ) _a : Optional[int] = pipe(generator=_a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) _a : Tuple = output.audios _a : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a : Any = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
5
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase__ : """simple docstring""" def __lowercase ( self : Any ,_a : List[Any] ): '''simple docstring''' raise NotImplementedError() def __lowercase ( self : List[str] ): '''simple docstring''' raise NotImplementedError() class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,_a : "AutoTokenizer" ,_a : bool = False ,**_a : Tuple ): '''simple docstring''' _a : Union[str, Any] = tokenizer _a : Any = skip_prompt _a : List[str] = decode_kwargs # variables used in the streaming process _a : Tuple = [] _a : int = 0 _a : List[Any] = True def __lowercase ( self : List[str] ,_a : Tuple ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: _a : int = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _a : Tuple = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _a : Any = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): _a : str = text[self.print_len :] _a : Optional[Any] = [] _a : List[str] = 0 # If the last token is a CJK character, we print the characters. elif len(_a ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _a : List[str] = text[self.print_len :] self.print_len += len(_a ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _a : int = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(_a ) self.on_finalized_text(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' if len(self.token_cache ) > 0: _a : Dict = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) _a : Tuple = text[self.print_len :] _a : str = [] _a : str = 0 else: _a : Tuple = '' _a : str = True self.on_finalized_text(_a ,stream_end=_a ) def __lowercase ( self : Dict ,_a : str ,_a : bool = False ): '''simple docstring''' print(_a ,flush=_a ,end='' if not stream_end else None ) def __lowercase ( self : List[str] ,_a : Optional[Any] ): '''simple docstring''' if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : int ,_a : "AutoTokenizer" ,_a : bool = False ,_a : Optional[float] = None ,**_a : Union[str, Any] ): '''simple docstring''' super().__init__(_a ,_a ,**_a ) _a : List[str] = Queue() _a : Union[str, Any] = None _a : Optional[Any] = timeout def __lowercase ( self : str ,_a : str ,_a : bool = False ): '''simple docstring''' self.text_queue.put(_a ,timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal ,timeout=self.timeout ) def __iter__( self : List[str] ): '''simple docstring''' return self def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Tuple = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
5
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''focalnet''' def __init__( self : List[Any] ,_a : Optional[Any]=224 ,_a : int=4 ,_a : Union[str, Any]=3 ,_a : List[str]=96 ,_a : Union[str, Any]=False ,_a : str=[192, 384, 768, 768] ,_a : Dict=[2, 2, 6, 2] ,_a : Any=[2, 2, 2, 2] ,_a : str=[3, 3, 3, 3] ,_a : Optional[int]="gelu" ,_a : Tuple=4.0 ,_a : str=0.0 ,_a : Union[str, Any]=0.1 ,_a : str=False ,_a : int=1E-4 ,_a : Dict=False ,_a : Optional[Any]=False ,_a : Optional[int]=False ,_a : str=0.02 ,_a : Optional[Any]=1E-5 ,_a : List[str]=32 ,_a : Tuple=None ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(**_a ) _a : List[str] = image_size _a : Optional[Any] = patch_size _a : List[str] = num_channels _a : List[str] = embed_dim _a : Optional[int] = use_conv_embed _a : Optional[Any] = hidden_sizes _a : Dict = depths _a : int = focal_levels _a : Optional[int] = focal_windows _a : List[str] = hidden_act _a : List[Any] = mlp_ratio _a : Optional[int] = hidden_dropout_prob _a : Optional[int] = drop_path_rate _a : str = use_layerscale _a : Any = layerscale_value _a : Tuple = use_post_layernorm _a : List[str] = use_post_layernorm_in_modulation _a : Optional[int] = normalize_modulator _a : Optional[int] = initializer_range _a : Any = layer_norm_eps _a : Optional[int] = encoder_stride _a : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] _a, _a : Dict = get_aligned_output_features_output_indices( out_features=_a ,out_indices=_a ,stage_names=self.stage_names )
5
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
1
'''simple docstring''' __lowerCAmelCase = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __lowerCAmelCase = [None] * 1_0_0_0_0_0_0_0 __lowerCAmelCase = True __lowerCAmelCase = False def UpperCAmelCase_ (__a : int ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _a : Optional[Any] = chain(next_number(__a ) ) _a : Optional[Any] = number_chain while number < 1_0_0_0_0_0_0_0: _a : str = number_chain number *= 1_0 return number_chain def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0_0 ): """simple docstring""" for i in range(1 , __a ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__a ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
5
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCAmelCase = Mapping[str, np.ndarray] __lowerCAmelCase = Mapping[str, Any] # Is a nested dict. __lowerCAmelCase = 0.01 @dataclasses.dataclass(frozen=lowercase__ ) class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __UpperCAmelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __UpperCAmelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __UpperCAmelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __UpperCAmelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions __UpperCAmelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files __UpperCAmelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) __UpperCAmelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent __UpperCAmelCase : Optional[Sequence[int]] = None def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = R'(\[[A-Z]+\]\n)' _a : List[str] = [tag.strip() for tag in re.split(__a , __a ) if len(__a ) > 0] _a : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _a : List[str] = ["N", "CA", "C"] _a : int = None _a : List[str] = None _a : Optional[Any] = None for g in groups: if "[PRIMARY]" == g[0]: _a : int = g[1][0].strip() for i in range(len(__a ) ): if seq[i] not in residue_constants.restypes: _a : Dict = 'X' # FIXME: strings are immutable _a : Tuple = np.array( [residue_constants.restype_order.get(__a , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _a : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__a , g[1][axis].split() ) ) ) _a : str = np.array(__a ) _a : Optional[Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__a ): _a : int = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _a : List[str] = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _a : Union[str, Any] = np.zeros( ( len(__a ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__a ): _a : str = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__a , atom_mask=__a , aatype=__a , residue_index=np.arange(len(__a ) ) , b_factors=__a , ) def UpperCAmelCase_ (__a : Protein , __a : int = 0 ): """simple docstring""" _a : List[str] = [] _a : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) _a : Dict = prot.parents _a : Union[str, Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _a : List[Any] = [p for i, p in zip(__a , __a ) if i == chain_id] if parents is None or len(__a ) == 0: _a : Dict = ['N/A'] pdb_headers.append(f"""PARENT {' '.join(__a )}""" ) return pdb_headers def UpperCAmelCase_ (__a : Protein , __a : str ): """simple docstring""" _a : List[str] = [] _a : Any = pdb_str.split('\n' ) _a : List[str] = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) _a : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _a : Optional[int] = [] if prot.parents_chain_index is not None: _a : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__a ) , [] ) parent_dict[str(__a )].append(__a ) _a : List[Any] = max([int(__a ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _a : Union[str, Any] = parent_dict.get(str(__a ) , ['N/A'] ) parents_per_chain.append(__a ) else: parents_per_chain.append(list(prot.parents ) ) else: _a : List[str] = [['N/A']] def make_parent_line(__a : Sequence[str] ) -> str: return f"""PARENT {' '.join(__a )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _a : List[str] = 0 for i, l in enumerate(__a ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__a ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__a ): _a : Optional[int] = parents_per_chain[chain_counter] else: _a : Tuple = ['N/A'] out_pdb_lines.append(make_parent_line(__a ) ) return "\n".join(__a ) def UpperCAmelCase_ (__a : Protein ): """simple docstring""" _a : List[Any] = residue_constants.restypes + ['X'] def res_atoa(__a : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _a : Union[str, Any] = residue_constants.atom_types _a : List[str] = [] _a : List[Any] = prot.atom_mask _a : Union[str, Any] = prot.aatype _a : Tuple = prot.atom_positions _a : Tuple = prot.residue_index.astype(np.intaa ) _a : str = prot.b_factors _a : Union[str, Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _a : int = get_pdb_headers(__a ) if len(__a ) > 0: pdb_lines.extend(__a ) _a : Optional[int] = aatype.shape[0] _a : List[Any] = 1 _a : Optional[Any] = 0 _a : Optional[Any] = string.ascii_uppercase _a : Tuple = None # Add all atom sites. for i in range(__a ): _a : str = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__a , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _a : Dict = 'ATOM' _a : str = atom_name if len(__a ) == 4 else f""" {atom_name}""" _a : Any = '' _a : Optional[Any] = '' _a : List[str] = 1.00 _a : Any = atom_name[0] # Protein supports only C, N, O, S, this works. _a : List[str] = '' _a : Optional[Any] = 'A' if chain_index is not None: _a : List[str] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _a : int = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__a ) atom_index += 1 _a : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _a : List[Any] = True _a : Union[str, Any] = chain_index[i + 1] if should_terminate: # Close the chain. _a : Tuple = 'TER' _a : List[str] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__a ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__a , __a ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__a ) def UpperCAmelCase_ (__a : Protein ): """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCAmelCase_ (__a : FeatureDict , __a : ModelOutput , __a : Optional[np.ndarray] = None , __a : Optional[np.ndarray] = None , __a : Optional[str] = None , __a : Optional[Sequence[str]] = None , __a : Optional[Sequence[int]] = None , ): """simple docstring""" return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__a , remark=__a , parents=__a , parents_chain_index=__a , )
5
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : str ,*_a : str ,**_a : Optional[int] ): '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
5
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
1
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ (__a : list[int] , __a : list[int] , __a : list[int] , __a : list[list[str]] , __a : int , ): """simple docstring""" _a : Tuple = len(__a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __a , __a , ) def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : list[list[str]] = [] depth_first_search([] , [] , [] , __a , __a ) # Print all the boards for board in boards: for column in board: print(__a ) print('' ) print(len(__a ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
5
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ,_a : Optional[int] ): '''simple docstring''' _a : str = str(id_ ) _a : int = None _a : Optional[int] = None _a : List[str] = [] _a : Optional[Any] = {} # {vertex:distance} def __lt__( self : Any ,_a : List[Any] ): '''simple docstring''' return self.key < other.key def __repr__( self : int ): '''simple docstring''' return self.id def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' self.neighbors.append(_a ) def __lowercase ( self : Optional[int] ,_a : str ,_a : Tuple ): '''simple docstring''' _a : List[str] = weight def UpperCAmelCase_ (__a : Union[str, Any] , __a : int , __a : int , __a : List[Any] ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __a ) graph[b - 1].add_edge(graph[a - 1] , __a ) def UpperCAmelCase_ (__a : list , __a : Vertex ): """simple docstring""" _a : int = [] for u in graph: _a : Any = math.inf _a : Optional[int] = None _a : Any = 0 _a : Tuple = graph[:] while q: _a : Optional[Any] = min(__a ) q.remove(__a ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a : Tuple = u _a : int = u.edges[v.id] for i in range(1 , len(__a ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ (__a : list , __a : Vertex ): """simple docstring""" for u in graph: _a : Any = math.inf _a : List[str] = None _a : Any = 0 _a : Union[str, Any] = list(__a ) hq.heapify(__a ) while h: _a : int = hq.heappop(__a ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a : Optional[Any] = u _a : List[str] = u.edges[v.id] hq.heapify(__a ) for i in range(1 , len(__a ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ (): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Any , __a : str , __a : List[Any] ): """simple docstring""" _a : str = LxmertConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : Union[str, Any] = LxmertForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__a , __a , __a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,_a : Union[str, "sqlalchemy.sql.Selectable"] ,_a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_a : Optional[Features] = None ,_a : str = None ,_a : bool = False ,**_a : List[Any] ,): '''simple docstring''' super().__init__(features=_a ,cache_dir=_a ,keep_in_memory=_a ,**_a ) _a : Any = Sql( cache_dir=_a ,features=_a ,sql=_a ,con=_a ,**_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = None _a : Dict = None _a : Any = None _a : Optional[int] = None self.builder.download_and_prepare( download_config=_a ,download_mode=_a ,verification_mode=_a ,base_path=_a ,) # Build dataset for splits _a : Dict = self.builder.as_dataset( split='train' ,verification_mode=_a ,in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Dataset ,_a : str ,_a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,_a : Optional[int] = None ,_a : Optional[int] = None ,**_a : int ,): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : List[Any] = dataset _a : Dict = name _a : Optional[Any] = con _a : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : Optional[Any] = num_proc _a : Any = to_sql_kwargs def __lowercase ( self : List[str] ): '''simple docstring''' _a : Dict = self.to_sql_kwargs.pop('sql' ,_a ) _a : Tuple = self.to_sql_kwargs.pop('con' ,_a ) _a : Optional[Any] = self.to_sql_kwargs.pop('index' ,_a ) _a : Union[str, Any] = self._write(index=_a ,**self.to_sql_kwargs ) return written def __lowercase ( self : Any ,_a : Tuple ): '''simple docstring''' _a, _a, _a : Any = args _a : Any = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _a : Optional[int] = query_table( table=self.dataset.data ,key=slice(_a ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : Any = batch.to_pandas() _a : Union[str, Any] = df.to_sql(self.name ,self.con ,index=_a ,**_a ) return num_rows or len(_a ) def __lowercase ( self : Optional[int] ,_a : List[str] ,**_a : List[Any] ): '''simple docstring''' _a : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a, _a : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,_a ,_a )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Tuple ,_a : Optional[Any]=13 ,_a : List[str]=7 ,_a : str=True ,_a : List[str]=True ,_a : Optional[int]=True ,_a : Union[str, Any]=True ,_a : Union[str, Any]=True ,_a : Union[str, Any]=False ,_a : Union[str, Any]=False ,_a : List[Any]=False ,_a : str=2 ,_a : List[str]=99 ,_a : Tuple=0 ,_a : List[str]=32 ,_a : Dict=5 ,_a : Union[str, Any]=4 ,_a : Union[str, Any]=0.1 ,_a : Tuple=0.1 ,_a : Union[str, Any]=512 ,_a : Optional[int]=2 ,_a : Any=0.02 ,_a : List[str]=2 ,_a : Dict=4 ,_a : int="last" ,_a : Optional[Any]=True ,_a : str=None ,_a : str=0 ,): '''simple docstring''' _a : Dict = parent _a : Tuple = batch_size _a : List[Any] = seq_length _a : Any = is_training _a : List[Any] = use_input_lengths _a : Optional[Any] = use_token_type_ids _a : Tuple = use_labels _a : Dict = gelu_activation _a : int = sinusoidal_embeddings _a : int = causal _a : Any = asm _a : Dict = n_langs _a : str = vocab_size _a : Optional[int] = n_special _a : List[Any] = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : Optional[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : List[str] = type_sequence_label_size _a : List[str] = initializer_range _a : Any = num_labels _a : Optional[int] = num_choices _a : List[str] = summary_type _a : Optional[Any] = use_proj _a : Dict = scope _a : List[Any] = bos_token_id def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _a : int = None if self.use_input_lengths: _a : Union[str, Any] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a : Optional[Any] = None if self.use_token_type_ids: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) _a : Any = None _a : List[Any] = None _a : Any = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Optional[Any] = ids_tensor([self.batch_size] ,2 ).float() _a : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) _a : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self : List[Any] ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def __lowercase ( self : Tuple ,_a : Any ,_a : str ,_a : str ,_a : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : List[Any] ,_a : Optional[Any] ,_a : List[Any] ,): '''simple docstring''' _a : List[str] = XLMModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ,lengths=_a ,langs=_a ) _a : List[str] = model(_a ,langs=_a ) _a : Any = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Any ,_a : Any ,_a : int ,_a : str ,_a : Dict ,_a : Union[str, Any] ,_a : Optional[int] ,_a : List[str] ,_a : Dict ,_a : str ,): '''simple docstring''' _a : Union[str, Any] = XLMWithLMHeadModel(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[Any] ,_a : Tuple ,_a : List[str] ,_a : Optional[int] ,_a : Optional[Any] ,_a : Any ,_a : int ,_a : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,): '''simple docstring''' _a : str = XLMForQuestionAnsweringSimple(_a ) model.to(_a ) model.eval() _a : int = model(_a ) _a : int = model(_a ,start_positions=_a ,end_positions=_a ) _a : Optional[int] = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[int] ,_a : Optional[Any] ,_a : Optional[int] ,_a : Any ,_a : Tuple ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : str ,_a : List[Any] ,): '''simple docstring''' _a : Tuple = XLMForQuestionAnswering(_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) _a : Tuple = model( _a ,start_positions=_a ,end_positions=_a ,cls_index=_a ,is_impossible=_a ,p_mask=_a ,) _a : Tuple = model( _a ,start_positions=_a ,end_positions=_a ,cls_index=_a ,is_impossible=_a ,) ((_a), ) : str = result_with_labels.to_tuple() _a : int = model(_a ,start_positions=_a ,end_positions=_a ) ((_a), ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def __lowercase ( self : List[str] ,_a : List[str] ,_a : List[str] ,_a : Union[str, Any] ,_a : Dict ,_a : Optional[Any] ,_a : Any ,_a : Union[str, Any] ,_a : Tuple ,_a : str ,): '''simple docstring''' _a : Dict = XLMForSequenceClassification(_a ) model.to(_a ) model.eval() _a : Any = model(_a ) _a : Optional[int] = model(_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : str ,_a : Optional[Any] ,_a : int ,_a : Optional[int] ,_a : Dict ,_a : int ,_a : int ,_a : Optional[int] ,_a : Optional[Any] ,_a : Union[str, Any] ,): '''simple docstring''' _a : List[str] = self.num_labels _a : Optional[int] = XLMForTokenClassification(_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Tuple ,_a : List[Any] ,_a : Optional[Any] ,_a : List[str] ,_a : Any ,_a : Optional[int] ,_a : int ,_a : Tuple ,): '''simple docstring''' _a : Tuple = self.num_choices _a : Optional[Any] = XLMForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : int = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : Optional[int] = model( _a ,attention_mask=_a ,token_type_ids=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : List[str] = config_and_inputs _a : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : Any = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self : int ,_a : str ,_a : Union[str, Any] ,_a : Optional[int] ,_a : Any ,_a : Any ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self : Union[str, Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Optional[Any]=False ): '''simple docstring''' _a : Union[str, Any] = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) _a : Any = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = XLMModelTester(self ) _a : Union[str, Any] = ConfigTester(self ,config_class=_a ,emb_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_a ) def __lowercase ( self : Tuple ,_a : Tuple ,_a : Dict ,_a : Union[str, Any] ,_a : List[Any] ,_a : Dict ,_a : List[str]=False ,_a : str=1 ): '''simple docstring''' self.assertIsInstance(_a ,_a ) self.assertListEqual( [isinstance(_a ,_a ) for iter_attentions in attentions] ,[True] * len(_a ) ) self.assertEqual(len(_a ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_a ): # adds PAD dummy token _a : Optional[Any] = min_length + idx + 1 _a : Optional[Any] = min_length + idx + 1 _a : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(_a ) ) def __lowercase ( self : Any ,_a : int ,_a : int ,_a : List[str] ,_a : Tuple ,_a : Union[str, Any] ,_a : Optional[int]=False ,_a : List[Any]=1 ): '''simple docstring''' self.assertIsInstance(_a ,_a ) self.assertListEqual( [isinstance(_a ,_a ) for iter_hidden_states in hidden_states] ,[True] * len(_a ) ,) self.assertEqual(len(_a ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_a ): # adds PAD dummy token _a : Dict = min_length + idx + 1 _a : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(_a ) ,) pass @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = XLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_a ) _a : Optional[int] = torch.tensor([[14, 447]] ,dtype=torch.long ,device=_a ) # the president _a : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a : Dict = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,_a )
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ProphetNetTokenizer __UpperCAmelCase : List[Any] = False def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() _a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Any = 'UNwant\u00E9d,running' _a : Any = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_a ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,[9, 6, 7, 12, 10, 11] ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase ( self : str ): '''simple docstring''' _a : int = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowercase ( self : int ): '''simple docstring''' _a : Tuple = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = BasicTokenizer(do_lower_case=_a ,strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[Any] = BasicTokenizer(do_lower_case=_a ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _a : List[str] = {} for i, token in enumerate(_a ): _a : List[str] = i _a : Any = WordpieceTokenizer(vocab=_a ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : str = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] _a : Union[str, Any] = tokenizer(_a ,padding=_a ,return_tensors='pt' ) self.assertIsInstance(_a ,_a ) _a : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a ,_a ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def __lowercase ( self : int ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase ( self : str ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _a : Tuple = tokenizer.encode('sequence builders' ,add_special_tokens=_a ) _a : Union[str, Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_a ) _a : int = tokenizer.build_inputs_with_special_tokens(_a ) _a : str = tokenizer.build_inputs_with_special_tokens(_a ,_a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = GPTaTokenizer __UpperCAmelCase : Union[str, Any] = GPTaTokenizerFast __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = {'''add_prefix_space''': True} __UpperCAmelCase : Dict = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _a : List[str] = dict(zip(_a ,range(len(_a ) ) ) ) _a : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _a : List[str] = {'unk_token': '<unk>'} _a : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : Dict ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Any ,**_a : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : List[Any] ): '''simple docstring''' _a : List[Any] = 'lower newer' _a : int = 'lower newer' return input_text, output_text def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : List[Any] = 'lower newer' _a : str = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _a : int = tokenizer.tokenize(_a ,add_prefix_space=_a ) self.assertListEqual(_a ,_a ) _a : List[str] = tokens + [tokenizer.unk_token] _a : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_a ) _a : Union[str, Any] = 'lower newer' # Testing tokenization _a : Tuple = tokenizer.tokenize(_a ,add_prefix_space=_a ) _a : int = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) # Testing conversion to ids without special tokens _a : str = tokenizer.encode(_a ,add_special_tokens=_a ,add_prefix_space=_a ) _a : str = rust_tokenizer.encode(_a ,add_special_tokens=_a ) self.assertListEqual(_a ,_a ) # Testing conversion to ids with special tokens _a : List[Any] = self.get_rust_tokenizer(add_prefix_space=_a ) _a : List[Any] = tokenizer.encode(_a ,add_prefix_space=_a ) _a : Any = rust_tokenizer.encode(_a ) self.assertListEqual(_a ,_a ) # Testing the unknown token _a : Union[str, Any] = tokens + [rust_tokenizer.unk_token] _a : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Dict ,*_a : Optional[int] ,**_a : Any ): '''simple docstring''' pass def __lowercase ( self : List[Any] ,_a : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : List[Any] = self.rust_tokenizer_class.from_pretrained(_a ,**_a ) # Simple input _a : List[Any] = 'This is a simple input' _a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] _a : List[Any] = ('This is a simple input', 'This is a pair') _a : Tuple = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_a ,tokenizer_r.encode ,_a ,max_length=_a ,padding='max_length' ) # Simple input self.assertRaises(_a ,tokenizer_r.encode_plus ,_a ,max_length=_a ,padding='max_length' ) # Simple input self.assertRaises( _a ,tokenizer_r.batch_encode_plus ,_a ,max_length=_a ,padding='max_length' ,) # Pair input self.assertRaises(_a ,tokenizer_r.encode ,_a ,max_length=_a ,padding='max_length' ) # Pair input self.assertRaises(_a ,tokenizer_r.encode_plus ,_a ,max_length=_a ,padding='max_length' ) # Pair input self.assertRaises( _a ,tokenizer_r.batch_encode_plus ,_a ,max_length=_a ,padding='max_length' ,) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token='<pad>' ) # Simple input _a : int = 'This is a simple input' _a : Optional[int] = ['This is a simple input looooooooong', 'This is a simple input'] _a : Dict = ('This is a simple input', 'This is a pair') _a : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _a : Union[str, Any] = tokenizer.pad_token_id _a : int = tokenizer(_a ,padding='max_length' ,max_length=30 ,return_tensors='np' ) _a : List[str] = tokenizer(_a ,padding=_a ,truncate=_a ,return_tensors='np' ) _a : Optional[Any] = tokenizer(*_a ,padding='max_length' ,max_length=60 ,return_tensors='np' ) _a : Union[str, Any] = tokenizer(_a ,padding=_a ,truncate=_a ,return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = '$$$' _a : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=_a ,add_bos_token=_a ) _a : str = 'This is a simple input' _a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _a : Optional[Any] = tokenizer.bos_token_id _a : List[str] = tokenizer(_a ) _a : Dict = tokenizer(_a ) self.assertEqual(out_s.input_ids[0] ,_a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _a : int = tokenizer.decode(out_s.input_ids ) _a : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,_a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = [self.get_tokenizer(do_lower_case=_a ,add_bos_token=_a )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : str = 'Encode this.' _a : Union[str, Any] = 'This one too please.' _a : Any = tokenizer.encode(_a ,add_special_tokens=_a ) encoded_sequence += tokenizer.encode(_a ,add_special_tokens=_a ) _a : Optional[int] = tokenizer.encode_plus( _a ,_a ,add_special_tokens=_a ,return_special_tokens_mask=_a ,) _a : Optional[int] = encoded_sequence_dict['input_ids'] _a : str = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(_a ) ,len(_a ) ) _a : Tuple = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_a ) ] _a : Tuple = [x for x in filtered_sequence if x is not None] self.assertEqual(_a ,_a ) @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=_a ) _a : Dict = 'A photo of a cat' _a : int = tokenizer.encode( _a ,) self.assertEqual(_a ,[2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) _a : List[Any] = AutoTokenizer.from_pretrained('./test_opt' ) _a : int = tokenizer.encode( _a ,) self.assertEqual(_a ,[2, 250, 1345, 9, 10, 4758] ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = AutoTokenizer.from_pretrained('facebook/opt-350m' ,use_slow=_a ) _a : Union[str, Any] = 'A photo of a cat' _a : List[Any] = tokenizer.encode( _a ,) # Same as above self.assertEqual(_a ,[2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = AutoTokenizer.from_pretrained('facebook/opt-350m' ,from_slow=_a ) _a : Union[str, Any] = 'bos' _a : Dict = tokenizer.get_vocab()['bos'] _a : Optional[Any] = 'A photo of a cat' _a : Any = tokenizer.encode( _a ,) # We changed the bos token self.assertEqual(_a ,[3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) _a : List[str] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) _a : Optional[Any] = tokenizer.encode( _a ,) self.assertEqual(_a ,[3_1957, 250, 1345, 9, 10, 4758] )
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : float , __a : int ): """simple docstring""" if digit_amount > 0: return round(number - int(__a ) , __a ) return number - int(__a ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ,_a : Union[str, Any] ,_a : Tuple=13 ,_a : int=7 ,_a : List[str]=True ,_a : List[Any]=True ,_a : Union[str, Any]=99 ,_a : Any=32 ,_a : Union[str, Any]=5 ,_a : Any=4 ,_a : int=37 ,_a : Union[str, Any]="gelu" ,_a : Optional[int]=0.1 ,_a : List[Any]=0.1 ,_a : Tuple=50 ,_a : Tuple=0.02 ,_a : Any=True ,_a : Union[str, Any]=None ,): '''simple docstring''' _a : Optional[int] = parent _a : Optional[int] = batch_size _a : int = seq_length _a : Any = is_training _a : int = use_input_mask _a : Tuple = vocab_size _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : List[Any] = num_attention_heads _a : Tuple = intermediate_size _a : List[Any] = hidden_act _a : str = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : int = initializer_range _a : Tuple = use_labels _a : Union[str, Any] = scope def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Any = None if self.use_input_mask: _a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Any = self.get_config() return config, input_ids, input_mask, token_labels def __lowercase ( self : List[Any] ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=_a ,initializer_range=self.initializer_range ,) def __lowercase ( self : Optional[int] ): '''simple docstring''' ( ( _a ), ( _a ), ( _a ), ( _a ), ) : Union[str, Any] = self.prepare_config_and_inputs() _a : List[str] = True _a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowercase ( self : Any ,_a : int ,_a : Optional[int] ,_a : Dict ,_a : List[Any] ,**_a : List[Any] ,): '''simple docstring''' _a : List[Any] = BertGenerationEncoder(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,attention_mask=_a ) _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] ,_a : str ,_a : Tuple ,_a : Tuple ,_a : Union[str, Any] ,_a : Union[str, Any] ,_a : List[Any] ,**_a : List[str] ,): '''simple docstring''' _a : str = True _a : Optional[int] = BertGenerationEncoder(config=_a ) model.to(_a ) model.eval() _a : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,) _a : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : Any ,_a : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Any ,_a : Any ,**_a : Optional[int] ,): '''simple docstring''' _a : List[Any] = True _a : Optional[Any] = True _a : Optional[Any] = BertGenerationDecoder(config=_a ).to(_a ).eval() # first forward pass _a : int = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,use_cache=_a ,) _a : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _a : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _a : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) _a : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) _a : Dict = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,output_hidden_states=_a ,)['hidden_states'][0] _a : int = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,past_key_values=_a ,output_hidden_states=_a ,)['hidden_states'][0] # select random slice _a : Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _a : int = output_from_no_past[:, -3:, random_slice_idx].detach() _a : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1E-3 ) ) def __lowercase ( self : str ,_a : str ,_a : Union[str, Any] ,_a : str ,_a : Optional[int] ,*_a : Dict ,): '''simple docstring''' _a : Any = BertGenerationDecoder(_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str ): '''simple docstring''' _a, _a, _a, _a : Any = self.prepare_config_and_inputs() _a : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __UpperCAmelCase : Tuple = (BertGenerationDecoder,) if is_torch_available() else () __UpperCAmelCase : List[str] = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowercase ( self : int ): '''simple docstring''' _a : str = BertGenerationEncoderTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : str ): '''simple docstring''' _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : Optional[int] = 'bert' self.model_tester.create_and_check_model(_a ,_a ,_a ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _a : int = None self.model_tester.create_and_check_model_as_decoder( _a ,_a ,_a ,_a ,_a ,_a ,) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_a ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(_a ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : Dict ): '''simple docstring''' _a : str = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) _a : Any = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _a : str = model(_a )[0] _a : str = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,_a ) _a : Union[str, Any] = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_a ,atol=1E-4 ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) _a : Optional[int] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _a : Tuple = model(_a )[0] _a : Tuple = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,_a ) _a : Any = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_a ,atol=1E-4 ) )
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase = """src/diffusers""" __lowerCAmelCase = """.""" # This is to make sure the diffusers module imported is the one in the repo. __lowerCAmelCase = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) __lowerCAmelCase = spec.loader.load_module() def UpperCAmelCase_ (__a : Dict , __a : str ): """simple docstring""" return line.startswith(__a ) or len(__a ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , __a ) is not None def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : int = object_name.split('.' ) _a : int = 0 # First let's find the module where our object lives. _a : Dict = parts[i] while i < len(__a ) and not os.path.isfile(os.path.join(__a , f"""{module}.py""" ) ): i += 1 if i < len(__a ): _a : Any = os.path.join(__a , parts[i] ) if i >= len(__a ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__a , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _a : int = f.readlines() # Now let's find the class / func in the code! _a : Optional[int] = '' _a : List[str] = 0 for name in parts[i + 1 :]: while ( line_index < len(__a ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__a ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _a : int = line_index while line_index < len(__a ) and _should_continue(lines[line_index] , __a ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _a : int = lines[start_index:line_index] return "".join(__a ) __lowerCAmelCase = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") __lowerCAmelCase = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") __lowerCAmelCase = re.compile(r"""<FILL\s+[^>]*>""") def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : Union[str, Any] = code.split('\n' ) _a : Union[str, Any] = 0 while idx < len(__a ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__a ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Tuple = len(get_indent(__a ) ) > 0 if has_indent: _a : Optional[int] = f"""class Bla:\n{code}""" _a : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__a ) _a : Tuple = black.format_str(__a , mode=__a ) _a, _a : Optional[int] = style_docstrings_in_code(__a ) return result[len('class Bla:\n' ) :] if has_indent else result def UpperCAmelCase_ (__a : List[Any] , __a : Optional[int]=False ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: _a : Optional[int] = f.readlines() _a : Tuple = [] _a : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__a ): _a : Tuple = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _a, _a, _a : List[str] = search.groups() _a : Dict = find_code_in_diffusers(__a ) _a : Any = get_indent(__a ) _a : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _a : Optional[Any] = theoretical_indent _a : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _a : Optional[int] = True while line_index < len(__a ) and should_continue: line_index += 1 if line_index >= len(__a ): break _a : Any = lines[line_index] _a : Union[str, Any] = _should_continue(__a , __a ) and re.search(f"""^{indent}# End copy""" , __a ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _a : int = lines[start_index:line_index] _a : int = ''.join(__a ) # Remove any nested `Copied from` comments to avoid circular copies _a : Optional[int] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__a ) is None] _a : List[Any] = '\n'.join(__a ) # Before comparing, use the `replace_pattern` on the original code. if len(__a ) > 0: _a : List[str] = replace_pattern.replace('with' , '' ).split(',' ) _a : int = [_re_replace_pattern.search(__a ) for p in patterns] for pattern in patterns: if pattern is None: continue _a, _a, _a : str = pattern.groups() _a : str = re.sub(__a , __a , __a ) if option.strip() == "all-casing": _a : str = re.sub(obja.lower() , obja.lower() , __a ) _a : Tuple = re.sub(obja.upper() , obja.upper() , __a ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _a : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) _a : Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _a : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] _a : Union[str, Any] = start_index + 1 if overwrite and len(__a ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__a ) return diffs def UpperCAmelCase_ (__a : bool = False ): """simple docstring""" _a : List[str] = glob.glob(os.path.join(__a , '**/*.py' ) , recursive=__a ) _a : int = [] for filename in all_files: _a : int = is_copy_consistent(__a , __a ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__a ) > 0: _a : Tuple = '\n'.join(__a ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
5
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : list ): """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _a : Tuple = grid[0] for row_n in range(1 , len(__a ) ): _a : Dict = grid[row_n] _a : str = fill_row(__a , __a ) _a : Any = grid[row_n] return grid[-1][-1] def UpperCAmelCase_ (__a : list , __a : list ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__a ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ,_a : bytes ): '''simple docstring''' _a : Optional[int] = data # Initialize hash values _a : Dict = [ 0X6a09_e667, 0Xbb67_ae85, 0X3c6e_f372, 0Xa54f_f53a, 0X510e_527f, 0X9b05_688c, 0X1f83_d9ab, 0X5be0_cd19, ] # Initialize round constants _a : Optional[Any] = [ 0X428a_2f98, 0X7137_4491, 0Xb5c0_fbcf, 0Xe9b5_dba5, 0X3956_c25b, 0X59f1_11f1, 0X923f_82a4, 0Xab1c_5ed5, 0Xd807_aa98, 0X1283_5b01, 0X2431_85be, 0X550c_7dc3, 0X72be_5d74, 0X80de_b1fe, 0X9bdc_06a7, 0Xc19b_f174, 0Xe49b_69c1, 0Xefbe_4786, 0X0fc1_9dc6, 0X240c_a1cc, 0X2de9_2c6f, 0X4a74_84aa, 0X5cb0_a9dc, 0X76f9_88da, 0X983e_5152, 0Xa831_c66d, 0Xb003_27c8, 0Xbf59_7fc7, 0Xc6e0_0bf3, 0Xd5a7_9147, 0X06ca_6351, 0X1429_2967, 0X27b7_0a85, 0X2e1b_2138, 0X4d2c_6dfc, 0X5338_0d13, 0X650a_7354, 0X766a_0abb, 0X81c2_c92e, 0X9272_2c85, 0Xa2bf_e8a1, 0Xa81a_664b, 0Xc24b_8b70, 0Xc76c_51a3, 0Xd192_e819, 0Xd699_0624, 0Xf40e_3585, 0X106a_a070, 0X19a4_c116, 0X1e37_6c08, 0X2748_774c, 0X34b0_bcb5, 0X391c_0cb3, 0X4ed8_aa4a, 0X5b9c_ca4f, 0X682e_6ff3, 0X748f_82ee, 0X78a5_636f, 0X84c8_7814, 0X8cc7_0208, 0X90be_fffa, 0Xa450_6ceb, 0Xbef9_a3f7, 0Xc671_78f2, ] _a : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowercase ( _a : bytes ): '''simple docstring''' _a : Tuple = B'\x80' + (B'\x00' * (63 - (len(_a ) + 8) % 64)) _a : Optional[int] = struct.pack('>Q' ,(len(_a ) * 8) ) return data + padding + big_endian_integer def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _a : int = list(struct.unpack('>16L' ,_a ) ) # add 48 0-ed integers words += [0] * 48 _a, _a, _a, _a, _a, _a, _a, _a : int = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _a : Optional[int] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _a : Optional[Any] = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _a : Dict = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _a : Tuple = self.ror(_a ,6 ) ^ self.ror(_a ,11 ) ^ self.ror(_a ,25 ) _a : List[Any] = (e & f) ^ ((~e & 0Xffff_ffff) & g) _a : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _a : List[Any] = self.ror(_a ,2 ) ^ self.ror(_a ,13 ) ^ self.ror(_a ,22 ) _a : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) _a : str = (sa + maj) % 0X1_0000_0000 _a, _a, _a, _a, _a, _a, _a, _a : List[str] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _a : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _a : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _a : Tuple = ''.join([hex(_a )[2:].zfill(8 ) for value in self.hashes] ) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : int ): '''simple docstring''' return 0Xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Dict ): '''simple docstring''' import hashlib _a : str = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_a ).hash ,hashlib.shaaaa(_a ).hexdigest() ) def UpperCAmelCase_ (): """simple docstring""" import doctest doctest.testmod() _a : int = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _a : Optional[Any] = parser.parse_args() _a : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _a : Dict = f.read() else: _a : Any = bytes(__a , 'utf-8' ) print(SHAaaa(__a ).hash ) if __name__ == "__main__": main()
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ,_a : Optional[Any] ,_a : Any=13 ,_a : str=[30, 30] ,_a : Dict=2 ,_a : Optional[Any]=3 ,_a : int=True ,_a : List[Any]=True ,_a : Union[str, Any]=32 ,_a : Dict=5 ,_a : List[str]=4 ,_a : int=37 ,_a : List[str]="gelu" ,_a : Dict=0.1 ,_a : Union[str, Any]=0.1 ,_a : List[str]=10 ,_a : Union[str, Any]=0.02 ,_a : Union[str, Any]=3 ,_a : Any=None ,_a : Optional[Any]=8 ,_a : Tuple=10 ,): '''simple docstring''' _a : List[str] = parent _a : int = batch_size _a : Optional[int] = image_size _a : Optional[int] = patch_size _a : int = num_channels _a : Dict = is_training _a : Tuple = use_labels _a : str = hidden_size _a : Dict = num_hidden_layers _a : List[Any] = num_attention_heads _a : List[str] = intermediate_size _a : int = hidden_act _a : Any = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : Optional[Any] = type_sequence_label_size _a : Tuple = initializer_range _a : Tuple = num_labels _a : Tuple = scope _a : List[str] = n_targets _a : str = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _a : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) _a : str = num_patches + 1 + self.num_detection_tokens def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _a : Union[str, Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _a : Dict = [] for i in range(self.batch_size ): _a : Optional[Any] = {} _a : Union[str, Any] = torch.randint( high=self.num_labels ,size=(self.n_targets,) ,device=_a ) _a : str = torch.rand(self.n_targets ,4 ,device=_a ) labels.append(_a ) _a : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): '''simple docstring''' return YolosConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_a ,initializer_range=self.initializer_range ,num_detection_tokens=self.num_detection_tokens ,num_labels=self.num_labels ,) def __lowercase ( self : List[str] ,_a : Optional[int] ,_a : Any ,_a : Dict ): '''simple docstring''' _a : List[str] = YolosModel(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.expected_seq_len, self.hidden_size) ) def __lowercase ( self : Optional[Any] ,_a : Union[str, Any] ,_a : str ,_a : Optional[int] ): '''simple docstring''' _a : Tuple = YolosForObjectDetection(_a ) model.to(_a ) model.eval() _a : str = model(pixel_values=_a ) _a : Any = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) _a : Tuple = model(pixel_values=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = self.prepare_config_and_inputs() _a, _a, _a : Union[str, Any] = config_and_inputs _a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Dict = False def __lowercase ( self : List[Any] ,_a : Optional[int] ,_a : Tuple ,_a : List[str]=False ): '''simple docstring''' _a : List[Any] = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _a : Optional[Any] = [] for i in range(self.model_tester.batch_size ): _a : Tuple = {} _a : str = torch.ones( size=(self.model_tester.n_targets,) ,device=_a ,dtype=torch.long ) _a : Any = torch.ones( self.model_tester.n_targets ,4 ,device=_a ,dtype=torch.float ) labels.append(_a ) _a : Any = labels return inputs_dict def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = YolosModelTester(self ) _a : str = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' pass def __lowercase ( self : Any ): '''simple docstring''' _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : str ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = True # in YOLOS, the seq_len is different _a : str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _a : Union[str, Any] = True _a : List[Any] = False _a : List[str] = True _a : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) _a : List[Any] = outputs.attentions self.assertEqual(len(_a ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Tuple = True _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : int = outputs.attentions self.assertEqual(len(_a ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) _a : Any = len(_a ) # Check attention is always last and order is fine _a : int = True _a : List[Any] = True _a : str = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : List[str] = 1 self.assertEqual(out_len + added_hidden_states ,len(_a ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_a ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def __lowercase ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(_a : List[Any] ,_a : Optional[int] ,_a : int ): _a : List[str] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : int = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.hidden_states _a : Union[str, Any] = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_a ) ,_a ) # YOLOS has a different seq_length _a : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[int] = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_a ) @slow def __lowercase ( self : Any ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = YolosModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[Any] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(_a ) _a : Tuple = self.default_image_processor _a : Optional[int] = prepare_img() _a : Any = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : List[str] = model(inputs.pixel_values ) # verify outputs _a : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape ,_a ) _a : str = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ,device=_a ,) _a : Tuple = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ,device=_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,_a ,atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] ,_a ,atol=1E-4 ) ) # verify postprocessing _a : str = image_processor.post_process_object_detection( _a ,threshold=0.3 ,target_sizes=[image.size[::-1]] )[0] _a : Union[str, Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(_a ) _a : Dict = [75, 75, 17, 63, 17] _a : List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(_a ) self.assertEqual(len(results['scores'] ) ,5 ) self.assertTrue(torch.allclose(results['scores'] ,_a ,atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() ,_a ) self.assertTrue(torch.allclose(results['boxes'][0, :] ,_a ) )
5
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
'''simple docstring''' __lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ (__a : dict[int, list[int]] , __a : int , __a : list[bool] ): """simple docstring""" _a : Optional[Any] = True _a : Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a , __a , __a ) order.append(__a ) return order def UpperCAmelCase_ (__a : dict[int, list[int]] , __a : int , __a : list[bool] ): """simple docstring""" _a : List[str] = True _a : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a , __a , __a ) return component def UpperCAmelCase_ (__a : dict[int, list[int]] ): """simple docstring""" _a : Dict = len(__a ) * [False] _a : dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) _a : Union[str, Any] = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a , __a , __a ) _a : Optional[Any] = [] _a : Union[str, Any] = len(__a ) * [False] for i in range(len(__a ) ): _a : List[str] = order[len(__a ) - i - 1] if not visited[vert]: _a : List[str] = find_components(__a , __a , __a ) components_list.append(__a ) return components_list
5
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
1
'''simple docstring''' # Lint as: python3 import itertools import os import re __lowerCAmelCase = re.compile(r"""([A-Z]+)([A-Z][a-z])""") __lowerCAmelCase = re.compile(r"""([a-z\d])([A-Z])""") __lowerCAmelCase = re.compile(r"""(?<!_)_(?!_)""") __lowerCAmelCase = re.compile(r"""(_{2,})""") __lowerCAmelCase = r"""^\w+(\.\w+)*$""" __lowerCAmelCase = r"""<>:/\|?*""" def UpperCAmelCase_ (__a : Union[str, Any] ): """simple docstring""" _a : Optional[int] = _uppercase_uppercase_re.sub(R'\1_\2' , __a ) _a : Dict = _lowercase_uppercase_re.sub(R'\1_\2' , __a ) return name.lower() def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" _a : str = _single_underscore_re.split(__a ) _a : int = [_multiple_underscores_re.split(__a ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__a ) if n != '' ) def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" if os.path.basename(__a ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(__a ) def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[Any] ): """simple docstring""" if os.path.basename(__a ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , __a ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(__a )}-{split}""" def UpperCAmelCase_ (__a : Any , __a : Dict , __a : Tuple , __a : Optional[Any]=None ): """simple docstring""" _a : Optional[int] = filename_prefix_for_split(__a , __a ) if filetype_suffix: prefix += f""".{filetype_suffix}""" _a : str = os.path.join(__a , __a ) return f"""{filepath}*""" def UpperCAmelCase_ (__a : Optional[Any] , __a : List[Any] , __a : int , __a : int=None , __a : List[Any]=None ): """simple docstring""" _a : Dict = filename_prefix_for_split(__a , __a ) _a : Union[str, Any] = os.path.join(__a , __a ) if shard_lengths: _a : Optional[int] = len(__a ) _a : List[str] = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(__a )] if filetype_suffix: _a : List[str] = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: _a : Any = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
5
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase = """src/transformers""" __lowerCAmelCase = """docs/source/en""" __lowerCAmelCase = """.""" def UpperCAmelCase_ (__a : List[str] , __a : Dict , __a : Optional[Any] ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: _a : List[str] = f.readlines() # Find the start prompt. _a : Dict = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 _a : List[Any] = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. __lowerCAmelCase = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") __lowerCAmelCase = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __a ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ (__a : Optional[int] , __a : Optional[Any] ): """simple docstring""" _a : str = 2 if text == '✅' or text == '❌' else len(__a ) _a : List[Any] = (width - text_length) // 2 _a : Optional[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _a : Optional[int] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(__a ) _a : Union[str, Any] = collections.defaultdict(__a ) _a : Optional[Any] = collections.defaultdict(__a ) _a : Optional[int] = collections.defaultdict(__a ) _a : int = collections.defaultdict(__a ) # Let's lookup through all transformers object (once). for attr_name in dir(__a ): _a : Tuple = None if attr_name.endswith('Tokenizer' ): _a : str = slow_tokenizers _a : int = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): _a : Union[str, Any] = fast_tokenizers _a : Union[str, Any] = attr_name[:-1_3] elif _re_tf_models.match(__a ) is not None: _a : List[str] = tf_models _a : Union[str, Any] = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: _a : Optional[int] = flax_models _a : Union[str, Any] = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: _a : Any = pt_models _a : List[Any] = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_name_to_prefix.values(): _a : int = True break # Try again after removing the last word in the name _a : Optional[Any] = ''.join(camel_case_split(__a )[:-1] ) # Let's build that table! _a : Tuple = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _a : List[Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _a : int = [len(__a ) + 2 for c in columns] _a : Optional[Any] = max([len(__a ) for name in model_names] ) + 2 # Build the table per se _a : Any = '|' + '|'.join([_center_text(__a , __a ) for c, w in zip(__a , __a )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" _a : Optional[int] = {True: '✅', False: '❌'} for name in model_names: _a : Optional[Any] = model_name_to_prefix[name] _a : str = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__a , __a ) for l, w in zip(__a , __a )] ) + "|\n" return table def UpperCAmelCase_ (__a : List[Any]=False ): """simple docstring""" _a, _a, _a, _a : Union[str, Any] = _find_text_in_file( filename=os.path.join(__a , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) _a : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__a , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_table(args.fix_and_overwrite)
5
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Union[str, Any]=13 ,_a : Optional[int]=32 ,_a : int=3 ,_a : List[str]=4 ,_a : Optional[int]=[10, 20, 30, 40] ,_a : Tuple=[2, 2, 3, 2] ,_a : Dict=True ,_a : List[str]=True ,_a : Optional[Any]=37 ,_a : Union[str, Any]="gelu" ,_a : Any=10 ,_a : str=0.02 ,_a : str=["stage2", "stage3", "stage4"] ,_a : List[str]=[2, 3, 4] ,_a : List[Any]=None ,): '''simple docstring''' _a : Dict = parent _a : List[str] = batch_size _a : str = image_size _a : Tuple = num_channels _a : List[str] = num_stages _a : Optional[Any] = hidden_sizes _a : str = depths _a : int = is_training _a : Optional[int] = use_labels _a : Tuple = intermediate_size _a : List[str] = hidden_act _a : Union[str, Any] = num_labels _a : Union[str, Any] = initializer_range _a : Union[str, Any] = out_features _a : List[str] = out_indices _a : Union[str, Any] = scope def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_labels ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_a ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : Optional[Any] ,_a : int ): '''simple docstring''' _a : Any = ConvNextVaModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Any ,_a : Any ,_a : str ,_a : Optional[Any] ): '''simple docstring''' _a : Tuple = ConvNextVaForImageClassification(_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : Dict ,_a : Any ,_a : List[str] ,_a : List[Any] ): '''simple docstring''' _a : int = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : str = None _a : Optional[Any] = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() _a : Dict = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() _a, _a, _a : Optional[Any] = config_and_inputs _a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = self.prepare_config_and_inputs() _a, _a, _a : Tuple = config_and_inputs _a : Union[str, Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Dict = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = ConvNextVaModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a, _a : Dict = self.model_tester.prepare_config_and_inputs_with_labels() _a : List[str] = True if model_class.__name__ in [ *get_values(_a ), *get_values(_a ), ]: continue _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.train() _a : Any = self._prepare_for_class(_a ,_a ,return_labels=_a ) _a : Optional[int] = model(**_a ).loss loss.backward() def __lowercase ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Tuple = False _a : int = True if ( model_class.__name__ in [*get_values(_a ), *get_values(_a )] or not model_class.supports_gradient_checkpointing ): continue _a : List[Any] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() _a : Any = self._prepare_for_class(_a ,_a ,return_labels=_a ) _a : str = model(**_a ).loss loss.backward() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Any ): '''simple docstring''' def check_hidden_states_output(_a : Any ,_a : List[str] ,_a : List[Any] ): _a : Any = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : int = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : Tuple = self.model_tester.num_stages self.assertEqual(len(_a ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Optional[int] = ConvNextVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Dict ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_a ) _a : Any = self.default_image_processor _a : Dict = prepare_img() _a : Tuple = preprocessor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) # verify the logits _a : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __lowerCAmelCase = list[list[float | int]] def UpperCAmelCase_ (__a : Matrix , __a : Matrix ): """simple docstring""" _a : int = len(__a ) _a : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__a )] _a : int _a : int _a : int _a : int _a : int _a : float for row in range(__a ): for col in range(__a ): _a : Optional[int] = matrix[row][col] _a : str = vector[row][0] _a : List[str] = 0 _a : Optional[Any] = 0 while row < size and col < size: # pivoting _a : Union[str, Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__a , __a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _a, _a : Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __a ): _a : Tuple = augmented[rowa][col] / augmented[row][col] _a : Union[str, Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __a ): for row in range(__a ): _a : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(__a , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(__a ) ] def UpperCAmelCase_ (__a : list[int] ): """simple docstring""" _a : int = len(__a ) _a : Matrix = [[0 for _ in range(__a )] for _ in range(__a )] _a : Matrix = [[0] for _ in range(__a )] _a : Matrix _a : int _a : int _a : int for x_val, y_val in enumerate(__a ): for col in range(__a ): _a : int = (x_val + 1) ** (size - col - 1) _a : Dict = y_val _a : Optional[Any] = solve(__a , __a ) def interpolated_func(__a : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__a ) ) return interpolated_func def UpperCAmelCase_ (__a : int ): """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def UpperCAmelCase_ (__a : Callable[[int], int] = question_function , __a : int = 1_0 ): """simple docstring""" _a : list[int] = [func(__a ) for x_val in range(1 , order + 1 )] _a : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _a : int = 0 _a : Callable[[int], int] _a : int for poly in polynomials: _a : List[str] = 1 while func(__a ) == poly(__a ): x_val += 1 ret += poly(__a ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
1
'''simple docstring''' import os def UpperCAmelCase_ (): """simple docstring""" _a : Any = os.path.dirname(os.path.realpath(__a ) ) _a : Optional[int] = os.path.join(__a , 'triangle.txt' ) with open(__a ) as f: _a : int = f.readlines() _a : str = [] for line in triangle: _a : str = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__a ) ) a.append(__a ) for i in range(1 , len(__a ) ): for j in range(len(a[i] ) ): _a : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _a : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__a , __a ) return max(a[-1] ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,*_a : Dict ,**_a : Dict ): '''simple docstring''' warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""ChineseCLIPFeatureExtractor"""] __lowerCAmelCase = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
1
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase_ (__a : list[list[int]] , __a : list[int] , __a : list[int] , __a : int , __a : list[list[int]] , ): """simple docstring""" _a : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the reference grid _a : Optional[Any] = 1 _a : Tuple = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the action grid _a : List[str] = init[0] _a : Dict = init[1] _a : List[str] = 0 _a : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell _a : Optional[int] = [[f, g, x, y]] _a : Optional[int] = False # flag that is set when search is complete _a : Dict = False # flag set if we can't find expand while not found and not resign: if len(__a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _a : List[Any] = cell.pop() _a : Dict = next_cell[2] _a : Union[str, Any] = next_cell[3] _a : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: _a : Dict = True else: for i in range(len(__a ) ): # to try out different valid actions _a : Any = x + DIRECTIONS[i][0] _a : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _a : Optional[int] = g + cost _a : List[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _a : str = 1 _a : Optional[int] = i _a : Union[str, Any] = [] _a : Union[str, Any] = goal[0] _a : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _a : str = x - DIRECTIONS[action[x][y]][0] _a : int = y - DIRECTIONS[action[x][y]][1] _a : Dict = xa _a : Tuple = ya invpath.append([x, y] ) _a : Union[str, Any] = [] for i in range(len(__a ) ): path.append(invpath[len(__a ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCAmelCase = [0, 0] # all coordinates are given in format [y,x] __lowerCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __lowerCAmelCase = 1 # the cost map which pushes the path closer to the goal __lowerCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCAmelCase = 9_9 __lowerCAmelCase , __lowerCAmelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __lowerCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def UpperCAmelCase_ (): """simple docstring""" _a : Tuple = os.path.dirname(os.path.realpath(__a ) ) _a : int = os.path.join(__a , 'words.txt' ) _a : Union[str, Any] = '' with open(__a ) as f: _a : Dict = f.readline() _a : Tuple = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _a : str = [ word for word in [sum(ord(__a ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = ['''flax''', '''transformers'''] def __init__( self : Union[str, Any] ,*_a : Tuple ,**_a : Optional[Any] ): '''simple docstring''' requires_backends(self ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Any ,*_a : Any ,**_a : Any ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Tuple ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = ['''flax''', '''transformers'''] def __init__( self : int ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' requires_backends(self ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : str ,*_a : Optional[Any] ,**_a : List[Any] ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Any ,*_a : int ,**_a : List[str] ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : int = ['''flax''', '''transformers'''] def __init__( self : Dict ,*_a : Any ,**_a : Dict ): '''simple docstring''' requires_backends(self ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : str ,*_a : Any ,**_a : str ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Dict ,*_a : Union[str, Any] ,**_a : List[str] ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = ['''flax''', '''transformers'''] def __init__( self : Optional[int] ,*_a : Any ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Optional[Any] ,*_a : Optional[int] ,**_a : Dict ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] ) @classmethod def __lowercase ( cls : Union[str, Any] ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(cls ,['flax', 'transformers'] )
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
'''simple docstring''' class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Any = '' _a : List[str] = '' _a : str = [] def __lowercase ( self : Optional[int] ,_a : int ,_a : int ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _a : Optional[Any] = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: _a : List[Any] = self.__min_dist_top_down_dp(_a ,n - 1 ) _a : List[Any] = self.__min_dist_top_down_dp(m - 1 ,_a ) _a : int = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) _a : str = 1 + min(_a ,_a ,_a ) return self.dp[m][n] def __lowercase ( self : Any ,_a : str ,_a : str ): '''simple docstring''' _a : List[str] = worda _a : List[str] = worda _a : List[Any] = [[-1 for _ in range(len(_a ) )] for _ in range(len(_a ) )] return self.__min_dist_top_down_dp(len(_a ) - 1 ,len(_a ) - 1 ) def __lowercase ( self : Any ,_a : str ,_a : str ): '''simple docstring''' _a : str = worda _a : Optional[int] = worda _a : Tuple = len(_a ) _a : List[str] = len(_a ) _a : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _a : Optional[Any] = j elif j == 0: # second string is empty _a : Union[str, Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _a : Union[str, Any] = self.dp[i - 1][j - 1] else: _a : List[str] = self.dp[i][j - 1] _a : Union[str, Any] = self.dp[i - 1][j] _a : Union[str, Any] = self.dp[i - 1][j - 1] _a : Optional[int] = 1 + min(_a ,_a ,_a ) return self.dp[m][n] if __name__ == "__main__": __lowerCAmelCase = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() __lowerCAmelCase = input("""Enter the first string: """).strip() __lowerCAmelCase = input("""Enter the second string: """).strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) __lowerCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) __lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) __lowerCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) __lowerCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) __lowerCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : str = FLAX_MODEL_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModel) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : int = FLAX_MODEL_FOR_PRETRAINING_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCAmelCase__ ( _BaseAutoModelClass ): """simple docstring""" __UpperCAmelCase : Dict = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Any ,_a : Optional[int] ,_a : Dict=13 ,_a : Union[str, Any]=7 ,_a : List[str]=True ,_a : Optional[Any]=True ,_a : Union[str, Any]=False ,_a : Optional[int]=True ,_a : Dict=99 ,_a : str=32 ,_a : str=5 ,_a : Any=4 ,_a : int=64 ,_a : Optional[int]="gelu" ,_a : List[str]=0.1 ,_a : Optional[Any]=0.1 ,_a : Union[str, Any]=512 ,_a : int=16 ,_a : Any=2 ,_a : int=0.02 ,_a : List[Any]=3 ,_a : List[Any]=4 ,_a : int=None ,_a : Tuple=2 ,_a : Optional[Any]=2 ,_a : Optional[int]=2 ,_a : int=2 ,_a : str=4 ,_a : Tuple=1 ,): '''simple docstring''' _a : int = parent _a : Dict = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Tuple = use_input_mask _a : List[Any] = use_token_type_ids _a : Tuple = use_labels _a : Dict = vocab_size _a : Dict = hidden_size _a : Tuple = num_hidden_layers _a : int = num_attention_heads _a : Optional[int] = intermediate_size _a : str = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Any = max_position_embeddings _a : List[str] = type_vocab_size _a : Optional[int] = type_sequence_label_size _a : Any = initializer_range _a : int = num_labels _a : Optional[int] = num_choices _a : int = scope _a : Dict = q_groups _a : str = k_groups _a : Dict = v_groups _a : str = post_attention_groups _a : List[str] = intermediate_groups _a : List[str] = output_groups def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Optional[int] = None if self.use_input_mask: _a : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Any = None _a : Optional[Any] = None _a : List[Any] = None if self.use_labels: _a : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _a : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : List[str] ): '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : str ,_a : Tuple ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Tuple = SqueezeBertModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,_a ) _a : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Optional[Any] ,_a : Any ,_a : int ,_a : Optional[Any] ,_a : Optional[int] ,_a : Union[str, Any] ,_a : List[str] ): '''simple docstring''' _a : Dict = SqueezeBertForMaskedLM(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Optional[Any] ,_a : Optional[int] ,_a : List[str] ,_a : Union[str, Any] ,_a : Dict ,_a : Dict ,_a : List[Any] ): '''simple docstring''' _a : List[Any] = SqueezeBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _a : Tuple = model( _a ,attention_mask=_a ,start_positions=_a ,end_positions=_a ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : List[str] ,_a : Any ,_a : Optional[int] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : str ): '''simple docstring''' _a : Any = self.num_labels _a : Optional[Any] = SqueezeBertForSequenceClassification(_a ) model.to(_a ) model.eval() _a : int = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[Any] ,_a : List[Any] ,_a : Tuple ,_a : Tuple ,_a : int ,_a : int ,_a : Dict ): '''simple docstring''' _a : Any = self.num_labels _a : Optional[Any] = SqueezeBertForTokenClassification(config=_a ) model.to(_a ) model.eval() _a : Any = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : Tuple ,_a : int ,_a : str ,_a : List[str] ,_a : str ): '''simple docstring''' _a : Union[str, Any] = self.num_choices _a : Optional[Any] = SqueezeBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() _a : int = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _a : List[Any] = model( _a ,attention_mask=_a ,labels=_a ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Any ): '''simple docstring''' _a : int = self.prepare_config_and_inputs() ((_a), (_a), (_a), (_a), (_a), (_a)) : Optional[Any] = config_and_inputs _a : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : List[str] = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Dict = True __UpperCAmelCase : Optional[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Dict = SqueezeBertModelTester(self ) _a : Optional[Any] = ConfigTester(self ,config_class=_a ,dim=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_a ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = SqueezeBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _a : str = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) _a : Optional[Any] = model(_a )[0] _a : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape ,_a ) _a : Any = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_a ,_a ,atol=1E-4 ) )
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowerCAmelCase = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowerCAmelCase = [0, 2_5, 5_0] __lowerCAmelCase = [2_5, 5_0, 7_5] __lowerCAmelCase = fuzz.membership.trimf(X, abca) __lowerCAmelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowerCAmelCase = np.ones(7_5) __lowerCAmelCase = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) __lowerCAmelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowerCAmelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowerCAmelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowerCAmelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowerCAmelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowerCAmelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowerCAmelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowerCAmelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" assert x is not None assert y is not None _a : Optional[int] = len(__a ) _a : int = len(__a ) # declaring the array for storing the dp values _a : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _a : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 _a : Optional[int] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _a : int = '' _a, _a : Tuple = m, n while i > 0 and j > 0: _a : str = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _a : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __lowerCAmelCase = """AGGTAB""" __lowerCAmelCase = """GXTXAYB""" __lowerCAmelCase = 4 __lowerCAmelCase = """GTAB""" __lowerCAmelCase , __lowerCAmelCase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ (__a : List[str] , __a : Union[str, Any] , __a : str ): """simple docstring""" _a : Any = 0 if start < end: _a : Optional[Any] = randint(__a , __a ) _a : Union[str, Any] = a[end] _a : Optional[Any] = a[pivot] _a : Any = temp _a, _a : Any = _in_place_partition(__a , __a , __a ) count += _in_place_quick_sort(__a , __a , p - 1 ) count += _in_place_quick_sort(__a , p + 1 , __a ) return count def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : Tuple ): """simple docstring""" _a : List[Any] = 0 _a : Tuple = randint(__a , __a ) _a : Optional[int] = a[end] _a : List[Any] = a[pivot] _a : Dict = temp _a : Dict = start - 1 for index in range(__a , __a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : Optional[Any] = new_pivot_index + 1 _a : Optional[Any] = a[new_pivot_index] _a : Tuple = a[index] _a : Tuple = temp _a : List[Any] = a[new_pivot_index + 1] _a : Optional[int] = a[end] _a : Tuple = temp return new_pivot_index + 1, count __lowerCAmelCase = TemporaryFile() __lowerCAmelCase = 1_0_0 # 1000 elements are to be sorted __lowerCAmelCase , __lowerCAmelCase = 0, 1 # mean and standard deviation __lowerCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array __lowerCAmelCase = np.load(outfile) __lowerCAmelCase = len(M) - 1 __lowerCAmelCase = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
5
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
1
'''simple docstring''' from torch import nn def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __lowerCAmelCase = None __lowerCAmelCase = { """7B""": 1_1_0_0_8, """13B""": 1_3_8_2_4, """30B""": 1_7_9_2_0, """65B""": 2_2_0_1_6, """70B""": 2_8_6_7_2, } __lowerCAmelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def UpperCAmelCase_ (__a : int , __a : Dict=1 , __a : Optional[int]=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase_ (__a : Any ): """simple docstring""" with open(__a , 'r' ) as f: return json.load(__a ) def UpperCAmelCase_ (__a : List[str] , __a : List[str] ): """simple docstring""" with open(__a , 'w' ) as f: json.dump(__a , __a ) def UpperCAmelCase_ (__a : str , __a : Optional[Any] , __a : Optional[Any] , __a : str=True ): """simple docstring""" os.makedirs(__a , exist_ok=__a ) _a : int = os.path.join(__a , 'tmp' ) os.makedirs(__a , exist_ok=__a ) _a : Union[str, Any] = read_json(os.path.join(__a , 'params.json' ) ) _a : Any = NUM_SHARDS[model_size] _a : str = params['n_layers'] _a : Dict = params['n_heads'] _a : Dict = n_heads // num_shards _a : Dict = params['dim'] _a : Optional[Any] = dim // n_heads _a : List[str] = 10000.0 _a : int = 1.0 / (base ** (torch.arange(0 , __a , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _a : Dict = params['n_kv_heads'] # for GQA / MQA _a : Optional[Any] = n_heads_per_shard // num_key_value_heads _a : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _a : int = n_heads _a : List[str] = n_heads_per_shard _a : Dict = dim # permute for sliced rotary def permute(__a : Optional[int] , __a : int=n_heads , __a : Optional[int]=dim , __a : Tuple=dim ): return w.view(__a , dima // n_heads // 2 , 2 , __a ).transpose(1 , 2 ).reshape(__a , __a ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _a : Optional[int] = torch.load(os.path.join(__a , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _a : Any = [ torch.load(os.path.join(__a , f"""consolidated.{i:02d}.pth""" ) , map_location='cpu' ) for i in range(__a ) ] _a : str = 0 _a : List[str] = {'weight_map': {}} for layer_i in range(__a ): _a : str = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _a : List[Any] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _a : List[Any] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _a : Optional[int] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(__a , __a , __a ) for i in range(__a ) ] , dim=0 , ).reshape(__a , __a ) ) _a : Any = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( __a , __a , __a ) for i in range(__a ) ] , dim=0 , ).reshape(__a , __a ) , __a , __a , __a , ) _a : List[str] = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( __a , __a , __a ) for i in range(__a ) ] , dim=0 , ).reshape(__a , __a ) _a : List[str] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(__a )] , dim=1 ) _a : Dict = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(__a )] , dim=0 ) _a : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(__a )] , dim=1 ) _a : Union[str, Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(__a )] , dim=0 ) _a : Optional[int] = inv_freq for k, v in state_dict.items(): _a : int = filename param_count += v.numel() torch.save(__a , os.path.join(__a , __a ) ) _a : int = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _a : Optional[int] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _a : str = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(__a )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(__a )] , dim=0 ), } for k, v in state_dict.items(): _a : Optional[int] = filename param_count += v.numel() torch.save(__a , os.path.join(__a , __a ) ) # Write configs _a : Optional[int] = {'total_size': param_count * 2} write_json(__a , os.path.join(__a , 'pytorch_model.bin.index.json' ) ) _a : Union[str, Any] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _a : List[Any] = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _a : Dict = LlamaConfig( hidden_size=__a , intermediate_size=compute_intermediate_size(__a , __a , __a ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=__a , ) config.save_pretrained(__a ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _a : Optional[int] = LlamaForCausalLM.from_pretrained(__a , torch_dtype=torch.floataa , low_cpu_mem_usage=__a ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(__a , safe_serialization=__a ) shutil.rmtree(__a ) def UpperCAmelCase_ (__a : Optional[Any] , __a : int ): """simple docstring""" _a : Optional[Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _a : Tuple = tokenizer_class(__a ) tokenizer.save_pretrained(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=__a , help='Whether or not to save using `safetensors`.' ) _a : str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _a : int = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , __a ) if __name__ == "__main__": main()
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase = """docs/source/en/_toctree.yml""" def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 _a : List[str] = [key for key, value in counts.items() if value > 1] _a : str = [] for duplicate_key in duplicates: _a : Union[str, Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def UpperCAmelCase_ (__a : Optional[int]=False ): """simple docstring""" with open(__a , encoding='utf-8' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _a : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : List[str] = api_doc[model_idx]['sections'] _a : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : List[Any] = modality_doc['sections'] _a : Any = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: _a : Union[str, Any] = True if overwrite: _a : str = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : Dict = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
5
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCAmelCase = NewType("""DataClass""", Any) __lowerCAmelCase = NewType("""DataClassType""", Any) def UpperCAmelCase_ (__a : Any ): """simple docstring""" if isinstance(__a , __a ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def UpperCAmelCase_ (__a : list ): """simple docstring""" _a : List[Any] = {str(__a ): choice for choice in choices} return lambda __a : str_to_choice.get(__a , __a ) def UpperCAmelCase_ (*, __a : Union[str, List[str]] = None , __a : str = None , __a : Any = dataclasses.MISSING , __a : Callable[[], Any] = dataclasses.MISSING , __a : dict = None , **__a : str , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _a : str = {} if aliases is not None: _a : Optional[Any] = aliases if help is not None: _a : Union[str, Any] = help return dataclasses.field(metadata=__a , default=__a , default_factory=__a , **__a ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Iterable[DataClassType] def __init__( self : int ,_a : Union[DataClassType, Iterable[DataClassType]] ,**_a : List[str] ): '''simple docstring''' if "formatter_class" not in kwargs: _a : List[str] = ArgumentDefaultsHelpFormatter super().__init__(**_a ) if dataclasses.is_dataclass(_a ): _a : Optional[int] = [dataclass_types] _a : Any = list(_a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_a ) @staticmethod def __lowercase ( _a : ArgumentParser ,_a : dataclasses.Field ): '''simple docstring''' _a : str = F"""--{field.name}""" _a : int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,_a ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _a : Union[str, Any] = kwargs.pop('aliases' ,[] ) if isinstance(_a ,_a ): _a : Union[str, Any] = [aliases] _a : str = getattr(field.type ,'__origin__' ,field.type ) if origin_type is Union or (hasattr(_a ,'UnionType' ) and isinstance(_a ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_a ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F""" Problem encountered in field '{field.name}'.""" ) if type(_a ) not in field.type.__args__: # filter `str` in Union _a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _a : List[Any] = getattr(field.type ,'__origin__' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _a : Tuple = ( field.type.__args__[0] if isinstance(_a ,field.type.__args__[1] ) else field.type.__args__[1] ) _a : Dict = getattr(field.type ,'__origin__' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _a : Any = {} if origin_type is Literal or (isinstance(field.type ,_a ) and issubclass(field.type ,_a )): if origin_type is Literal: _a : Optional[Any] = field.type.__args__ else: _a : List[str] = [x.value for x in field.type] _a : int = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _a : List[Any] = field.default else: _a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _a : List[str] = copy(_a ) # Hack because type=bool in argparse does not behave as we want. _a : List[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _a : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _a : int = default # This tells argparse we accept 0 or 1 value after --field_name _a : Dict = '?' # This is the value that will get picked if we do --field_name (without value) _a : str = True elif isclass(_a ) and issubclass(_a ,_a ): _a : Any = field.type.__args__[0] _a : Optional[int] = '+' if field.default_factory is not dataclasses.MISSING: _a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: _a : Optional[Any] = True else: _a : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: _a : Tuple = field.default elif field.default_factory is not dataclasses.MISSING: _a : Union[str, Any] = field.default_factory() else: _a : int = True parser.add_argument(_a ,*_a ,**_a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _a : Optional[Any] = False parser.add_argument(F"""--no_{field.name}""" ,action='store_false' ,dest=field.name ,**_a ) def __lowercase ( self : List[str] ,_a : DataClassType ): '''simple docstring''' if hasattr(_a ,'_argument_group_name' ): _a : Union[str, Any] = self.add_argument_group(dtype._argument_group_name ) else: _a : Optional[Any] = self try: _a : Dict[str, type] = get_type_hints(_a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_a ): _a : Union[str, Any] = '.'.join(map(_a ,sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_a ): if not field.init: continue _a : Any = type_hints[field.name] self._parse_dataclass_field(_a ,_a ) def __lowercase ( self : Tuple ,_a : Optional[Any]=None ,_a : List[Any]=False ,_a : Any=True ,_a : Union[str, Any]=None ,_a : str=None ,): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _a : Optional[Any] = [] if args_filename: args_files.append(Path(_a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _a : int = ArgumentParser() args_file_parser.add_argument(_a ,type=_a ,action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _a, _a : Dict = args_file_parser.parse_known_args(args=_a ) _a : str = vars(_a ).get(args_file_flag.lstrip('-' ) ,_a ) if cmd_args_file_paths: args_files.extend([Path(_a ) for p in cmd_args_file_paths] ) _a : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _a : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] _a, _a : str = self.parse_known_args(args=_a ) _a : str = [] for dtype in self.dataclass_types: _a : int = {f.name for f in dataclasses.fields(_a ) if f.init} _a : Optional[int] = {k: v for k, v in vars(_a ).items() if k in keys} for k in keys: delattr(_a ,_a ) _a : Dict = dtype(**_a ) outputs.append(_a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __lowercase ( self : Dict ,_a : Dict[str, Any] ,_a : bool = False ): '''simple docstring''' _a : Optional[int] = set(args.keys() ) _a : Optional[int] = [] for dtype in self.dataclass_types: _a : List[Any] = {f.name for f in dataclasses.fields(_a ) if f.init} _a : Dict = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _a : Optional[Any] = dtype(**_a ) outputs.append(_a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_a )}""" ) return tuple(_a ) def __lowercase ( self : Dict ,_a : str ,_a : bool = False ): '''simple docstring''' with open(Path(_a ) ,encoding='utf-8' ) as open_json_file: _a : Dict = json.loads(open_json_file.read() ) _a : Union[str, Any] = self.parse_dict(_a ,allow_extra_keys=_a ) return tuple(_a ) def __lowercase ( self : Dict ,_a : str ,_a : bool = False ): '''simple docstring''' _a : List[Any] = self.parse_dict(yaml.safe_load(Path(_a ).read_text() ) ,allow_extra_keys=_a ) return tuple(_a )
5
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ (__a : list[int] ): """simple docstring""" if len(__a ) == 0: return array _a, _a : Dict = min(__a ), max(__a ) # Compute the variables _a : Optional[int] = _max - _min + 1 _a, _a : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _a : Union[str, Any] = i - _min _a : Union[str, Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _a : Optional[Any] = 0 for i in range(__a ): while holes_repeat[i] > 0: _a : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("""Enter numbers separated by comma:\n""") __lowerCAmelCase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
5
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Any ,*_a : Optional[Any] ,**_a : List[Any] ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
5
'''simple docstring''' import qiskit def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" _a : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a : List[Any] = qiskit.QuantumCircuit(__a , __a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a : Tuple = qiskit.execute(__a , __a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__a ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : List[Any] ,_a : int ,_a : Union[str, Any] ,_a : List[str]=None ,_a : Dict=1 ): '''simple docstring''' _a : str = tokenizer _a : List[Any] = dataset _a : Dict = len(_a ) if n_tasks is None else n_tasks _a : Tuple = n_copies def __iter__( self : int ): '''simple docstring''' _a : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _a : str = self.tokenizer(_a ,padding=_a ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[Any] ,_a : List[Any] ,_a : Any ,_a : Optional[int] ): '''simple docstring''' _a : Optional[int] = start_length _a : int = eof_strings _a : Dict = tokenizer def __call__( self : Optional[int] ,_a : Tuple ,_a : str ,**_a : List[Any] ): '''simple docstring''' _a : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _a : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_a ) def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = re.split('(%s)' % '|'.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ (__a : Dict , __a : Optional[Any] , __a : Union[str, Any] , __a : int , __a : List[Any] , __a : Optional[Any]=2_0 , **__a : str ): """simple docstring""" _a : Any = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): _a : str = batch['ids'].shape[-1] _a : List[Any] = accelerator.unwrap_model(__a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times _a : Optional[Any] = batch['task_id'].repeat(__a ) _a : int = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) _a, _a : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) _a : Any = generated_tokens.cpu().numpy() _a : List[str] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) _a : str = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _a : Tuple = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def UpperCAmelCase_ (): """simple docstring""" _a : Any = HfArgumentParser(__a ) _a : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _a : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _a : Union[str, Any] = 'false' if args.num_workers is None: _a : str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _a : Any = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer _a : Optional[int] = AutoTokenizer.from_pretrained(args.model_ckpt ) _a : Optional[int] = tokenizer.eos_token _a : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _a : Dict = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric _a : Optional[int] = load_dataset('openai_humaneval' ) _a : Optional[int] = load_metric('code_eval' ) _a : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _a : Union[str, Any] = args.n_samples // args.batch_size _a : str = TokenizedDataset(__a , human_eval['test'] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences _a : str = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _a : Tuple = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _a, _a : str = accelerator.prepare(__a , __a ) _a : Optional[int] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: _a : List[Any] = [] for task in tqdm(range(__a ) ): _a : Dict = human_eval['test'][task]['test'] _a : Optional[int] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _a, _a : str = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __lowerCAmelCase = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __lowerCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ): '''simple docstring''' _a : List[Any] = WATERMARK_BITS _a : int = WatermarkEncoder() self.encoder.set_watermark('bits' ,self.watermark ) def __lowercase ( self : str ,_a : torch.FloatTensor ): '''simple docstring''' if images.shape[-1] < 256: return images _a : Tuple = (255 * (images / 2 + 0.5)).cpu().permute(0 ,2 ,3 ,1 ).float().numpy() _a : Any = [self.encoder.encode(_a ,'dwtDct' ) for image in images] _a : Optional[Any] = torch.from_numpy(np.array(_a ) ).permute(0 ,3 ,1 ,2 ) _a : str = torch.clamp(2 * (images / 255 - 0.5) ,min=-1.0 ,max=1.0 ) return images
5
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : int = len(__a ) + 1 _a : List[str] = len(__a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _a : Optional[int] = [[0 for i in range(__a )] for j in range(__a )] # since string of zero length match pattern of zero length _a : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __a ): _a : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __a ): _a : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __a ): for j in range(1 , __a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _a : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _a : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _a : int = dp[i - 1][j] else: _a : Any = 0 else: _a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCAmelCase = """aab""" __lowerCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : int = 4_0_0_0_0_0_0 ): """simple docstring""" _a : str = [] _a, _a : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__a ) _a, _a : Optional[int] = b, a + b return sum(__a ) if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """▁""" __lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCAmelCase = { """facebook/xglm-564M""": 2_0_4_8, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] ,_a : Optional[int] ,_a : Dict="<s>" ,_a : Optional[int]="</s>" ,_a : Optional[int]="</s>" ,_a : Any="<s>" ,_a : str="<unk>" ,_a : Tuple="<pad>" ,_a : Optional[Dict[str, Any]] = None ,**_a : Optional[Any] ,): '''simple docstring''' _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _a : Dict = 7 _a : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] _a : List[str] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token _a : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _a : Optional[int] = len(self.sp_model ) _a : Dict = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_a ) _a : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): '''simple docstring''' _a : str = self.__dict__.copy() _a : Any = None _a : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] ,_a : Tuple ): '''simple docstring''' _a : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Union[str, Any] = {} _a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : List[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a _a : int = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowercase ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowercase ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Optional[Any] ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Union[str, Any] ,_a : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a : Union[str, Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : List[Any] ,_a : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : int ,_a : List[str] ): '''simple docstring''' _a : Any = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : int ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Dict = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
5
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' _a : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-config' ) except HTTPError: pass def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('test-config' ,use_auth_token=self._token ) _a : Optional[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ,repo_id='test-config' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Dict = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' ,use_auth_token=self._token ) _a : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a ,repo_id='valid_org/test-config-org' ,push_to_hub=_a ,use_auth_token=self._token ) _a : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a ,getattr(_a ,_a ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' CustomConfig.register_for_auto_class() _a : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'AutoConfig': 'custom_configuration.CustomConfig'} ) _a : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'CustomConfig' ) self.assertEqual(new_config.attribute ,42 ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a : int = c.n_embd + 1 # int _a : str = c.resid_pdrop + 1.0 # float _a : Dict = not c.scale_attn_weights # bool _a : List[Any] = c.summary_type + 'foo' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_a ,c.n_embd ,'mismatch for key: n_embd' ) self.assertEqual(_a ,c.resid_pdrop ,'mismatch for key: resid_pdrop' ) self.assertEqual(_a ,c.scale_attn_weights ,'mismatch for key: scale_attn_weights' ) self.assertEqual(_a ,c.summary_type ,'mismatch for key: summary_type' ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = PretrainedConfig() _a : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a ,['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _a : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a ,_a )] if len(_a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F""" {', '.join(_a )}.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _a : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ,subfolder='bert' ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : List[Any] = mock.Mock() _a : Any = 500 _a : Any = {} _a : Any = HTTPError _a : List[Any] = {} # Download this model to make sure it's in the cache. _a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_a ) as mock_head: _a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = AutoConfig.from_pretrained('bert-base-cased' ) _a : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _a : str = 2 json.dump(configuration.to_dict() ,open(os.path.join(_a ,'config.4.0.0.json' ) ,'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a : Tuple = ['config.42.0.0.json'] _a : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a ,'config.4.0.0.json' ) ,os.path.join(_a ,'config.42.0.0.json' ) ) _a : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size ,768 ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _a : Optional[int] = 'v4.0.0' _a, _a : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a ,return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a : str = 'v3.0.0' _a : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size ,768 )
5
1
'''simple docstring''' import os def UpperCAmelCase_ (__a : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__a ) , __a ) ) as input_file: _a : List[str] = [ [int(__a ) for element in line.split(',' )] for line in input_file.readlines() ] _a : List[str] = len(__a ) _a : Union[str, Any] = len(matrix[0] ) _a : str = [[-1 for _ in range(__a )] for _ in range(__a )] for i in range(__a ): _a : Optional[Any] = matrix[i][0] for j in range(1 , __a ): for i in range(__a ): _a : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __a ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _a : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } __lowerCAmelCase = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: _a : List[Any] = state_dict.pop(__a ) # emb -> embedding if name.startswith('emb.' ): _a : List[str] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _a : int = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __a ) # ffn -> feed_forward _a : str = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _a : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _a : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _a : Tuple = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _a : Tuple = 'rwkv.' + name _a : List[Any] = weight return state_dict def UpperCAmelCase_ (__a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : str=None , __a : List[str]=None , __a : int=False , __a : int=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _a : List[Any] = 5_0_2_7_7 _a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=__a ) _a : List[Any] = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config _a : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _a : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _a : str = RwkvConfig( vocab_size=__a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict _a : Tuple = hf_hub_download(__a , __a ) _a : Optional[int] = torch.load(__a , map_location='cpu' ) _a : Dict = convert_state_dict(__a ) # 4. Split in shards and save _a, _a : List[Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a , os.path.join(__a , __a ) ) if index is not None: _a : Dict = os.path.join(__a , __a ) # Save the index as well with open(__a , 'w' , encoding='utf-8' ) as f: _a : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _a : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _a : Optional[Any] = torch.load(os.path.join(__a , __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__a , __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _a : List[str] = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a , max_shard_size='2GB' ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = '''vision-encoder-decoder''' __UpperCAmelCase : Tuple = True def __init__( self : List[Any] ,**_a : List[Any] ): '''simple docstring''' super().__init__(**_a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : Tuple = kwargs.pop('encoder' ) _a : int = encoder_config.pop('model_type' ) _a : List[str] = kwargs.pop('decoder' ) _a : Union[str, Any] = decoder_config.pop('model_type' ) _a : Optional[Any] = AutoConfig.for_model(_a ,**_a ) _a : List[Any] = AutoConfig.for_model(_a ,**_a ) _a : int = True @classmethod def __lowercase ( cls : List[Any] ,_a : PretrainedConfig ,_a : PretrainedConfig ,**_a : Dict ): '''simple docstring''' logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _a : Optional[int] = True _a : str = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = copy.deepcopy(self.__dict__ ) _a : Tuple = self.encoder.to_dict() _a : Optional[Any] = self.decoder.to_dict() _a : str = self.__class__.model_type return output class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse('''1.11''' ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return 1E-4 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : str = OrderedDict() _a : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Any = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __lowercase ( self : Any ,_a : "PreTrainedTokenizerBase" ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,): '''simple docstring''' import torch _a : List[str] = OrderedDict() _a : Optional[Any] = super().generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) _a, _a : Optional[int] = dummy_input['input_ids'].shape _a : Dict = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Tuple = dummy_input.pop('input_ids' ) _a : int = dummy_input.pop('attention_mask' ) _a : str = torch.zeros(_a ) return common_inputs class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass def __lowercase ( self : List[str] ,_a : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_a ) def __lowercase ( self : List[str] ,_a : PretrainedConfig ,_a : PretrainedConfig ,_a : str = "default" ): '''simple docstring''' _a : Optional[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a ,_a )
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = '''data2vec-vision''' def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Optional[int]=12 ,_a : Any=12 ,_a : Dict=3072 ,_a : Tuple="gelu" ,_a : Union[str, Any]=0.0 ,_a : List[str]=0.0 ,_a : Any=0.02 ,_a : int=1E-12 ,_a : Union[str, Any]=224 ,_a : Optional[Any]=16 ,_a : int=3 ,_a : Dict=False ,_a : Tuple=False ,_a : List[str]=False ,_a : Tuple=False ,_a : List[str]=0.1 ,_a : int=0.1 ,_a : Union[str, Any]=True ,_a : str=[3, 5, 7, 11] ,_a : Any=[1, 2, 3, 6] ,_a : List[Any]=True ,_a : Dict=0.4 ,_a : Optional[Any]=256 ,_a : List[str]=1 ,_a : Dict=False ,_a : int=255 ,**_a : List[str] ,): '''simple docstring''' super().__init__(**_a ) _a : str = hidden_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : int = intermediate_size _a : List[Any] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : str = initializer_range _a : Any = layer_norm_eps _a : List[str] = image_size _a : List[Any] = patch_size _a : Optional[Any] = num_channels _a : Tuple = use_mask_token _a : List[str] = use_absolute_position_embeddings _a : Tuple = use_relative_position_bias _a : str = use_shared_relative_position_bias _a : str = layer_scale_init_value _a : Dict = drop_path_rate _a : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) _a : str = out_indices _a : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) _a : Dict = use_auxiliary_head _a : Optional[int] = auxiliary_loss_weight _a : List[str] = auxiliary_channels _a : Union[str, Any] = auxiliary_num_convs _a : Optional[Any] = auxiliary_concat_input _a : Union[str, Any] = semantic_loss_ignore_index class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : str = version.parse('''1.11''' ) @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return 1E-4
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase = 1_6 __lowerCAmelCase = 3_2 def UpperCAmelCase_ (__a : Accelerator , __a : int = 1_6 ): """simple docstring""" _a : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _a : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(__a : List[str] ): # max_length=None => use the model max length (it's actually the default) _a : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Dict = datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__a : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : str = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Any = 1_6 elif accelerator.mixed_precision != "no": _a : Any = 8 else: _a : List[Any] = None return tokenizer.pad( __a , padding='longest' , max_length=__a , pad_to_multiple_of=__a , return_tensors='pt' , ) # Instantiate dataloaders. _a : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=__a ) _a : int = DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def UpperCAmelCase_ (__a : Dict , __a : str ): """simple docstring""" _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : List[str] = config['lr'] _a : Optional[Any] = int(config['num_epochs'] ) _a : Union[str, Any] = int(config['seed'] ) _a : List[str] = int(config['batch_size'] ) _a : List[str] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _a : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Any = batch_size // MAX_GPU_BATCH_SIZE _a : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__a ) _a, _a : int = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : Tuple = model.to(accelerator.device ) # Instantiate optimizer _a : Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler _a : List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a, _a, _a, _a, _a : Any = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Union[str, Any] = model(**__a ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Union[str, Any] = outputs.logits.argmax(dim=-1 ) _a, _a : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__a , references=__a , ) _a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__a , default=__a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _a : List[Any] = parser.parse_args() _a : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ['''input_features''', '''attention_mask'''] def __init__( self : str ,_a : Optional[Any]=80 ,_a : Tuple=1_6000 ,_a : Tuple=80 ,_a : Optional[Any]=0.0 ,_a : Optional[int]=True ,_a : Optional[int]=True ,_a : str=True ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(feature_size=_a ,sampling_rate=_a ,padding_value=_a ,**_a ) _a : str = num_mel_bins _a : Dict = do_ceptral_normalize _a : Dict = normalize_means _a : List[Any] = normalize_vars _a : Optional[Any] = True def __lowercase ( self : Dict ,_a : np.ndarray ,): '''simple docstring''' _a : int = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _a : Any = torch.from_numpy(_a ).unsqueeze(0 ) _a : Tuple = ta_kaldi.fbank(_a ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __lowercase ( _a : np.ndarray ,_a : int ,_a : Optional[bool] = True ,_a : Optional[bool] = True ,_a : float = 0.0 ,): '''simple docstring''' if normalize_means: _a : Union[str, Any] = x[:input_length].mean(axis=0 ) _a : Any = np.subtract(_a ,_a ) if normalize_vars: _a : Union[str, Any] = x[:input_length].std(axis=0 ) _a : str = np.divide(_a ,_a ) if input_length < x.shape[0]: _a : List[Any] = padding_value # make sure array is in float32 _a : int = x.astype(np.floataa ) return x def __lowercase ( self : int ,_a : List[np.ndarray] ,_a : Optional[np.ndarray] = None ): '''simple docstring''' _a : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_a ,_a ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(_a ,_a ) ] def __call__( self : Optional[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[int] = None ,_a : Optional[bool] = None ,**_a : List[str] ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a : List[Any] = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _a : Dict = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _a : Tuple = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): _a : Tuple = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Any = [raw_speech] # extract fbank features _a : Union[str, Any] = [self._extract_fbank_features(_a ) for waveform in raw_speech] # convert into correct format for padding _a : Tuple = BatchFeature({'input_features': features} ) _a : int = self.pad( _a ,padding=_a ,max_length=_a ,truncation=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,**_a ,) # make sure list is in array format _a : Union[str, Any] = padded_inputs.get('input_features' ) if isinstance(input_features[0] ,_a ): _a : int = [np.asarray(_a ,dtype=np.floataa ) for feature in input_features] _a : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _a : List[Any] = [np.asarray(_a ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _a : Optional[Any] = ( np.array(_a ,dtype=np.intaa ) if self._get_padding_strategies(_a ,max_length=_a ) is not PaddingStrategy.DO_NOT_PAD else None ) _a : List[str] = self.normalize( padded_inputs['input_features'] ,attention_mask=_a ) if return_tensors is not None: _a : str = padded_inputs.convert_to_tensors(_a ) return padded_inputs
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase_ (__a : Dict , __a : List[Any] , __a : Tuple , __a : Tuple ): """simple docstring""" _a : int = sorted(zip(__a , __a ) , key=lambda __a : x[0] / x[1] , reverse=__a ) _a, _a : str = [i[0] for i in r], [i[1] for i in r] _a : str = list(accumulate(__a ) ) _a : Optional[int] = bisect(__a , __a ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __lowerCAmelCase = {"""mobilebert-uncased""": 5_1_2} __lowerCAmelCase = {} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = MobileBertTokenizer def __init__( self : Dict ,_a : List[Any]=None ,_a : Optional[Any]=None ,_a : Union[str, Any]=True ,_a : Dict="[UNK]" ,_a : Union[str, Any]="[SEP]" ,_a : Any="[PAD]" ,_a : Optional[int]="[CLS]" ,_a : Optional[Any]="[MASK]" ,_a : Dict=True ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : Optional[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _a : Dict = do_lower_case _a : str = strip_accents _a : Tuple = tokenize_chinese_chars _a : Optional[Any] = normalizer_class(**_a ) _a : str = do_lower_case def __lowercase ( self : Tuple ,_a : Union[str, Any] ,_a : List[str]=None ): '''simple docstring''' _a : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : int = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
5
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase_ (__a : Tuple , __a : Tuple ): """simple docstring""" _a : Any = int(__a ) assert noofclusters < len(__a ) # Find out the dimensionality _a : Optional[Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors _a : int = list(range(len(__a ) ) ) shuffle(__a ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _a : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _a : Optional[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _a : int = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__a ) ] ##These nodes will assign the centroid Variables the appropriate ##values _a : List[str] = tf.placeholder('float64' , [dim] ) _a : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(__a , __a ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _a : Dict = [tf.Variable(0 ) for i in range(len(__a ) )] ##These nodes will assign an assignment Variable the appropriate ##value _a : Union[str, Any] = tf.placeholder('int32' ) _a : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__a , __a ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _a : Union[str, Any] = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _a : str = tf.reduce_mean(__a , 0 ) ##Node for computing Euclidean distances # Placeholders for input _a : Dict = tf.placeholder('float' , [dim] ) _a : List[Any] = tf.placeholder('float' , [dim] ) _a : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__a , __a ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _a : Union[str, Any] = tf.placeholder('float' , [noofclusters] ) _a : Optional[Any] = tf.argmin(__a , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _a : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(__a ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _a : Optional[Any] = 1_0_0 for _ in range(__a ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__a ) ): _a : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _a : Dict = [ sess.run(__a , feed_dict={va: vect, va: sess.run(__a )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _a : Optional[Any] = sess.run( __a , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__a ): # Collect all the vectors assigned to this cluster _a : str = [ vectors[i] for i in range(len(__a ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _a : Dict = sess.run( __a , feed_dict={mean_input: array(__a )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _a : str = sess.run(__a ) _a : Any = sess.run(__a ) return centroids, assignments
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : str = len(__a ) _a : Union[str, Any] = len(__a ) _a : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _a : List[str] = True for i in range(__a ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _a : List[Any] = True if a[i].islower(): _a : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''maskformer-swin''' __UpperCAmelCase : Tuple = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,_a : Tuple=224 ,_a : Any=4 ,_a : List[str]=3 ,_a : Any=96 ,_a : int=[2, 2, 6, 2] ,_a : Optional[int]=[3, 6, 12, 24] ,_a : List[Any]=7 ,_a : Union[str, Any]=4.0 ,_a : str=True ,_a : int=0.0 ,_a : Optional[Any]=0.0 ,_a : int=0.1 ,_a : Tuple="gelu" ,_a : int=False ,_a : Tuple=0.02 ,_a : int=1E-5 ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Tuple ,): '''simple docstring''' super().__init__(**_a ) _a : Optional[Any] = image_size _a : List[Any] = patch_size _a : int = num_channels _a : List[str] = embed_dim _a : int = depths _a : str = len(_a ) _a : Dict = num_heads _a : Any = window_size _a : str = mlp_ratio _a : str = qkv_bias _a : Tuple = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Tuple = drop_path_rate _a : List[str] = hidden_act _a : int = use_absolute_embeddings _a : Optional[int] = layer_norm_eps _a : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : str = int(embed_dim * 2 ** (len(_a ) - 1) ) _a : Tuple = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_a ) + 1 )] _a, _a : Optional[Any] = get_aligned_output_features_output_indices( out_features=_a ,out_indices=_a ,stage_names=self.stage_names )
5
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCAmelCase_ (): """simple docstring""" return __name__.split('.' )[0] def UpperCAmelCase_ (): """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _a : str = logging.StreamHandler() # Set sys.stderr as stream. _a : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _a : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _a : List[str] = False def UpperCAmelCase_ (): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _a : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _a : str = None def UpperCAmelCase_ (): """simple docstring""" return log_levels def UpperCAmelCase_ (__a : Optional[str] = None ): """simple docstring""" if name is None: _a : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ (__a : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" return set_verbosity(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def UpperCAmelCase_ (__a : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Union[str, Any] = False def UpperCAmelCase_ (): """simple docstring""" _configure_library_root_logger() _a : Dict = True def UpperCAmelCase_ (): """simple docstring""" _a : Any = _get_library_root_logger().handlers for handler in handlers: _a : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(__a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def UpperCAmelCase_ (self : Union[str, Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ): """simple docstring""" _a : Union[str, Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) __lowerCAmelCase = warning_advice @functools.lru_cache(__a ) def UpperCAmelCase_ (self : int , *__a : Optional[Any] , **__a : Any ): """simple docstring""" self.warning(*__a , **__a ) __lowerCAmelCase = warning_once class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,*_a : Tuple ,**_a : int ): # pylint: disable=unused-argument '''simple docstring''' _a : int = args[0] if args else None def __iter__( self : str ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] ,_a : int ): '''simple docstring''' def empty_fn(*_a : Optional[Any] ,**_a : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[str] ): '''simple docstring''' return self def __exit__( self : List[str] ,_a : str ,_a : List[Any] ,_a : str ): '''simple docstring''' return class UpperCAmelCase__ : """simple docstring""" def __call__( self : Union[str, Any] ,*_a : Tuple ,**_a : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_a ,**_a ) else: return EmptyTqdm(*_a ,**_a ) def __lowercase ( self : str ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' _a : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : str = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ (): """simple docstring""" global _tqdm_active _a : Dict = False hf_hub_utils.disable_progress_bars()
5
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def UpperCAmelCase_ (__a : str , __a : int=1_0_0 , __a : Tuple=" " ): """simple docstring""" _a : int = text.split(__a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__a ) , __a )] def UpperCAmelCase_ (__a : dict ): """simple docstring""" _a, _a : Dict = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(__a ): titles.append(title if title is not None else '' ) texts.append(__a ) return {"title": titles, "text": texts} def UpperCAmelCase_ (__a : dict , __a : DPRContextEncoder , __a : DPRContextEncoderTokenizerFast ): """simple docstring""" _a : Dict = ctx_tokenizer( documents['title'] , documents['text'] , truncation=__a , padding='longest' , return_tensors='pt' )['input_ids'] _a : Optional[int] = ctx_encoder(input_ids.to(device=__a ) , return_dict=__a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ (__a : "RagExampleArguments" , __a : "ProcessingArguments" , __a : "IndexHnswArguments" , ): """simple docstring""" logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _a : Any = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _a : List[str] = dataset.map(__a , batched=__a , num_proc=processing_args.num_proc ) # And compute the embeddings _a : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__a ) _a : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _a : str = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space _a : Optional[Any] = dataset.map( partial(__a , ctx_encoder=__a , ctx_tokenizer=__a ) , batched=__a , batch_size=processing_args.batch_size , features=__a , ) # And finally save your dataset _a : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(__a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _a : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=__a ) # And save the index _a : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(__a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __UpperCAmelCase : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __UpperCAmelCase : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __UpperCAmelCase : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __UpperCAmelCase : Optional[str] = field( default=str(Path(lowercase__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[int] = field( default=lowercase__ , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __UpperCAmelCase : int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : str ,_a : List[Any]=13 ,_a : Any=7 ,_a : Any=True ,_a : Any=True ,_a : Tuple=False ,_a : List[Any]=True ,_a : Optional[int]=99 ,_a : List[Any]=32 ,_a : int=5 ,_a : Optional[int]=4 ,_a : Any=37 ,_a : str="gelu" ,_a : str=0.1 ,_a : Optional[int]=0.1 ,_a : int=512 ,_a : Dict=16 ,_a : int=2 ,_a : Union[str, Any]=0.02 ,_a : List[str]=3 ,_a : Dict=4 ,_a : Tuple=None ,): '''simple docstring''' _a : Optional[int] = parent _a : Any = batch_size _a : Any = seq_length _a : Tuple = is_training _a : Dict = use_input_mask _a : Any = use_token_type_ids _a : Tuple = use_labels _a : Optional[Any] = vocab_size _a : Tuple = hidden_size _a : List[Any] = num_hidden_layers _a : int = num_attention_heads _a : List[str] = intermediate_size _a : Tuple = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : List[Any] = type_vocab_size _a : Tuple = type_sequence_label_size _a : Optional[Any] = initializer_range _a : Any = num_labels _a : int = num_choices _a : str = scope def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Optional[Any] = None if self.use_input_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Tuple = None if self.use_token_type_ids: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : Any = None _a : Tuple = None _a : int = None if self.use_labels: _a : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) _a : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Dict ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) def __lowercase ( self : Dict ,_a : Union[str, Any] ,_a : Any ,_a : str ,_a : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Tuple ): '''simple docstring''' _a : Tuple = LlamaModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ,attention_mask=_a ) _a : List[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Tuple ,_a : Dict ,_a : Tuple ,_a : List[str] ,_a : str ,_a : Dict ,_a : str ,_a : List[Any] ,_a : Any ,_a : Dict ,): '''simple docstring''' _a : Optional[int] = True _a : Optional[Any] = LlamaModel(_a ) model.to(_a ) model.eval() _a : Tuple = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,) _a : Tuple = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,) _a : str = model(_a ,attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : Any ,_a : int ,_a : Optional[int] ,_a : int ,_a : Optional[int] ,_a : List[Any] ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ,): '''simple docstring''' _a : Optional[int] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Any ,_a : Any ,_a : Optional[Any] ,_a : List[Any] ,_a : Tuple ,_a : Tuple ,_a : Union[str, Any] ,_a : Dict ,_a : Tuple ,_a : Any ,): '''simple docstring''' _a : Dict = True _a : List[str] = True _a : Optional[int] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _a : int = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,use_cache=_a ,) _a : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _a : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _a : Any = torch.cat([input_ids, next_tokens] ,dim=-1 ) _a : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) _a : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,output_hidden_states=_a ,)['hidden_states'][0] _a : Union[str, Any] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,past_key_values=_a ,output_hidden_states=_a ,)['hidden_states'][0] # select random slice _a : Tuple = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _a : int = output_from_no_past[:, -3:, random_slice_idx].detach() _a : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1E-3 ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() ( ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ( _a ), ) : Union[str, Any] = config_and_inputs _a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCAmelCase : Tuple = (LlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase : Dict = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = False def __lowercase ( self : int ): '''simple docstring''' _a : Dict = LlamaModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Tuple = type self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = 3 _a : Optional[int] = input_dict['input_ids'] _a : Tuple = input_ids.ne(1 ).to(_a ) _a : str = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _a : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = 3 _a : str = 'single_label_classification' _a : Any = input_dict['input_ids'] _a : Tuple = input_ids.ne(1 ).to(_a ) _a : Tuple = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _a : Dict = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : str = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = 3 _a : Tuple = 'multi_label_classification' _a : Optional[int] = input_dict['input_ids'] _a : int = input_ids.ne(1 ).to(_a ) _a : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _a : str = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _a : int = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def __lowercase ( self : List[str] ,_a : Any ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) _a : Any = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a : List[Any] = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _a : List[Any] = original_model(_a ).last_hidden_state _a : List[str] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a : Optional[Any] = {'type': scaling_type, 'factor': 10.0} _a : Any = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _a : Tuple = scaled_model(_a ).last_hidden_state _a : str = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a ,_a ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_a ,_a ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a ,_a ,atol=1E-5 ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) _a : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _a : Optional[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : Tuple = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) _a : List[Any] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _a : Any = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __lowercase ( self : str ): '''simple docstring''' _a : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) _a : Dict = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _a : List[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : Tuple = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) _a : Optional[int] = model(torch.tensor(_a ) ) _a : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1E-2 ,rtol=1E-2 ) # fmt: off _a : str = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _a : List[str] = 'Simply put, the theory of relativity states that ' _a : int = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _a : int = tokenizer.encode(_a ,return_tensors='pt' ) _a : List[str] = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=_a ) # greedy generation outputs _a : Tuple = model.generate(_a ,max_new_tokens=64 ,top_p=_a ,temperature=1 ,do_sample=_a ) _a : List[str] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=_a ) self.assertEqual(_a ,_a )
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1