code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _SCREAMING_SNAKE_CASE = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Any: snake_case = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) snake_case = self.transformer_dir shutil.copy( os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCAmelCase ( self : Optional[Any] )-> str: snake_case = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple=None )-> Optional[int]: snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case = black.format_str(__snake_case , mode=__snake_case ) snake_case = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__snake_case , """w""" , newline="""\n""" ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case ) with open(__snake_case , """r""" ) as f: self.assertTrue(f.read() , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: snake_case = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) # Copy consistency with a really long name snake_case = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , __snake_case , __snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) def lowerCAmelCase ( self : List[str] )-> Tuple: snake_case = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case , __snake_case ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case , snake_case = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True ) -> Optional[int]: if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case , snake_case , snake_case , snake_case = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) snake_case = config_class.from_json_file(__lowerCAmelCase ) snake_case = True snake_case = True print(F'''Building TensorFlow model from configuration: {config}''' ) snake_case = model_class(__lowerCAmelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case = cached_file( __lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case = load_pytorch_checkpoint_in_tfa_model(__lowerCAmelCase , __lowerCAmelCase ) if compare_with_pt_model: snake_case = tf_model(tf_model.dummy_inputs , training=__lowerCAmelCase ) # build the network snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) snake_case = pt_model_class.from_pretrained( pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase ) with torch.no_grad(): snake_case = pt_model(**pt_model.dummy_inputs ) snake_case = pto[0].numpy() snake_case = tfo[0].numpy() snake_case = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__lowerCAmelCase , save_format="""h5""" ) def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : Union[str, Any]=False , ) -> Union[str, Any]: if args_model_type is None: snake_case = list(MODEL_CLASSES.keys() ) else: snake_case = [args_model_type] for j, model_type in enumerate(__lowerCAmelCase , start=1 ): print("""=""" * 1_00 ) print(F''' Converting model type {j}/{len(__lowerCAmelCase )}: {model_type}''' ) print("""=""" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case , snake_case , snake_case , snake_case , snake_case = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__lowerCAmelCase , __lowerCAmelCase ) , start=1 ): print("""-""" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue snake_case = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__lowerCAmelCase )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_00 ) if config_shortcut_name in aws_config_map: snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: snake_case = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: snake_case = model_shortcut_name if os.path.isfile(__lowerCAmelCase ): snake_case = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__lowerCAmelCase , pytorch_checkpoint_path=__lowerCAmelCase , config_file=__lowerCAmelCase , tf_dump_path=os.path.join(__lowerCAmelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__lowerCAmelCase , ) if remove_cached_files: os.remove(__lowerCAmelCase ) os.remove(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") _SCREAMING_SNAKE_CASE = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _SCREAMING_SNAKE_CASE = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "bridgetower_vision_model" def __init__( self : List[str] , __snake_case : Optional[int]=7_68 , __snake_case : int=12 , __snake_case : Optional[int]=3 , __snake_case : str=16 , __snake_case : Optional[int]=2_88 , __snake_case : List[Any]=1 , __snake_case : List[str]=1e-05 , __snake_case : Dict=False , __snake_case : str=True , __snake_case : Optional[int]=False , **__snake_case : str , )-> List[str]: super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_channels snake_case = patch_size snake_case = image_size snake_case = initializer_factor snake_case = layer_norm_eps snake_case = stop_gradient snake_case = share_layernorm snake_case = remove_last_layer @classmethod def lowerCAmelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Optional[Any] )-> "PretrainedConfig": snake_case , snake_case = cls.get_config_dict(__snake_case , **__snake_case ) if config_dict.get("""model_type""" ) == "bridgetower": snake_case = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "bridgetower_text_model" def __init__( self : int , __snake_case : Dict=5_02_65 , __snake_case : List[Any]=7_68 , __snake_case : Any=12 , __snake_case : Any=12 , __snake_case : str=1 , __snake_case : int=30_72 , __snake_case : int="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Any=5_14 , __snake_case : Tuple=1 , __snake_case : Tuple=1e-05 , __snake_case : Union[str, Any]=1 , __snake_case : str=0 , __snake_case : List[str]=2 , __snake_case : Optional[int]="absolute" , __snake_case : int=True , **__snake_case : Dict , )-> List[Any]: super().__init__(**__snake_case ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = initializer_factor snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = pad_token_id snake_case = bos_token_id snake_case = eos_token_id @classmethod def lowerCAmelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Dict )-> "PretrainedConfig": snake_case , snake_case = cls.get_config_dict(__snake_case , **__snake_case ) if config_dict.get("""model_type""" ) == "bridgetower": snake_case = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "bridgetower" def __init__( self : List[str] , __snake_case : List[Any]=True , __snake_case : str="gelu" , __snake_case : Union[str, Any]=7_68 , __snake_case : Any=1 , __snake_case : Any=1e-05 , __snake_case : Tuple=False , __snake_case : List[str]="add" , __snake_case : Tuple=12 , __snake_case : Union[str, Any]=6 , __snake_case : Optional[Any]=False , __snake_case : Tuple=False , __snake_case : Any=None , __snake_case : List[Any]=None , **__snake_case : List[Any] , )-> List[str]: # TODO: remove this once the Hub files are updated. snake_case = kwargs.pop("""text_config_dict""" , __snake_case ) snake_case = kwargs.pop("""vision_config_dict""" , __snake_case ) super().__init__(**__snake_case ) snake_case = share_cross_modal_transformer_layers snake_case = hidden_act snake_case = hidden_size snake_case = initializer_factor snake_case = layer_norm_eps snake_case = share_link_tower_layers snake_case = link_tower_type snake_case = num_attention_heads snake_case = num_hidden_layers snake_case = tie_word_embeddings snake_case = init_layernorm_from_vision_encoder if text_config is None: snake_case = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: snake_case = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) snake_case = BridgeTowerTextConfig(**__snake_case ) snake_case = BridgeTowerVisionConfig(**__snake_case ) @classmethod def lowerCAmelCase ( cls : int , __snake_case : BridgeTowerTextConfig , __snake_case : BridgeTowerVisionConfig , **__snake_case : Tuple )-> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.text_config.to_dict() snake_case = self.vision_config.to_dict() snake_case = self.__class__.model_type return output
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case = k.replace(__lowerCAmelCase , __lowerCAmelCase ) if k.startswith("""encoder""" ): snake_case = k.replace(""".attn""" , """.self_attn""" ) snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" ) snake_case = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" ) snake_case = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) snake_case = k.replace("""norm3""" , """final_layer_norm""" ) return k def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Tuple: snake_case = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: snake_case = sd.pop(__lowerCAmelCase ) snake_case = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd snake_case = v _SCREAMING_SNAKE_CASE = ["START"] @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> List[Any]: snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) snake_case = model["""model"""] snake_case = BlenderbotConfig.from_json_file(__lowerCAmelCase ) snake_case = BlenderbotForConditionalGeneration(__lowerCAmelCase ) snake_case = m.model.state_dict().keys() snake_case = [] snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case = rename_state_dict_key(__lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCAmelCase ) m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) m.half() m.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case = 1 snake_case = 1 while repunit: snake_case = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __lowerCamelCase ( __lowerCAmelCase : int = 1_00_00_00 ) -> int: snake_case = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' from __future__ import annotations from typing import Any class _lowerCAmelCase ( A__ ): """simple docstring""" pass class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , __snake_case : Any )-> None: snake_case = data snake_case = None def __iter__( self : Optional[int] )-> List[Any]: snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(__snake_case ) yield node.data snake_case = node.next_node @property def lowerCAmelCase ( self : Optional[Any] )-> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' from collections.abc import Sequence def __lowerCamelCase ( __lowerCAmelCase : Sequence[float] , __lowerCAmelCase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCamelCase ( __lowerCAmelCase : Sequence[float] , __lowerCAmelCase : float ) -> float: snake_case = 0.0 for coeff in reversed(__lowerCAmelCase ): snake_case = result * x + coeff return result if __name__ == "__main__": _SCREAMING_SNAKE_CASE = (0.0, 0.0, 5.0, 9.3, 7.0) _SCREAMING_SNAKE_CASE = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int: if len(__lowerCAmelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) snake_case = snake_case = sum(array[:k] ) for i in range(len(__lowerCAmelCase ) - k ): snake_case = current_sum - array[i] + array[i + k] snake_case = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _SCREAMING_SNAKE_CASE = [randint(-1000, 1000) for i in range(100)] _SCREAMING_SNAKE_CASE = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import argparse _SCREAMING_SNAKE_CASE = "docs/source/_static/js/custom.js" def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> int: with open(__lowerCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case = f.readlines() snake_case = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 snake_case = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") _SCREAMING_SNAKE_CASE = parser.parse_args() update_custom_js(args.version)
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "luke" def __init__( self : Dict , __snake_case : Any=5_02_67 , __snake_case : List[str]=50_00_00 , __snake_case : Any=7_68 , __snake_case : Dict=2_56 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : int=30_72 , __snake_case : Dict="gelu" , __snake_case : str=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=5_12 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=1e-12 , __snake_case : Any=True , __snake_case : Optional[int]=None , __snake_case : str=1 , __snake_case : List[str]=0 , __snake_case : Optional[int]=2 , **__snake_case : List[Any] , )-> Dict: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case = vocab_size snake_case = entity_vocab_size snake_case = hidden_size snake_case = entity_emb_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = use_entity_aware_attention snake_case = classifier_dropout
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> List[Any]: snake_case , snake_case = [], [] while len(__lowerCAmelCase ) > 1: snake_case , snake_case = min(__lowerCAmelCase ), max(__lowerCAmelCase ) start.append(__lowerCAmelCase ) end.append(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = """ylacombe/bark-small""" snake_case = tempfile.mkdtemp() snake_case = """en_speaker_1""" snake_case = """This is a test string""" snake_case = """speaker_embeddings_path.json""" snake_case = """speaker_embeddings""" def lowerCAmelCase ( self : Union[str, Any] , **__snake_case : Optional[Any] )-> Tuple: return AutoTokenizer.from_pretrained(self.checkpoint , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = self.get_tokenizer() snake_case = BarkProcessor(tokenizer=__snake_case ) processor.save_pretrained(self.tmpdirname ) snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : List[str] )-> int: snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : int )-> int: snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case = 35 snake_case = 2 snake_case = 8 snake_case = { """semantic_prompt""": np.ones(__snake_case ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case = processor(text=self.input_string , voice_preset=__snake_case ) snake_case = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__snake_case , **__snake_case ) snake_case = processor(text=self.input_string , voice_preset=__snake_case ) snake_case = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : int )-> Any: snake_case = self.get_tokenizer() snake_case = BarkProcessor(tokenizer=__snake_case ) snake_case = processor(text=self.input_string ) snake_case = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=__snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Optional[int]: snake_case = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Dict: if metric == "rouge2": snake_case = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": snake_case = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": snake_case = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) snake_case = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> int: return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class _lowerCAmelCase ( pl.Callback ): """simple docstring""" def lowerCAmelCase ( self : str , __snake_case : Tuple , __snake_case : Union[str, Any] )-> Dict: snake_case = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__snake_case ) @rank_zero_only def lowerCAmelCase ( self : Tuple , __snake_case : pl.Trainer , __snake_case : pl.LightningModule , __snake_case : str , __snake_case : Dict=True )-> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case = od / """test_results.txt""" snake_case = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' snake_case = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__snake_case ) generations_file.parent.mkdir(exist_ok=__snake_case ) with open(__snake_case , """a+""" ) as writer: for key in sorted(__snake_case ): if key in ["log", "progress_bar", "preds"]: continue snake_case = metrics[key] if isinstance(__snake_case , torch.Tensor ): snake_case = val.item() snake_case = f'''{key}: {val:.6f}\n''' writer.write(__snake_case ) if not save_generations: return if "preds" in metrics: snake_case = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(__snake_case ) @rank_zero_only def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Tuple )-> Optional[int]: try: snake_case = pl_module.model.model.num_parameters() except AttributeError: snake_case = pl_module.model.num_parameters() snake_case = count_trainable_parameters(__snake_case ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def lowerCAmelCase ( self : Dict , __snake_case : pl.Trainer , __snake_case : pl.LightningModule )-> str: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__snake_case , __snake_case , """test""" ) @rank_zero_only def lowerCAmelCase ( self : Union[str, Any] , __snake_case : pl.Trainer , __snake_case : Union[str, Any] )-> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import requests def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> None: snake_case = {"""Content-Type""": """application/json"""} snake_case = requests.post(__lowerCAmelCase , json={"""text""": message_body} , headers=__lowerCAmelCase ) if response.status_code != 2_00: snake_case = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _SCREAMING_SNAKE_CASE = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' from collections import deque def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> List[Any]: snake_case = len(__lowerCAmelCase ) snake_case = deque() snake_case = [False for _ in range(__lowerCAmelCase )] snake_case = [-1 for _ in range(__lowerCAmelCase )] snake_case = index_of[:] def strong_connect(__lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): snake_case = index # the number when this node is seen snake_case = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case = True for w in g[v]: if index_of[w] == -1: snake_case = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case = [] snake_case = stack.pop() snake_case = False component.append(__lowerCAmelCase ) while w != v: snake_case = stack.pop() snake_case = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ) -> List[Any]: snake_case = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = [0, 0, 1, 2, 3, 3, 4, 4, 6] _SCREAMING_SNAKE_CASE = [1, 3, 2, 0, 1, 4, 5, 6, 5] _SCREAMING_SNAKE_CASE = [(u, v) for u, v in zip(source, target)] _SCREAMING_SNAKE_CASE = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _SCREAMING_SNAKE_CASE = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]: snake_case = [] snake_case = len(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): snake_case = -1 for j in range(i + 1 , __lowerCAmelCase ): if arr[i] < arr[j]: snake_case = arr[j] break result.append(__lowerCAmelCase ) return result def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]: snake_case = [] for i, outer in enumerate(__lowerCAmelCase ): snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case = inner break result.append(__lowerCAmelCase ) return result def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]: snake_case = len(__lowerCAmelCase ) snake_case = [] snake_case = [-1] * arr_size for index in reversed(range(__lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _SCREAMING_SNAKE_CASE = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("T") class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[str] , __snake_case : T )-> List[Any]: snake_case = data snake_case = None def __str__( self : List[Any] )-> str: return f'''{self.data}''' class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : str )-> None: snake_case = None def __iter__( self : Any )-> Iterator[T]: snake_case = self.top while node: yield node.data snake_case = node.next def __str__( self : str )-> str: return "->".join([str(__snake_case ) for item in self] ) def __len__( self : Dict )-> int: return len(tuple(iter(self ) ) ) def lowerCAmelCase ( self : List[Any] )-> bool: return self.top is None def lowerCAmelCase ( self : List[str] , __snake_case : T )-> None: snake_case = Node(__snake_case ) if not self.is_empty(): snake_case = self.top snake_case = node def lowerCAmelCase ( self : Optional[int] )-> T: if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __snake_case ) snake_case = self.top snake_case = self.top.next return pop_node.data def lowerCAmelCase ( self : int )-> T: if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowerCAmelCase ( self : Dict )-> None: snake_case = None if __name__ == "__main__": from doctest import testmod testmod()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> Optional[Any]: # Construct model if gpta_config_file == "": snake_case = GPTaConfig() else: snake_case = GPTaConfig.from_json_file(__lowerCAmelCase ) snake_case = GPTaModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model snake_case = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME snake_case = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = FunnelTokenizer snake_case_ = FunnelTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: super().setUp() snake_case = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Any , **__snake_case : Dict )-> int: return FunnelTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , **__snake_case : Tuple )-> Union[str, Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : Optional[int] )-> List[str]: snake_case = """UNwant\u00E9d,running""" snake_case = """unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : Dict )-> str: snake_case = self.tokenizer_class(self.vocab_file ) snake_case = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__snake_case , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: snake_case = tokenizer("""UNwant\u00E9d,running""" ) snake_case = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) snake_case = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list[int] ) -> list[list[int]]: snake_case = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): snake_case = nums.pop(0 ) snake_case = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> int: def backtrack(__lowerCAmelCase : List[Any] ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): snake_case , snake_case = nums[i], nums[start] backtrack(start + 1 ) snake_case , snake_case = nums[i], nums[start] # backtrack snake_case = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _SCREAMING_SNAKE_CASE = permutea([1, 2, 3]) print(res) doctest.testmod()
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "https://openaipublic.azureedge.net/jukebox/models/" _SCREAMING_SNAKE_CASE = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Any: snake_case = {} import re snake_case = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowerCAmelCase ): snake_case = re_encoder_block_conv_in.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[2] ) * 2 + int(groups[3] ) snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' snake_case = re_encoder_block_conv_in.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_encoder_block_resnet.fullmatch(__lowerCAmelCase ): snake_case = re_encoder_block_resnet.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[2] ) * 2 + int(groups[3] ) snake_case = {"""1""": 1, """3""": 2}[groups[-2]] snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case = prefix + resnet_block snake_case = re_encoder_block_resnet.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_encoder_block_proj_out.fullmatch(__lowerCAmelCase ): snake_case = re_encoder_block_proj_out.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' snake_case = re_encoder_block_proj_out.sub(__lowerCAmelCase , __lowerCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowerCAmelCase ): snake_case = re_decoder_block_conv_out.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' snake_case = re_decoder_block_conv_out.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_decoder_block_resnet.fullmatch(__lowerCAmelCase ): snake_case = re_decoder_block_resnet.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case = {"""1""": 1, """3""": 2}[groups[-2]] snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case = prefix + resnet_block snake_case = re_decoder_block_resnet.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_decoder_block_proj_in.fullmatch(__lowerCAmelCase ): snake_case = re_decoder_block_proj_in.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' snake_case = re_decoder_block_proj_in.sub(__lowerCAmelCase , __lowerCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowerCAmelCase ): snake_case = re_prior_cond_conv_out.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' snake_case = re_prior_cond_conv_out.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_prior_cond_resnet.fullmatch(__lowerCAmelCase ): snake_case = re_prior_cond_resnet.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case = {"""1""": 1, """3""": 2}[groups[-2]] snake_case = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' snake_case = prefix + resnet_block snake_case = re_prior_cond_resnet.sub(__lowerCAmelCase , __lowerCAmelCase ) elif re_prior_cond_proj_in.fullmatch(__lowerCAmelCase ): snake_case = re_prior_cond_proj_in.match(__lowerCAmelCase ) snake_case = regex_match.groups() snake_case = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' snake_case = re_prior_cond_proj_in.sub(__lowerCAmelCase , __lowerCAmelCase ) # keep original key else: snake_case = original_key snake_case = replace_key(__lowerCAmelCase ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: snake_case = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) snake_case = original_key snake_case = original_key snake_case = value return new_dict @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None ) -> Union[str, Any]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): snake_case = requests.get(F'''{PREFIX}{file}''' , allow_redirects=__lowerCAmelCase ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__lowerCAmelCase ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) snake_case = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case = JukeboxConfig.from_pretrained(__lowerCAmelCase ) snake_case = JukeboxModel(__lowerCAmelCase ) snake_case = [] snake_case = {} for i, dict_name in enumerate(__lowerCAmelCase ): snake_case = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] snake_case = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case = old_dic[k] elif k.endswith(""".w""" ): snake_case = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case = old_dic[k] else: snake_case = old_dic[k] snake_case = """vqvae""" if i == 0 else F'''priors.{3 - i}''' snake_case = fix_jukebox_keys(__lowerCAmelCase , model.state_dict() , __lowerCAmelCase , __lowerCAmelCase ) weight_dict.append(__lowerCAmelCase ) snake_case = weight_dict.pop(0 ) model.vqvae.load_state_dict(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) return weight_dict if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _SCREAMING_SNAKE_CASE = 8 def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=BITS ) -> List[Any]: snake_case = x.device snake_case = (x * 2_55).int().clamp(0 , 2_55 ) snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase ) snake_case = rearrange(__lowerCAmelCase , """d -> d 1 1""" ) snake_case = rearrange(__lowerCAmelCase , """b c h w -> b c 1 h w""" ) snake_case = ((x & mask) != 0).float() snake_case = rearrange(__lowerCAmelCase , """b c d h w -> b (c d) h w""" ) snake_case = bits * 2 - 1 return bits def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any]=BITS ) -> Optional[Any]: snake_case = x.device snake_case = (x > 0).int() snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa ) snake_case = rearrange(__lowerCAmelCase , """d -> d 1 1""" ) snake_case = rearrange(__lowerCAmelCase , """b (c d) h w -> b c d h w""" , d=8 ) snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 2_55).clamp(0.0 , 1.0 ) def __lowerCamelCase ( self : str , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict=None , __lowerCAmelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case = self.alphas_cumprod[timestep] snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case = model_output.device if torch.is_tensor(__lowerCAmelCase ) else """cpu""" snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase ) snake_case = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def __lowerCamelCase ( self : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[int]="epsilon" , __lowerCAmelCase : Dict=None , __lowerCAmelCase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case , snake_case = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: snake_case = None # 1. compute alphas, betas snake_case = self.alphas_cumprod[t] snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case = 1 - alpha_prod_t snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case = 0 if t > 0: snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device ) snake_case = (self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : UNetaDConditionModel , __snake_case : Union[DDIMScheduler, DDPMScheduler] , __snake_case : Optional[float] = 1.0 , )-> List[str]: super().__init__() snake_case = bit_scale snake_case = ( ddim_bit_scheduler_step if isinstance(__snake_case , __snake_case ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Optional[int] = 2_56 , __snake_case : Optional[int] = 2_56 , __snake_case : Optional[int] = 50 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[int] = 1 , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : int , )-> Union[Tuple, ImagePipelineOutput]: snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__snake_case , ) snake_case = decimal_to_bits(__snake_case ) * self.bit_scale snake_case = latents.to(self.device ) self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case = self.unet(__snake_case , __snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample snake_case = bits_to_decimal(__snake_case ) if output_type == "pil": snake_case = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "hint"] snake_case_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Optional[Any] )-> Tuple: return 32 @property def lowerCAmelCase ( self : List[str] )-> Dict: return 32 @property def lowerCAmelCase ( self : List[Any] )-> Optional[int]: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> int: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : List[Any] )-> int: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : List[Any] , __snake_case : Tuple , __snake_case : str=0 )-> Any: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Any )-> int: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any )-> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int )-> Tuple: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = """A robot, 4k photo""" snake_case = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case = pipeline( image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' import os import sys import unittest _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _SCREAMING_SNAKE_CASE = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _SCREAMING_SNAKE_CASE = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] )-> Tuple: snake_case = get_test_to_tester_mapping(__snake_case ) snake_case = get_test_to_tester_mapping(__snake_case ) snake_case = {"""BertModelTest""": """BertModelTester"""} snake_case = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: snake_case = get_model_to_test_mapping(__snake_case ) snake_case = get_model_to_test_mapping(__snake_case ) snake_case = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } snake_case = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Optional[Any] )-> int: snake_case = get_model_to_tester_mapping(__snake_case ) snake_case = get_model_to_tester_mapping(__snake_case ) snake_case = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } snake_case = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' import requests _SCREAMING_SNAKE_CASE = "YOUR API KEY" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str = giphy_api_key ) -> list: snake_case = """+""".join(query.split() ) snake_case = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' snake_case = requests.get(__lowerCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : int ) -> Tuple: # Initialise PyTorch model snake_case = MobileBertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = MobileBertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint snake_case = load_tf_weights_in_mobilebert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( __lowerCAmelCase : SplitDict ) -> int: snake_case = split_dict._to_yaml_list() assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) snake_case = SplitDict._from_yaml_list(__lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case = None # the split name of split_dict takes over the name of the split info object snake_case = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=__lowerCAmelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> str: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(A__ ) class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Any , *__snake_case : Dict , **__snake_case : Dict )-> Dict: super().__init__(*__snake_case , **__snake_case ) self.check_model_type(__snake_case ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : Tuple=None , **__snake_case : Optional[int] )-> Optional[Any]: snake_case , snake_case = {}, {} if padding is not None: snake_case = padding if truncation is not None: snake_case = truncation if top_k is not None: snake_case = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , __snake_case : Union["Image.Image", str] , __snake_case : str = None , **__snake_case : Any )-> int: if isinstance(__snake_case , (Image.Image, str) ) and isinstance(__snake_case , __snake_case ): snake_case = {"""image""": image, """question""": question} else: snake_case = image snake_case = super().__call__(__snake_case , **__snake_case ) return results def lowerCAmelCase ( self : Any , __snake_case : List[Any] , __snake_case : Optional[Any]=False , __snake_case : Union[str, Any]=False )-> str: snake_case = load_image(inputs["""image"""] ) snake_case = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=__snake_case , truncation=__snake_case ) snake_case = self.image_processor(images=__snake_case , return_tensors=self.framework ) model_inputs.update(__snake_case ) return model_inputs def lowerCAmelCase ( self : Optional[int] , __snake_case : Union[str, Any] )-> str: snake_case = self.model(**__snake_case ) return model_outputs def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : int=5 )-> int: if top_k > self.model.config.num_labels: snake_case = self.model.config.num_labels if self.framework == "pt": snake_case = model_outputs.logits.sigmoid()[0] snake_case , snake_case = probs.topk(__snake_case ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) snake_case = scores.tolist() snake_case = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> int: snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCAmelCase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = StableDiffusionLatentUpscalePipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case_ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case_ = frozenset([] ) snake_case_ = True @property def lowerCAmelCase ( self : Any )-> List[Any]: snake_case = 1 snake_case = 4 snake_case = (16, 16) snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]: torch.manual_seed(0 ) snake_case = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__snake_case , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=__snake_case , only_cross_attention=__snake_case , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) snake_case = EulerDiscreteScheduler(prediction_type="""sample""" ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , ) snake_case = CLIPTextModel(__snake_case ) snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple=0 )-> Optional[int]: if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : int )-> Tuple: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case ) snake_case = pipe(**__snake_case ).images snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def lowerCAmelCase ( self : Optional[int] )-> List[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def lowerCAmelCase ( self : str )-> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase ( self : int )-> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowerCAmelCase ( self : Tuple )-> int: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def lowerCAmelCase ( self : List[Any] )-> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def lowerCAmelCase ( self : List[Any] )-> Dict: super().test_save_load_local(expected_max_difference=3e-3 ) def lowerCAmelCase ( self : str )-> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: snake_case = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = self.get_dummy_inputs(__snake_case ) snake_case = 2 snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case = getattr(__snake_case , scheduler_enum.name ) snake_case = scheduler_cls.from_config(pipe.scheduler.config ) snake_case = pipe(**__snake_case )[0] outputs.append(__snake_case ) assert check_same_shape(__snake_case ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any )-> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any )-> Optional[int]: snake_case = torch.manual_seed(33 ) snake_case = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" snake_case = pipe(__snake_case , generator=__snake_case , output_type="""latent""" ).images snake_case = upscaler( prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0] snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def lowerCAmelCase ( self : Any )-> List[Any]: snake_case = torch.manual_seed(33 ) snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) snake_case = upscaler( prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0] snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-2
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' import math def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 ) -> list: snake_case = end or len(__lowerCAmelCase ) for i in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = i snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case = array[temp_index - 1] temp_index -= 1 snake_case = temp_index_value return array def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Max Heap snake_case = index snake_case = 2 * index + 1 # Left Node snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case = right_index if largest != index: snake_case , snake_case = array[largest], array[index] heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: snake_case = len(__lowerCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in range(n - 1 , 0 , -1 ): snake_case , snake_case = array[0], array[i] heapify(__lowerCAmelCase , 0 , __lowerCAmelCase ) return array def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: snake_case = low snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case , snake_case = array[j], array[i] i += 1 def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: if len(__lowerCAmelCase ) == 0: return array snake_case = 2 * math.ceil(math.loga(len(__lowerCAmelCase ) ) ) snake_case = 16 return intro_sort(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(__lowerCAmelCase ) max_depth -= 1 snake_case = median_of_a(__lowerCAmelCase , __lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) snake_case = partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) intro_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case = p return insertion_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma : ").strip() _SCREAMING_SNAKE_CASE = [float(item) for item in user_input.split(",")] print(sort(unsorted))
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' import copy import re class _lowerCAmelCase : """simple docstring""" snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def lowerCAmelCase ( cls : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] )-> Union[str, Any]: snake_case = prefix snake_case = defaults cls.build_naming_info() @staticmethod def lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Tuple )-> Dict: if len(__snake_case ) == 0: return "" snake_case = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__snake_case ) + 1 ): snake_case = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__snake_case : Dict ): snake_case = """""" while integer != 0: snake_case = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s snake_case = 0 while True: snake_case = word + """#""" + int_to_alphabetic(__snake_case ) if sword in info["reverse_short_word"]: continue else: snake_case = sword break snake_case = short_word snake_case = word return short_word @staticmethod def lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] )-> List[str]: snake_case = param_name.split("""_""" ) snake_case = [TrialShortNamer.shortname_for_word(__snake_case , __snake_case ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case = ["""""", """_"""] for separator in separators: snake_case = separator.join(__snake_case ) if shortname not in info["reverse_short_param"]: snake_case = shortname snake_case = param_name return shortname return param_name @staticmethod def lowerCAmelCase ( __snake_case : Dict , __snake_case : Union[str, Any] )-> Dict: snake_case = TrialShortNamer.shortname_for_key(__snake_case , __snake_case ) snake_case = short_name snake_case = param_name @classmethod def lowerCAmelCase ( cls : Union[str, Any] )-> Optional[int]: if cls.NAMING_INFO is not None: return snake_case = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } snake_case = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__snake_case , __snake_case ) snake_case = info @classmethod def lowerCAmelCase ( cls : int , __snake_case : Union[str, Any] )-> int: cls.build_naming_info() assert cls.PREFIX is not None snake_case = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case = cls.NAMING_INFO["""short_param"""][k] if isinstance(__snake_case , __snake_case ): snake_case = 1 if v else 0 snake_case = """""" if isinstance(__snake_case , (int, float) ) else """-""" snake_case = f'''{key}{sep}{v}''' name.append(__snake_case ) return "_".join(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , __snake_case : List[str] )-> List[str]: snake_case = repr[len(cls.PREFIX ) + 1 :] if repr == "": snake_case = [] else: snake_case = repr.split("""_""" ) snake_case = {} for value in values: if "-" in value: snake_case , snake_case = value.split("""-""" ) else: snake_case = re.sub("""[0-9.]""" , """""" , __snake_case ) snake_case = float(re.sub("""[^0-9.]""" , """""" , __snake_case ) ) snake_case = cls.NAMING_INFO["""reverse_short_param"""][p_k] snake_case = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case = cls.DEFAULTS[k] return parameters
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> List[Any]: snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case = 16 elif accelerator.mixed_precision != "no": snake_case = 8 else: snake_case = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase ) snake_case = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Optional[Any]: # Initialize accelerator snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config["""lr"""] snake_case = int(config["""num_epochs"""] ) snake_case = int(config["""seed"""] ) snake_case = int(config["""batch_size"""] ) snake_case = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case = batch_size // MAX_GPU_BATCH_SIZE snake_case = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) snake_case , snake_case = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Instantiate optimizer snake_case = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler snake_case = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case = model(**__lowerCAmelCase ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**__lowerCAmelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def __lowerCamelCase ( ) -> Dict: snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case = parser.parse_args() snake_case = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() def __lowerCamelCase ( __lowerCAmelCase : Path , __lowerCAmelCase : list ) -> Union[str, Any]: snake_case = """\n""".join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open("""w""" ).writelines(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE = "patrickvonplaten/t5-tiny-random" _SCREAMING_SNAKE_CASE = "sshleifer/bart-tiny-random" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : Any , __snake_case : Union[str, Any] )-> Any: snake_case = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" snake_case = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() snake_case = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(__snake_case , __snake_case ) snake_case = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) snake_case = """translation_en_to_de""" if model == T5_TINY else """summarization""" snake_case = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(__snake_case , """argv""" , __snake_case ): run_generate() assert Path(__snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: self.run_eval_tester(__snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Optional[int] )-> Dict: self.run_eval_tester(__snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase ( self : Tuple , __snake_case : Dict )-> Any: snake_case = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" snake_case = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() snake_case = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } snake_case = Path(self.get_auto_remove_tmp_dir() ) snake_case = str(tmp_dir / """scores.json""" ) snake_case = str(tmp_dir / """val.target""" ) _dump_articles(__snake_case , text["""en"""] ) _dump_articles(__snake_case , text["""de"""] ) snake_case = """translation_en_to_de""" if model == T5_TINY else """summarization""" snake_case = f''' run_eval_search.py {model} {str(__snake_case )} {str(__snake_case )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(__snake_case , """argv""" , __snake_case ): with CaptureStdout() as cs: run_search() snake_case = [""" num_beams | length_penalty""", model, """Best score args"""] snake_case = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(__snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__snake_case ).exists() os.remove(Path(__snake_case ) )
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> List[str]: snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case = 16 elif accelerator.mixed_precision != "no": snake_case = 8 else: snake_case = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) snake_case = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": snake_case = 2 # New Code # snake_case = int(args.gradient_accumulation_steps ) snake_case = int(args.local_sgd_steps ) # Initialize accelerator snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config["""lr"""] snake_case = int(config["""num_epochs"""] ) snake_case = int(config["""seed"""] ) snake_case = int(config["""batch_size"""] ) snake_case = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCAmelCase ) snake_case , snake_case = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Instantiate optimizer snake_case = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler snake_case = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() with LocalSGD( accelerator=__lowerCAmelCase , model=__lowerCAmelCase , local_sgd_steps=__lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): snake_case = model(**__lowerCAmelCase ) snake_case = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**__lowerCAmelCase ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def __lowerCamelCase ( ) -> Tuple: snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__lowerCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case = parser.parse_args() snake_case = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _SCREAMING_SNAKE_CASE = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _SCREAMING_SNAKE_CASE = "UperNetConfig" class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : Union[int, Tuple[int, int]] , __snake_case : Union[int, Tuple[int, int], str] = 0 , __snake_case : bool = False , __snake_case : Union[int, Tuple[int, int]] = 1 , )-> None: super().__init__() snake_case = nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , padding=__snake_case , bias=__snake_case , dilation=__snake_case , ) snake_case = nn.BatchNormad(__snake_case ) snake_case = nn.ReLU() def lowerCAmelCase ( self : Union[str, Any] , __snake_case : torch.Tensor )-> torch.Tensor: snake_case = self.conv(__snake_case ) snake_case = self.batch_norm(__snake_case ) snake_case = self.activation(__snake_case ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : int , __snake_case : int , __snake_case : int )-> None: super().__init__() snake_case = [ nn.AdaptiveAvgPoolad(__snake_case ), UperNetConvModule(__snake_case , __snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Any , __snake_case : torch.Tensor )-> torch.Tensor: snake_case = input for layer in self.layers: snake_case = layer(__snake_case ) return hidden_state class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : Tuple[int, ...] , __snake_case : int , __snake_case : int , __snake_case : bool )-> None: super().__init__() snake_case = pool_scales snake_case = align_corners snake_case = in_channels snake_case = channels snake_case = [] for i, pool_scale in enumerate(__snake_case ): snake_case = UperNetPyramidPoolingBlock(pool_scale=__snake_case , in_channels=__snake_case , channels=__snake_case ) self.blocks.append(__snake_case ) self.add_module(str(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : torch.Tensor )-> List[torch.Tensor]: snake_case = [] for ppm in self.blocks: snake_case = ppm(__snake_case ) snake_case = nn.functional.interpolate( __snake_case , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__snake_case ) return ppm_outs class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __snake_case : Union[str, Any] , __snake_case : int )-> Tuple: super().__init__() snake_case = config snake_case = config.pool_scales # e.g. (1, 2, 3, 6) snake_case = in_channels snake_case = config.hidden_size snake_case = False snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module snake_case = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) snake_case = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module snake_case = nn.ModuleList() snake_case = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer snake_case = UperNetConvModule(__snake_case , self.channels , kernel_size=1 ) snake_case = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__snake_case ) self.fpn_convs.append(__snake_case ) snake_case = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCAmelCase ( self : str )-> List[Any]: self.apply(self._init_weights ) def lowerCAmelCase ( self : Dict , __snake_case : Tuple )-> List[Any]: if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase ( self : Optional[int] , __snake_case : List[str] )-> Union[str, Any]: snake_case = inputs[-1] snake_case = [x] psp_outs.extend(self.psp_modules(__snake_case ) ) snake_case = torch.cat(__snake_case , dim=1 ) snake_case = self.bottleneck(__snake_case ) return output def lowerCAmelCase ( self : Any , __snake_case : torch.Tensor )-> torch.Tensor: # build laterals snake_case = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__snake_case ) ) # build top-down path snake_case = len(__snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case = laterals[i - 1].shape[2:] snake_case = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__snake_case , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs snake_case = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) snake_case = torch.cat(__snake_case , dim=1 ) snake_case = self.fpn_bottleneck(__snake_case ) snake_case = self.classifier(__snake_case ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int = 2 , __snake_case : int = 3 , __snake_case : Union[int, Tuple[int, int]] = 1 )-> None: super().__init__() snake_case = config snake_case = config.auxiliary_in_channels snake_case = config.auxiliary_channels snake_case = config.auxiliary_num_convs snake_case = config.auxiliary_concat_input snake_case = in_index snake_case = (kernel_size // 2) * dilation snake_case = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) if self.num_convs == 0: snake_case = nn.Identity() else: snake_case = nn.Sequential(*__snake_case ) if self.concat_input: snake_case = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__snake_case , padding=kernel_size // 2 ) snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCAmelCase ( self : List[Any] )-> str: self.apply(self._init_weights ) def lowerCAmelCase ( self : Any , __snake_case : Tuple )-> Dict: if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase ( self : Union[str, Any] , __snake_case : torch.Tensor )-> torch.Tensor: # just take the relevant feature maps snake_case = encoder_hidden_states[self.in_index] snake_case = self.convs(__snake_case ) if self.concat_input: snake_case = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) snake_case = self.classifier(__snake_case ) return output class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = UperNetConfig snake_case_ = "pixel_values" snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] , __snake_case : int )-> List[str]: if isinstance(__snake_case , __snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCAmelCase ( self : int )-> Union[str, Any]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any] , __snake_case : List[str]=False )-> List[Any]: if isinstance(__snake_case , __snake_case ): snake_case = value _SCREAMING_SNAKE_CASE = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , A__ , ) class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str] , __snake_case : Union[str, Any] )-> Tuple: super().__init__(__snake_case ) snake_case = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) snake_case = UperNetHead(__snake_case , in_channels=self.backbone.channels ) snake_case = UperNetFCNHead(__snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__snake_case , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , )-> Union[tuple, SemanticSegmenterOutput]: snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case = output_attentions if output_attentions is not None else self.config.output_attentions snake_case = self.backbone.forward_with_filtered_kwargs( __snake_case , output_hidden_states=__snake_case , output_attentions=__snake_case ) snake_case = outputs.feature_maps snake_case = self.decode_head(__snake_case ) snake_case = nn.functional.interpolate(__snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__snake_case ) snake_case = None if self.auxiliary_head is not None: snake_case = self.auxiliary_head(__snake_case ) snake_case = nn.functional.interpolate( __snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__snake_case ) snake_case = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss snake_case = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) snake_case = loss_fct(__snake_case , __snake_case ) snake_case = loss_fct(__snake_case , __snake_case ) snake_case = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: snake_case = (logits,) + outputs[1:] else: snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = None @staticmethod def lowerCAmelCase ( )-> List[str]: raise NotImplementedError def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] )-> List[Any]: raise NotImplementedError def lowerCAmelCase ( self : Optional[int] , __snake_case : List[str] )-> Union[str, Any]: raise NotImplementedError def lowerCAmelCase ( self : str )-> Optional[int]: if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> List[Any]: return f'''`pip install {cls.pip_package or cls.name}`''' class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "optuna" @staticmethod def lowerCAmelCase ( )-> str: return is_optuna_available() def lowerCAmelCase ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Optional[Any] )-> Optional[Any]: return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : Dict )-> str: return default_hp_space_optuna(__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "ray" snake_case_ = "'ray[tune]'" @staticmethod def lowerCAmelCase ( )-> List[str]: return is_ray_available() def lowerCAmelCase ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : str , **__snake_case : Dict )-> Dict: return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : Union[str, Any] )-> Optional[Any]: return default_hp_space_ray(__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "sigopt" @staticmethod def lowerCAmelCase ( )-> List[str]: return is_sigopt_available() def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : str , **__snake_case : int )-> Dict: return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : int )-> int: return default_hp_space_sigopt(__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "wandb" @staticmethod def lowerCAmelCase ( )-> Union[str, Any]: return is_wandb_available() def lowerCAmelCase ( self : Optional[int] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : List[Any] )-> Dict: return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Optional[Any] )-> Optional[int]: return default_hp_space_wandb(__snake_case ) _SCREAMING_SNAKE_CASE = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __lowerCamelCase ( ) -> str: snake_case = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: snake_case = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=False ) -> int: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) snake_case = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def __lowerCamelCase ( __lowerCAmelCase : Tuple[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, jnp.ndarray] , __lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCAmelCase : Tuple[str] ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case = pt_tuple_key[-2] + """_v""" if name is not None: snake_case = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ) -> List[Any]: # convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case = flax_model.params["""params"""] else: snake_case = flax_model.params snake_case = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCAmelCase ) snake_case = {} snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ) -> str: import torch # Load the index snake_case = {} for shard_file in shard_filenames: # load using msgpack utils snake_case = torch.load(__lowerCAmelCase ) snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case = flax_model.params["""params"""] snake_case = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: snake_case = flax_model.params snake_case = flatten_dict(__lowerCAmelCase ) snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ) -> str: snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class snake_case = getattr(__lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , """rb""" ) as state_f: try: snake_case = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights snake_case = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) snake_case = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) snake_case = flatten_dict(__lowerCAmelCase ) snake_case = pt_model.state_dict() snake_case = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) snake_case = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case = [] snake_case = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case = flax_key_tuple[0] == pt_model.base_model_prefix snake_case = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: snake_case = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: snake_case = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case = """.""".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case = key.split(""".""" ) snake_case = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case = key_components[-2] + """_v""" if name is not None: snake_case = key_components[:-3] + [name] snake_case = """.""".join(__lowerCAmelCase ) snake_case = key if flax_key in special_pt_names: snake_case = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict snake_case = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor snake_case = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list snake_case = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCAmelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCAmelCase ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , __snake_case : int = 7_68 , )-> Any: super().__init__() snake_case = nn.Parameter(torch.zeros(1 , __snake_case ) ) snake_case = nn.Parameter(torch.ones(1 , __snake_case ) ) def lowerCAmelCase ( self : str , __snake_case : Optional[Union[str, torch.device]] = None , __snake_case : Optional[torch.dtype] = None , )-> Any: snake_case = nn.Parameter(self.mean.to(__snake_case ).to(__snake_case ) ) snake_case = nn.Parameter(self.std.to(__snake_case ).to(__snake_case ) ) return self def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Tuple: snake_case = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase ( self : List[Any] , __snake_case : Union[str, Any] )-> Any: snake_case = (embeds * self.std) + self.mean return embeds
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] )-> Dict: snake_case = None snake_case = None snake_case = graph self._normalize_graph(__snake_case , __snake_case ) snake_case = len(__snake_case ) snake_case = None def lowerCAmelCase ( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] )-> str: if sources is int: snake_case = [sources] if sinks is int: snake_case = [sinks] if len(__snake_case ) == 0 or len(__snake_case ) == 0: return snake_case = sources[0] snake_case = sinks[0] # make fake vertex if there are more # than one source or sink if len(__snake_case ) > 1 or len(__snake_case ) > 1: snake_case = 0 for i in sources: max_input_flow += sum(self.graph[i] ) snake_case = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: snake_case = max_input_flow snake_case = 0 snake_case = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: snake_case = max_input_flow snake_case = size - 1 def lowerCAmelCase ( self : Optional[int] )-> Tuple: if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] )-> Any: snake_case = algorithm(self ) class _lowerCAmelCase : """simple docstring""" def __init__( self : str , __snake_case : Any )-> Union[str, Any]: snake_case = flow_network snake_case = flow_network.verticesCount snake_case = flow_network.sourceIndex snake_case = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that snake_case = flow_network.graph snake_case = False def lowerCAmelCase ( self : List[Any] )-> Dict: if not self.executed: self._algorithm() snake_case = True def lowerCAmelCase ( self : List[Any] )-> int: pass class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Tuple )-> Tuple: super().__init__(__snake_case ) # use this to save your result snake_case = -1 def lowerCAmelCase ( self : Any )-> Optional[int]: if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple , __snake_case : Tuple )-> Tuple: super().__init__(__snake_case ) snake_case = [[0] * self.verticies_count for i in range(self.verticies_count )] snake_case = [0] * self.verticies_count snake_case = [0] * self.verticies_count def lowerCAmelCase ( self : int )-> Union[str, Any]: snake_case = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule snake_case = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list snake_case = 0 while i < len(__snake_case ): snake_case = vertices_list[i] snake_case = self.heights[vertex_index] self.process_vertex(__snake_case ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__snake_case ) ) snake_case = 0 else: i += 1 snake_case = sum(self.preflow[self.source_index] ) def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[Any] )-> str: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__snake_case , __snake_case ) self.relabel(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : str , __snake_case : Optional[Any] )-> List[str]: snake_case = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase ( self : Optional[Any] , __snake_case : Optional[int] )-> Tuple: snake_case = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): snake_case = self.heights[to_index] if min_height is not None: snake_case = min_height + 1 if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [0] _SCREAMING_SNAKE_CASE = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _SCREAMING_SNAKE_CASE = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _SCREAMING_SNAKE_CASE = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _SCREAMING_SNAKE_CASE = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "EncodecFeatureExtractor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] )-> Tuple: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : int , __snake_case : Any=None , __snake_case : List[Any]=None , __snake_case : Dict=True )-> List[Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] )-> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: snake_case = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: snake_case = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase ( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : Optional[int] )-> List[Any]: snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""padding_mask""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : int , *__snake_case : Optional[Any] , **__snake_case : List[str] )-> Tuple: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional = None )-> List[np.ndarray]: snake_case = to_numpy(__snake_case ) snake_case , snake_case , snake_case = audio_values.shape if padding_mask is None: return list(__snake_case ) snake_case = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) snake_case = seq_len - padding_mask.shape[-1] snake_case = 1 - self.feature_extractor.padding_value snake_case = np.pad(__snake_case , ((0, 0), (0, difference)) , """constant""" , constant_values=__snake_case ) snake_case = audio_values.tolist() for i in range(__snake_case ): snake_case = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] snake_case = sliced_audio.reshape(__snake_case , -1 ) return audio_values
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=13 , __snake_case : Union[str, Any]=7 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : List[Any]=True , __snake_case : List[str]=99 , __snake_case : int=32 , __snake_case : List[Any]=5 , __snake_case : Tuple=4 , __snake_case : Dict=4 , __snake_case : Tuple="gelu" , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=0.1 , __snake_case : str=True , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : Optional[int]=2 , __snake_case : Dict=0.02 , __snake_case : List[Any]=3 , __snake_case : Union[str, Any]=4 , __snake_case : Dict=None , )-> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_multiple_size snake_case = hidden_act snake_case = hidden_dropout snake_case = attention_dropout snake_case = weight_tying snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def lowerCAmelCase ( self : int )-> str: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str )-> Any: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] )-> List[Any]: snake_case = GPTNeoXJapaneseModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[Any] )-> Optional[int]: snake_case = True snake_case = GPTNeoXJapaneseModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : int , __snake_case : str )-> Tuple: snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] )-> Dict: snake_case = True snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past["""hidden_states"""][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )["""hidden_states"""][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () snake_case_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () snake_case_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : Tuple )-> Optional[int]: snake_case = GPTNeoXJapaneseModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] )-> str: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Tuple: # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Dict: snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: snake_case = """abeja/gpt-neox-japanese-2.7b""" snake_case = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case = GPTNeoXJapaneseTokenizer.from_pretrained(__snake_case ) snake_case = GPTNeoXJapaneseForCausalLM.from_pretrained(__snake_case ) snake_case = [] for prompt in prompts: snake_case = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids snake_case = model.generate(__snake_case , max_length=50 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) predicted_outputs += generated_string self.assertListEqual(__snake_case , __snake_case )
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' def __lowerCamelCase ( ) -> int: return 1 def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int = 2_00 ) -> int: return two_pound(__lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str]=13 , __snake_case : List[Any]=7 , __snake_case : List[Any]=False , __snake_case : int=True , __snake_case : List[Any]=False , __snake_case : List[Any]=True , __snake_case : Optional[int]=33 , __snake_case : Optional[int]=32 , __snake_case : int=5 , __snake_case : Optional[int]=4 , __snake_case : Dict=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=0.1 , __snake_case : int=0.1 , __snake_case : List[Any]=5_12 , __snake_case : Tuple=16 , __snake_case : List[str]=2 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=3 , __snake_case : List[str]=4 , __snake_case : Optional[int]=None , )-> Dict: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def lowerCAmelCase ( self : str )-> Any: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str )-> Tuple: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : int )-> Union[str, Any]: snake_case = EsmModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] )-> List[str]: snake_case = EsmForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Dict , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] )-> Optional[int]: snake_case = self.num_labels snake_case = EsmForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] )-> int: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = False snake_case_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case_ = () snake_case_ = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = EsmModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : str )-> Any: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] )-> Optional[int]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : Dict )-> int: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowerCAmelCase ( self : int )-> Union[str, Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = EsmModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCAmelCase ( self : str )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs()[0] snake_case = EsmEmbeddings(config=__snake_case ) snake_case = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) snake_case = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) snake_case = create_position_ids_from_input_ids(__snake_case , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__snake_case , __snake_case ) ) ) def lowerCAmelCase ( self : Tuple )-> Dict: snake_case = self.model_tester.prepare_config_and_inputs()[0] snake_case = EsmEmbeddings(config=__snake_case ) snake_case = torch.empty(2 , 4 , 30 ) snake_case = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] snake_case = torch.as_tensor([expected_single_positions, expected_single_positions] ) snake_case = embeddings.create_position_ids_from_inputs_embeds(__snake_case ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__snake_case , __snake_case ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : int )-> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] )-> List[str]: pass @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] )-> int: with torch.no_grad(): snake_case = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case = model(__snake_case )[0] snake_case = 33 snake_case = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __snake_case ) snake_case = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : str )-> str: with torch.no_grad(): snake_case = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() snake_case = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case = model(__snake_case )[0] # compare the actual values for a slice. snake_case = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' from copy import deepcopy class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : list[int] | None = None , __snake_case : int | None = None )-> None: if arr is None and size is not None: snake_case = size snake_case = [0] * size elif arr is not None: self.init(__snake_case ) else: raise ValueError("""Either arr or size must be specified""" ) def lowerCAmelCase ( self : List[Any] , __snake_case : list[int] )-> None: snake_case = len(__snake_case ) snake_case = deepcopy(__snake_case ) for i in range(1 , self.size ): snake_case = self.next_(__snake_case ) if j < self.size: self.tree[j] += self.tree[i] def lowerCAmelCase ( self : str )-> list[int]: snake_case = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case = self.next_(__snake_case ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCAmelCase ( __snake_case : int )-> int: return index + (index & (-index)) @staticmethod def lowerCAmelCase ( __snake_case : int )-> int: return index - (index & (-index)) def lowerCAmelCase ( self : Dict , __snake_case : int , __snake_case : int )-> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case = self.next_(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int , __snake_case : int )-> None: self.add(__snake_case , value - self.get(__snake_case ) ) def lowerCAmelCase ( self : Optional[int] , __snake_case : int )-> int: if right == 0: return 0 snake_case = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case = self.prev(__snake_case ) return result def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> int: return self.prefix(__snake_case ) - self.prefix(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : int )-> int: return self.query(__snake_case , index + 1 ) def lowerCAmelCase ( self : int , __snake_case : int )-> int: value -= self.tree[0] if value < 0: return -1 snake_case = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _SCREAMING_SNAKE_CASE = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": 512 for name in _model_names} _SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = FunnelTokenizer snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 2 def __init__( self : Any , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]="<unk>" , __snake_case : Any="<sep>" , __snake_case : Optional[Any]="<pad>" , __snake_case : Dict="<cls>" , __snake_case : int="<mask>" , __snake_case : List[Any]="<s>" , __snake_case : Any="</s>" , __snake_case : Union[str, Any]=True , __snake_case : Any=True , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]="##" , **__snake_case : Dict , )-> Optional[Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , clean_text=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , wordpieces_prefix=__snake_case , **__snake_case , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __snake_case ) != do_lower_case or normalizer_state.get("""strip_accents""" , __snake_case ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __snake_case ) != tokenize_chinese_chars ): snake_case = getattr(__snake_case , normalizer_state.pop("""type""" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**__snake_case ) snake_case = do_lower_case def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : Any=None )-> List[str]: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: snake_case = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _SCREAMING_SNAKE_CASE = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str=False ) -> int: snake_case , snake_case = create_model( """HTSAT-tiny""" , """roberta""" , __lowerCAmelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__lowerCAmelCase , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( __lowerCAmelCase : int ) -> Tuple: snake_case = {} snake_case = r""".*sequential.(\d+).*""" snake_case = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): # replace sequential layers with list snake_case = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) snake_case = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__lowerCAmelCase )//3}.linear.''' ) elif re.match(__lowerCAmelCase , __lowerCAmelCase ): snake_case = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case = 1 if projecton_layer == 0 else 2 snake_case = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case = value snake_case = mixed_qkv.size(0 ) // 3 snake_case = mixed_qkv[:qkv_dim] snake_case = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case = mixed_qkv[qkv_dim * 2 :] snake_case = query_layer snake_case = key_layer snake_case = value_layer else: snake_case = value return model_state_dict def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : int=False ) -> List[Any]: snake_case , snake_case = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase ) clap_model.eval() snake_case = clap_model.state_dict() snake_case = rename_state_dict(__lowerCAmelCase ) snake_case = ClapConfig() snake_case = enable_fusion snake_case = ClapModel(__lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) transformers_config.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __lowerCamelCase ( __lowerCAmelCase : int ) -> typing.Counter[int]: snake_case = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ): snake_case = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCAmelCase ): snake_case = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCamelCase ( __lowerCAmelCase : int = 10_00 ) -> int: snake_case = pythagorean_triple(__lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> tuple: snake_case = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "convbert" def __init__( self : Tuple , __snake_case : Optional[Any]=3_05_22 , __snake_case : str=7_68 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Tuple=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Any=5_12 , __snake_case : int=2 , __snake_case : Dict=0.02 , __snake_case : Dict=1e-12 , __snake_case : Union[str, Any]=1 , __snake_case : int=0 , __snake_case : List[str]=2 , __snake_case : List[str]=7_68 , __snake_case : int=2 , __snake_case : Tuple=9 , __snake_case : Dict=1 , __snake_case : Tuple=None , **__snake_case : Optional[int] , )-> str: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = embedding_size snake_case = head_ratio snake_case = conv_kernel_size snake_case = num_groups snake_case = classifier_dropout class _lowerCAmelCase ( A__ ): """simple docstring""" @property def lowerCAmelCase ( self : Tuple )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 snake_case , snake_case = 1, 1 for _ in range(number_of_steps - 1 ): snake_case , snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "bart" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , __snake_case : Union[str, Any]=5_02_65 , __snake_case : Tuple=10_24 , __snake_case : Union[str, Any]=12 , __snake_case : List[Any]=40_96 , __snake_case : Any=16 , __snake_case : Union[str, Any]=12 , __snake_case : List[str]=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=10_24 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : List[str]=0.02 , __snake_case : str=0.0 , __snake_case : Any=False , __snake_case : List[str]=True , __snake_case : Dict=3 , __snake_case : Union[str, Any]=1 , __snake_case : List[str]=0 , __snake_case : Any=2 , __snake_case : Any=True , __snake_case : List[str]=2 , __snake_case : Tuple=2 , **__snake_case : List[str] , )-> str: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( A__ ): """simple docstring""" @property def lowerCAmelCase ( self : int )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case = {0: """batch"""} snake_case = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case = {0: """batch""", 1: """decoder_sequence"""} snake_case = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case , snake_case = self.num_layers for i in range(__snake_case ): snake_case = {0: """batch""", 2: """past_sequence + sequence"""} snake_case = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase ( self : int )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case = super().outputs else: snake_case = super(__snake_case , self ).outputs if self.use_past: snake_case , snake_case = self.num_layers for i in range(__snake_case ): snake_case = {0: """batch""", 2: """past_sequence + sequence"""} snake_case = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase ( self : int , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs snake_case = seq_length if not self.use_past else 1 snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) snake_case = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} snake_case = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case = common_inputs["""input_ids"""].shape snake_case = common_inputs["""decoder_input_ids"""].shape[1] snake_case , snake_case = self.num_attention_heads snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case = decoder_seq_length + 3 snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 ) snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case = self.num_layers snake_case = min(__snake_case , __snake_case ) snake_case = max(__snake_case , __snake_case ) - min_num_layers snake_case = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. snake_case = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def lowerCAmelCase ( self : Any , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case = seqlen + 2 snake_case , snake_case = self.num_layers snake_case , snake_case = self.num_attention_heads snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case = common_inputs["""attention_mask"""].dtype snake_case = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) snake_case = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def lowerCAmelCase ( self : List[str] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case = tokenizer.num_special_tokens_to_add(__snake_case ) snake_case = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence snake_case = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def lowerCAmelCase ( self : Dict , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": snake_case = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] )-> str: if self.task in ["default", "seq2seq-lm"]: snake_case = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: snake_case = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' from collections import deque class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , __snake_case : str , __snake_case : int , __snake_case : int )-> None: snake_case = process_name # process name snake_case = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case = arrival_time snake_case = burst_time # remaining burst time snake_case = 0 # total time of the process wait in ready queue snake_case = 0 # time from arrival time to completion time class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : list[int] , __snake_case : deque[Process] , __snake_case : int , )-> None: # total number of mlfq's queues snake_case = number_of_queues # time slice of queues that round robin algorithm applied snake_case = time_slices # unfinished process is in this ready_queue snake_case = queue # current time snake_case = current_time # finished process is in this sequence queue snake_case = deque() def lowerCAmelCase ( self : Union[str, Any] )-> list[str]: snake_case = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase ( self : int , __snake_case : list[Process] )-> list[int]: snake_case = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase ( self : Optional[Any] , __snake_case : list[Process] )-> list[int]: snake_case = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase ( self : Optional[Any] , __snake_case : list[Process] )-> list[int]: snake_case = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase ( self : Optional[int] , __snake_case : deque[Process] )-> list[int]: return [q.burst_time for q in queue] def lowerCAmelCase ( self : Optional[Any] , __snake_case : Process )-> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase ( self : Optional[Any] , __snake_case : deque[Process] )-> deque[Process]: snake_case = deque() # sequence deque of finished process while len(__snake_case ) != 0: snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case = 0 # set the process's turnaround time because it is finished snake_case = self.current_time - cp.arrival_time # set the completion time snake_case = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase ( self : List[str] , __snake_case : deque[Process] , __snake_case : int )-> tuple[deque[Process], deque[Process]]: snake_case = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case = 0 # set the finish time snake_case = self.current_time # update the process' turnaround time because it is finished snake_case = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase ( self : Union[str, Any] )-> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): snake_case , snake_case = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _SCREAMING_SNAKE_CASE = Process("P1", 0, 53) _SCREAMING_SNAKE_CASE = Process("P2", 0, 17) _SCREAMING_SNAKE_CASE = Process("P3", 0, 68) _SCREAMING_SNAKE_CASE = Process("P4", 0, 24) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = [17, 25] _SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _SCREAMING_SNAKE_CASE = Process("P1", 0, 53) _SCREAMING_SNAKE_CASE = Process("P2", 0, 17) _SCREAMING_SNAKE_CASE = Process("P3", 0, 68) _SCREAMING_SNAKE_CASE = Process("P4", 0, 24) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = [17, 25] _SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa]) _SCREAMING_SNAKE_CASE = MLFQ(number_of_queues, time_slices, queue, 0) _SCREAMING_SNAKE_CASE = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( __lowerCAmelCase : Namespace ) -> List[Any]: return TrainCommand(__lowerCAmelCase ) class _lowerCAmelCase ( A__ ): """simple docstring""" @staticmethod def lowerCAmelCase ( __snake_case : ArgumentParser )-> str: snake_case = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=__snake_case , required=__snake_case , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=__snake_case , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=__snake_case , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=__snake_case , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=__snake_case , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=__snake_case , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=__snake_case , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=__snake_case , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=__snake_case , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=__snake_case , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=__snake_case , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=__snake_case , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=__snake_case , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__snake_case ) def __init__( self : str , __snake_case : Namespace )-> Any: snake_case = logging.get_logger("""transformers-cli/training""" ) snake_case = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__snake_case ) snake_case = args.output snake_case = args.column_label snake_case = args.column_text snake_case = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = args.validation_split snake_case = args.train_batch_size snake_case = args.valid_batch_size snake_case = args.learning_rate snake_case = args.adam_epsilon def lowerCAmelCase ( self : List[Any] )-> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCAmelCase ( self : Any )-> Tuple: raise NotImplementedError def lowerCAmelCase ( self : Dict )-> int: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: snake_case = len(__lowerCAmelCase ) for i in range(1 , __lowerCAmelCase ): snake_case = collection[i] snake_case = 0 snake_case = i - 1 while low <= high: snake_case = (low + high) // 2 if val < collection[mid]: snake_case = mid - 1 else: snake_case = mid + 1 for j in range(__lowerCAmelCase , __lowerCAmelCase , -1 ): snake_case = collection[j - 1] snake_case = val return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "falcon" snake_case_ = ["past_key_values"] def __init__( self : Dict , __snake_case : Optional[int]=6_50_24 , __snake_case : Optional[int]=45_44 , __snake_case : List[Any]=32 , __snake_case : Tuple=71 , __snake_case : Dict=1e-5 , __snake_case : Optional[int]=0.02 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : Union[str, Any]=True , __snake_case : int=True , __snake_case : Optional[Any]=False , __snake_case : Union[str, Any]=11 , __snake_case : str=11 , **__snake_case : Optional[Any] , )-> List[Any]: snake_case = vocab_size # Backward compatibility with n_embed kwarg snake_case = kwargs.pop("""n_embed""" , __snake_case ) snake_case = hidden_size if n_embed is None else n_embed snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = layer_norm_epsilon snake_case = initializer_range snake_case = use_cache snake_case = hidden_dropout snake_case = attention_dropout snake_case = bos_token_id snake_case = eos_token_id snake_case = num_attention_heads if num_kv_heads is None else num_kv_heads snake_case = alibi snake_case = new_decoder_architecture snake_case = multi_query # Ignored when new_decoder_architecture is True snake_case = parallel_attn snake_case = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : Union[str, Any] )-> int: return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase ( self : int )-> List[str]: return not self.alibi
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _SCREAMING_SNAKE_CASE = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _SCREAMING_SNAKE_CASE = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ) -> Optional[int]: return float((preds == labels).mean() ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> int: snake_case = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) snake_case = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Dict: snake_case = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] ) snake_case = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] )-> Any: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] )-> Optional[Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "visual_bert" def __init__( self : Optional[Any] , __snake_case : List[str]=3_05_22 , __snake_case : Any=7_68 , __snake_case : Union[str, Any]=5_12 , __snake_case : List[str]=12 , __snake_case : Union[str, Any]=12 , __snake_case : Optional[Any]=30_72 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=5_12 , __snake_case : Any=2 , __snake_case : Union[str, Any]=0.02 , __snake_case : Optional[int]=1e-12 , __snake_case : Optional[Any]=False , __snake_case : Tuple=True , __snake_case : Any=1 , __snake_case : List[str]=0 , __snake_case : Optional[Any]=2 , **__snake_case : str , )-> str: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = visual_embedding_dim snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = bypass_transformer snake_case = special_visual_initialize
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _SCREAMING_SNAKE_CASE = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Tuple , __snake_case : Dict=7 , __snake_case : int=3 , __snake_case : List[Any]=18 , __snake_case : Optional[Any]=30 , __snake_case : List[Any]=4_00 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : Dict=None , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 20, """width""": 20} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = size snake_case = do_normalize snake_case = do_convert_rgb snake_case = [5_12, 10_24, 20_48, 40_96] snake_case = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def lowerCAmelCase ( self : Optional[int] )-> str: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : str )-> List[str]: snake_case = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Tuple )-> str: snake_case = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[Any] )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : str )-> List[str]: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case = self.image_processor_tester.prepare_dummy_image() snake_case = self.image_processing_class(**self.image_processor_dict ) snake_case = 20_48 snake_case = image_processor(__snake_case , return_tensors="""pt""" , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCAmelCase ( self : str )-> Optional[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : str )-> Any: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches snake_case = """Hello""" snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Union[str, Any] )-> List[str]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Any )-> List[Any]: snake_case = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case = 3 @property def lowerCAmelCase ( self : Optional[int] )-> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str] )-> int: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: # Initialize image_processor snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case = image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list[list[int]]: snake_case = [] create_all_state(1 , __lowerCAmelCase , __lowerCAmelCase , [] , __lowerCAmelCase ) return result def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCAmelCase , total_number - level + 2 ): current_list.append(__lowerCAmelCase ) create_all_state(i + 1 , __lowerCAmelCase , level - 1 , __lowerCAmelCase , __lowerCAmelCase ) current_list.pop() def __lowerCamelCase ( __lowerCAmelCase : list[list[int]] ) -> None: for i in total_list: print(*__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = generate_all_combinations(n, k) print_all_state(total_list)
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' from math import factorial _SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(10)} def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def __lowerCamelCase ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 1_00_00_00 ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length snake_case = 0 # the cached sizes of the previous chains snake_case = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain snake_case = set() snake_case = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 snake_case = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : List[str] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Any , )-> None: super().__init__(**__snake_case ) snake_case = size if size is not None else {"""shortest_edge""": 3_84} snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) snake_case = do_resize snake_case = size # Default value set here for backwards compatibility where the value in config is None snake_case = crop_pct if crop_pct is not None else 2_24 / 2_56 snake_case = resample snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : float , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : str , )-> np.ndarray: snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) snake_case = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case = int(shortest_edge / crop_pct ) snake_case = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) snake_case = resize(image=__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__snake_case , size=(shortest_edge, shortest_edge) , data_format=__snake_case , **__snake_case ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __snake_case , size=(shortest_edge, shortest_edge) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> Any: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : Optional[int] , )-> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = crop_pct if crop_pct is not None else self.crop_pct snake_case = resample if resample is not None else self.resample snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = size if size is not None else self.size snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) snake_case = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case = [to_numpy_array(__snake_case ) for image in images] if do_resize: snake_case = [self.resize(image=__snake_case , size=__snake_case , crop_pct=__snake_case , resample=__snake_case ) for image in images] if do_rescale: snake_case = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: snake_case = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] snake_case = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] snake_case = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _SCREAMING_SNAKE_CASE = None try: import msvcrt except ImportError: _SCREAMING_SNAKE_CASE = None try: import fcntl except ImportError: _SCREAMING_SNAKE_CASE = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _SCREAMING_SNAKE_CASE = OSError # Data # ------------------------------------------------ _SCREAMING_SNAKE_CASE = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _SCREAMING_SNAKE_CASE = "3.0.12" _SCREAMING_SNAKE_CASE = None def __lowerCamelCase ( ) -> str: global _logger snake_case = _logger or logging.getLogger(__name__ ) return _logger class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : str )-> Dict: snake_case = lock_file return None def __str__( self : List[Any] )-> Tuple: snake_case = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , __snake_case : List[str] )-> Optional[Any]: snake_case = lock return None def __enter__( self : Optional[int] )-> str: return self.lock def __exit__( self : Tuple , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[Any] )-> Optional[Any]: self.lock.release() return None class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , __snake_case : Any , __snake_case : int=-1 , __snake_case : Any=None )-> Any: snake_case = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long snake_case = self.hash_filename_if_too_long(__snake_case , __snake_case ) # The path to the lock file. snake_case = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case = None # The default timeout value. snake_case = timeout # We use this lock primarily for the lock counter. snake_case = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case = 0 return None @property def lowerCAmelCase ( self : Dict )-> Union[str, Any]: return self._lock_file @property def lowerCAmelCase ( self : Optional[Any] )-> List[Any]: return self._timeout @timeout.setter def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] )-> Dict: snake_case = float(__snake_case ) return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: raise NotImplementedError() def lowerCAmelCase ( self : Dict )-> str: raise NotImplementedError() @property def lowerCAmelCase ( self : Any )-> Tuple: return self._lock_file_fd is not None def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : int=0.05 )-> Optional[int]: # Use the default timeout, if no timeout is provided. if timeout is None: snake_case = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case = id(self ) snake_case = self._lock_file snake_case = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(__snake_case ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase ( self : Dict , __snake_case : List[str]=False )-> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case = id(self ) snake_case = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() snake_case = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : Union[str, Any] )-> int: self.acquire() return self def __exit__( self : Optional[int] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] )-> Optional[Any]: self.release() return None def __del__( self : Any )-> List[Any]: self.release(force=__snake_case ) return None def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : int )-> str: snake_case = os.path.basename(__snake_case ) if len(__snake_case ) > max_length and max_length > 0: snake_case = os.path.dirname(__snake_case ) snake_case = str(hash(__snake_case ) ) snake_case = filename[: max_length - len(__snake_case ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__snake_case , __snake_case ) else: return path class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : str=-1 , __snake_case : List[Any]=None )-> int: from .file_utils import relative_to_absolute_path super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) snake_case = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case = os.open(self._lock_file , __snake_case ) except OSError: pass else: try: msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__snake_case ) else: snake_case = fd return None def lowerCAmelCase ( self : Optional[Any] )-> List[Any]: snake_case = self._lock_file_fd snake_case = None msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1 ) os.close(__snake_case ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : List[Any] , __snake_case : str=-1 , __snake_case : List[str]=None )-> int: snake_case = os.statvfs(os.path.dirname(__snake_case ) ).f_namemax super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) def lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case = os.open(self._lock_file , __snake_case ) try: fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__snake_case ) else: snake_case = fd return None def lowerCAmelCase ( self : List[str] )-> Dict: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition snake_case = self._lock_file_fd snake_case = None fcntl.flock(__snake_case , fcntl.LOCK_UN ) os.close(__snake_case ) return None class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case = os.open(self._lock_file , __snake_case ) except OSError: pass else: snake_case = fd return None def lowerCAmelCase ( self : Dict )-> List[str]: os.close(self._lock_file_fd ) snake_case = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _SCREAMING_SNAKE_CASE = None if msvcrt: _SCREAMING_SNAKE_CASE = WindowsFileLock elif fcntl: _SCREAMING_SNAKE_CASE = UnixFileLock else: _SCREAMING_SNAKE_CASE = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> list[int]: if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(__lowerCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PegasusTokenizer snake_case_ = PegasusTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : int )-> int: super().setUp() # We have a SentencePiece fixture for testing snake_case = PegasusTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase ( self : int )-> List[str]: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCAmelCase ( self : Dict , **__snake_case : Dict )-> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Dict: return ("This is a test", "This is a test") def lowerCAmelCase ( self : Union[str, Any] )-> List[str]: snake_case = """</s>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Union[str, Any] )-> Optional[int]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__snake_case ) , 11_03 ) def lowerCAmelCase ( self : Dict )-> str: self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def lowerCAmelCase ( self : str )-> Dict: snake_case = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) snake_case = rust_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0] snake_case = py_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0] self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Optional[Any]: snake_case = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word snake_case = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" snake_case = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] snake_case = tokenizer([raw_input_str] , return_tensors=__snake_case ).input_ids[0] self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 snake_case = """To ensure a smooth flow of bank resolutions.""" snake_case = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] snake_case = tokenizer([raw_input_str] , return_tensors=__snake_case ).input_ids[0] self.assertListEqual(__snake_case , __snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCAmelCase ( self : Any )-> Dict: snake_case = ["""This is going to be way too long.""" * 1_50, """short example"""] snake_case = ["""not super long but more than 5 tokens""", """tiny"""] snake_case = self._large_tokenizer(__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) snake_case = self._large_tokenizer( text_target=__snake_case , max_length=5 , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__snake_case ) == 2 # input_ids, attention_mask. @slow def lowerCAmelCase ( self : str )-> str: # fmt: off snake_case = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = PegasusTokenizer snake_case_ = PegasusTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Any )-> int: super().setUp() # We have a SentencePiece fixture for testing snake_case = PegasusTokenizer(__snake_case , offset=0 , mask_token_sent=__snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase ( self : str )-> Dict: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCAmelCase ( self : Any , **__snake_case : Optional[int] )-> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Dict , __snake_case : List[str] )-> Any: return ("This is a test", "This is a test") def lowerCAmelCase ( self : Union[str, Any] )-> Optional[Any]: snake_case = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) snake_case = rust_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0] snake_case = py_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ["""This is going to be way too long.""" * 10_00, """short example"""] snake_case = ["""not super long but more than 5 tokens""", """tiny"""] snake_case = self._large_tokenizer(__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) snake_case = self._large_tokenizer( text_target=__snake_case , max_length=5 , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__snake_case ) == 2 # input_ids, attention_mask. def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) snake_case = self._large_tokenizer(__snake_case ).input_ids self.assertListEqual( __snake_case , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float ) -> tuple: if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowerCAmelCase ( self : Any )-> List[Any]: torch.manual_seed(0 ) snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase ( self : Tuple )-> str: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__snake_case ) def lowerCAmelCase ( self : Optional[Any] )-> List[str]: snake_case = self.dummy_uncond_unet snake_case = DDIMScheduler() snake_case = self.dummy_vq_model snake_case = LDMPipeline(unet=__snake_case , vqvae=__snake_case , scheduler=__snake_case ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) snake_case = torch.manual_seed(0 ) snake_case = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" ).images snake_case = torch.manual_seed(0 ) snake_case = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" , return_dict=__snake_case )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) snake_case = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) snake_case = torch.manual_seed(0 ) snake_case = ldm(generator=__snake_case , num_inference_steps=5 , output_type="""numpy""" ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) snake_case = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int = 10_00 ) -> int: snake_case = 2**power snake_case = str(__lowerCAmelCase ) snake_case = list(__lowerCAmelCase ) snake_case = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) _SCREAMING_SNAKE_CASE = solution(power) print("Sum of the digits is: ", result)
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> int: assert x is not None assert y is not None snake_case = len(__lowerCAmelCase ) snake_case = len(__lowerCAmelCase ) # declaring the array for storing the dp values snake_case = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): snake_case = 1 if x[i - 1] == y[j - 1] else 0 snake_case = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) snake_case = """""" snake_case , snake_case = m, n while i > 0 and j > 0: snake_case = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: snake_case = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE = "AGGTAB" _SCREAMING_SNAKE_CASE = "GXTXAYB" _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = "GTAB" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = list[tuple[int, int]] _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : Node | None , )-> Union[str, Any]: snake_case = pos_x snake_case = pos_y snake_case = (pos_y, pos_x) snake_case = goal_x snake_case = goal_y snake_case = g_cost snake_case = parent snake_case = self.calculate_heuristic() def lowerCAmelCase ( self : List[Any] )-> float: snake_case = abs(self.pos_x - self.goal_x ) snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , __snake_case : Union[str, Any] )-> bool: return self.f_cost < other.f_cost class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , __snake_case : tuple[int, int] , __snake_case : tuple[int, int] )-> Optional[Any]: snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __snake_case ) snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __snake_case ) snake_case = [self.start] snake_case = [] snake_case = False def lowerCAmelCase ( self : Optional[int] )-> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case = True return self.retrace_path(__snake_case ) self.closed_nodes.append(__snake_case ) snake_case = self.get_successors(__snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__snake_case ) else: # retrieve the best current path snake_case = self.open_nodes.pop(self.open_nodes.index(__snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__snake_case ) else: self.open_nodes.append(__snake_case ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str , __snake_case : Node )-> list[Node]: snake_case = [] for action in delta: snake_case = parent.pos_x + action[1] snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __snake_case , __snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __snake_case , ) ) return successors def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Node | None )-> Path: snake_case = node snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _SCREAMING_SNAKE_CASE = GreedyBestFirst(init, goal) _SCREAMING_SNAKE_CASE = greedy_bf.search() if path: for pos_x, pos_y in path: _SCREAMING_SNAKE_CASE = 2 for elem in grid: print(elem)
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' from math import factorial def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float ) -> float: if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) snake_case = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! snake_case = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] )-> List[str]: snake_case = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case = tf_top_k_top_p_filtering(__snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case = output[output != -float("""inf""" )] snake_case = tf.cast( tf.where(tf.not_equal(__snake_case , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-12 ) tf.debugging.assert_equal(__snake_case , __snake_case ) @require_tf class _lowerCAmelCase ( unittest.TestCase , A__ ): """simple docstring""" if is_tf_available(): snake_case_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def lowerCAmelCase ( self : str )-> Optional[Any]: # TF-only test: tf.saved_model export snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case = 2 snake_case = 2 class _lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : Any )-> List[str]: super(__snake_case , self ).__init__() snake_case = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__snake_case , ) def lowerCAmelCase ( self : List[Any] , __snake_case : List[Any] , __snake_case : List[str] )-> Any: snake_case = self.model.generate( input_ids=__snake_case , attention_mask=__snake_case , max_new_tokens=__snake_case , return_dict_in_generate=__snake_case , ) return {"sequences": outputs["sequences"]} snake_case = [[2, 0], [1_02, 1_03]] snake_case = [[1, 0], [1, 1]] snake_case = DummyModel(model=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__snake_case , __snake_case , signatures={"""serving_default""": dummy_model.serving} ) snake_case = tf.saved_model.load(__snake_case ).signatures["""serving_default"""] for batch_size in range(1 , len(__snake_case ) + 1 ): snake_case = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } snake_case = serving_func(**__snake_case )["""sequences"""] snake_case = test_model.generate(**__snake_case , max_new_tokens=__snake_case ) tf.debugging.assert_equal(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Optional[Any] )-> str: # TF-only test: tf.saved_model export snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case = 1 snake_case = 2 class _lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self : Tuple , __snake_case : Tuple )-> Optional[int]: super(__snake_case , self ).__init__() snake_case = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__snake_case , ) def lowerCAmelCase ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict )-> Dict: snake_case = self.model.generate( input_ids=__snake_case , attention_mask=__snake_case , max_new_tokens=__snake_case , return_dict_in_generate=__snake_case , ) return {"sequences": outputs["sequences"]} snake_case = [[2], [1_02, 1_03]] snake_case = [[1], [1, 1]] snake_case = DummyModel(model=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__snake_case , __snake_case , signatures={"""serving_default""": dummy_model.serving} ) snake_case = tf.saved_model.load(__snake_case ).signatures["""serving_default"""] for input_row in range(len(__snake_case ) ): snake_case = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } snake_case = serving_func(**__snake_case )["""sequences"""] snake_case = test_model.generate(**__snake_case , max_new_tokens=__snake_case ) tf.debugging.assert_equal(__snake_case , __snake_case ) @slow @require_tensorflow_text def lowerCAmelCase ( self : Optional[int] )-> List[str]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__snake_case ) class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict )-> Any: super().__init__() snake_case = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__snake_case , """spiece.model""" ) , """rb""" ).read() ) snake_case = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowerCAmelCase ( self : int , __snake_case : Any , *__snake_case : str , **__snake_case : int )-> str: snake_case = self.tokenizer.tokenize(__snake_case ) snake_case , snake_case = text.pad_model_inputs( __snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) snake_case = self.model.generate(input_ids=__snake_case , attention_mask=__snake_case ) return self.tokenizer.detokenize(__snake_case ) snake_case = CompleteSentenceTransformer() snake_case = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) snake_case = complete_model(__snake_case ) snake_case = tf.keras.Model(__snake_case , __snake_case ) keras_model.save(__snake_case ) def lowerCAmelCase ( self : Any )-> List[Any]: # Has PT equivalent: this test relies on random sampling snake_case = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } snake_case = 14 snake_case = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case = """Hello, my dog is cute and""" snake_case = tokenizer(__snake_case , return_tensors="""tf""" ) snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) snake_case = model.generate(**__snake_case , eos_token_id=__snake_case , **__snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) snake_case = model.generate(**__snake_case , eos_token_id=__snake_case , **__snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCAmelCase ( self : Tuple )-> Tuple: # Has PT equivalent: ample use of framework-specific code snake_case = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case = """Hugging Face is a technology company based in New York and Paris.""" snake_case = bart_tokenizer(__snake_case , return_tensors="""tf""" ).input_ids snake_case = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case = bart_model.generate(__snake_case ).numpy() class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] , __snake_case : Any , __snake_case : List[Any]=None , **__snake_case : Tuple )-> Union[str, Any]: return super().call(__snake_case , **__snake_case ) snake_case = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case = bart_model.generate(__snake_case , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__snake_case , __snake_case ) ) class _lowerCAmelCase ( bart_model.model.encoder.__class__ ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] , __snake_case : Union[str, Any] , **__snake_case : Union[str, Any] )-> Union[str, Any]: return super().call(__snake_case , **__snake_case ) snake_case = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case = bart_model.generate(__snake_case ).numpy() with self.assertRaises(__snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__snake_case , foo="""bar""" )
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import pprint import requests _SCREAMING_SNAKE_CASE = "https://zenquotes.io/api" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = random_quotes() pprint.pprint(response)
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : int , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] )-> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Any , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] )-> int: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : str , **__snake_case : str )-> int: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : str , *__snake_case : Any , **__snake_case : Union[str, Any] )-> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Dict , *__snake_case : Tuple , **__snake_case : Dict )-> int: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[int] , *__snake_case : Union[str, Any] , **__snake_case : Any )-> Any: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Dict , *__snake_case : List[str] , **__snake_case : Dict )-> List[str]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : Dict , **__snake_case : Dict )-> int: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : List[str] , **__snake_case : Tuple )-> List[str]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : str , *__snake_case : str , **__snake_case : Union[str, Any] )-> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Tuple , *__snake_case : Union[str, Any] , **__snake_case : Tuple )-> int: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[str] , *__snake_case : Dict , **__snake_case : Optional[Any] )-> List[str]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Any )-> Any: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Union[str, Any] , *__snake_case : int , **__snake_case : Any )-> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[int] , *__snake_case : List[Any] , **__snake_case : Tuple )-> List[Any]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Dict , *__snake_case : Optional[Any] , **__snake_case : Optional[int] )-> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Dict , *__snake_case : Dict , **__snake_case : Optional[Any] )-> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[Any] , *__snake_case : List[str] , **__snake_case : str )-> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Optional[int] , *__snake_case : Dict , **__snake_case : Dict )-> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Tuple , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] )-> str: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Optional[int] , *__snake_case : Dict , **__snake_case : Dict )-> Optional[int]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : List[str] , *__snake_case : int , **__snake_case : Tuple )-> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[str] , *__snake_case : Union[str, Any] , **__snake_case : Tuple )-> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : str , *__snake_case : Dict , **__snake_case : Dict )-> Dict: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : List[str] )-> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[Any] , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] )-> Any: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : int , *__snake_case : Optional[Any] , **__snake_case : int )-> int: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : List[str] , *__snake_case : List[str] , **__snake_case : str )-> List[str]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Dict , *__snake_case : List[Any] , **__snake_case : List[str] )-> int: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : str , *__snake_case : List[str] , **__snake_case : Optional[int] )-> int: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Optional[int] , *__snake_case : Any , **__snake_case : str )-> Any: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Tuple , *__snake_case : Tuple , **__snake_case : Optional[Any] )-> str: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : int , *__snake_case : List[str] , **__snake_case : Any )-> Dict: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : str , *__snake_case : Dict , **__snake_case : Optional[int] )-> str: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : str , *__snake_case : Optional[int] , **__snake_case : Tuple )-> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[str] , *__snake_case : Optional[int] , **__snake_case : Tuple )-> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["flax"] def __init__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : Dict )-> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Dict )-> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def lowerCAmelCase ( cls : List[Any] , *__snake_case : int , **__snake_case : Union[str, Any] )-> int: requires_backends(cls , ["""flax"""] )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str , **__lowerCAmelCase : Tuple ) -> Union[str, Any]: snake_case = AutoConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) snake_case = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Dict )-> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : Any , __snake_case : str )-> Dict: snake_case = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case = evaluate(dataset=__snake_case , predictions=__snake_case ) return score
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = {str(digit): digit**5 for digit in range(10)} def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__lowerCAmelCase ) ) def __lowerCamelCase ( ) -> int: return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(__lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] )-> Dict: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : int = 1 , __snake_case : int = 1_00 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[float] = None , __snake_case : bool = True , )-> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: snake_case = self.unet.config.sample_size / self.unet.config.sample_rate snake_case = audio_length_in_s * self.unet.config.sample_rate snake_case = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) snake_case = int(__snake_case ) if sample_size % down_scale_factor != 0: snake_case = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) snake_case = int(__snake_case ) snake_case = next(iter(self.unet.parameters() ) ).dtype snake_case = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) snake_case = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample snake_case = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' import sys def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> Optional[int]: snake_case = len(__lowerCAmelCase ) snake_case = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] snake_case = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): snake_case = a + chain_length - 1 snake_case = sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: snake_case = cost snake_case = c return matrix, sol def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Tuple ) -> List[Any]: if i == j: print("""A""" + str(__lowerCAmelCase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(""")""" , end=""" """ ) def __lowerCamelCase ( ) -> Tuple: snake_case = [30, 35, 15, 5, 10, 20, 25] snake_case = len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 snake_case , snake_case = matrix_chain_order(__lowerCAmelCase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=8 ) -> Optional[Any]: snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Optional[int]=5_12 ) -> Optional[Any]: snake_case = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) snake_case = np.array(pil_image.convert("""RGB""" ) ) snake_case = arr.astype(np.floataa ) / 127.5 - 1 snake_case = np.transpose(__lowerCAmelCase , [2, 0, 1] ) snake_case = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : VQModel , )-> Union[str, Any]: super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple )-> Any: # get the original timestep using init_timestep snake_case = min(int(num_inference_steps * strength ) , __snake_case ) snake_case = max(num_inference_steps - init_timestep , 0 ) snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any , __snake_case : str=None )-> List[Any]: if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}''' ) snake_case = image.to(device=__snake_case , dtype=__snake_case ) snake_case = batch_size * num_images_per_prompt if image.shape[1] == 4: snake_case = image else: if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__snake_case , __snake_case ): snake_case = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] snake_case = torch.cat(__snake_case , dim=0 ) else: snake_case = self.movq.encode(__snake_case ).latent_dist.sample(__snake_case ) snake_case = self.movq.config.scaling_factor * init_latents snake_case = torch.cat([init_latents] , dim=0 ) snake_case = init_latents.shape snake_case = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents snake_case = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) snake_case = init_latents return latents def lowerCAmelCase ( self : int , __snake_case : Optional[Any]=0 )-> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case = torch.device(f'''cuda:{gpu_id}''' ) snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : int=0 )-> List[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case , snake_case = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase ( self : List[Any] )-> List[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self : int , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 1_00 , __snake_case : float = 4.0 , __snake_case : float = 0.3 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , )-> Union[str, Any]: snake_case = self._execution_device snake_case = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): snake_case = torch.cat(__snake_case , dim=0 ) snake_case = image_embeds.shape[0] if isinstance(__snake_case , __snake_case ): snake_case = torch.cat(__snake_case , dim=0 ) if do_classifier_free_guidance: snake_case = image_embeds.repeat_interleave(__snake_case , dim=0 ) snake_case = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) if not isinstance(__snake_case , __snake_case ): snake_case = [image] if not all(isinstance(__snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(__snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) snake_case = torch.cat([prepare_image(__snake_case , __snake_case , __snake_case ) for i in image] , dim=0 ) snake_case = image.to(dtype=image_embeds.dtype , device=__snake_case ) snake_case = self.movq.encode(__snake_case )["""latents"""] snake_case = latents.repeat_interleave(__snake_case , dim=0 ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) snake_case , snake_case = self.get_timesteps(__snake_case , __snake_case , __snake_case ) snake_case = timesteps[:1].repeat(batch_size * num_images_per_prompt ) snake_case , snake_case = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) snake_case = self.prepare_latents( __snake_case , __snake_case , __snake_case , __snake_case , image_embeds.dtype , __snake_case , __snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case = {"""image_embeds""": image_embeds} snake_case = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: snake_case , snake_case = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case = noise_pred.chunk(2 ) snake_case , snake_case = variance_pred.chunk(2 ) snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing snake_case = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case = image * 0.5 + 0.5 snake_case = image.clamp(0 , 1 ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1