code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
_SCREAMING_SNAKE_CASE = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Any:
snake_case = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) )
snake_case = self.transformer_dir
shutil.copy(
os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , )
def lowerCAmelCase ( self : Optional[Any] )-> str:
snake_case = """src/transformers"""
shutil.rmtree(self.transformer_dir )
def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple=None )-> Optional[int]:
snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
snake_case = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
snake_case = black.format_str(__snake_case , mode=__snake_case )
snake_case = os.path.join(self.transformer_dir , """new_code.py""" )
with open(__snake_case , """w""" , newline="""\n""" ) as f:
f.write(__snake_case )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__snake_case )
with open(__snake_case , """r""" ) as f:
self.assertTrue(f.read() , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" )
self.assertEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> Optional[int]:
# Base copy consistency
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case ) , )
# Copy consistency with a really long name
snake_case = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , __snake_case , __snake_case ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case ) , )
def lowerCAmelCase ( self : List[str] )-> Tuple:
snake_case = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""]
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"""
""" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"""
""" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"""
""" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"""
""" Luong, Quoc V. Le, Christopher D. Manning."""
)
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"""
""" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"""
""" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"""
""" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"""
""" Christopher D. Manning 发布。\n"""
)
snake_case , snake_case = check_copies.convert_to_localized_md(
__snake_case , __snake_case , localized_readme["""format_model_list"""] )
self.assertFalse(__snake_case )
self.assertEqual(__snake_case , __snake_case )
snake_case , snake_case = check_copies.convert_to_localized_md(
__snake_case , __snake_case , localized_readme["""format_model_list"""] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__snake_case )
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."""
)
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"""
""" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
snake_case = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
snake_case , snake_case = check_copies.convert_to_localized_md(
__snake_case , __snake_case , localized_readme["""format_model_list"""] )
# Check if the model link is synchronized.
self.assertEqual(__snake_case , __snake_case )
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 3 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 | 1 |
'''simple docstring'''
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True ) -> Optional[int]:
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' )
snake_case , snake_case , snake_case , snake_case = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models )
snake_case = config_class.from_json_file(__lowerCAmelCase )
snake_case = True
snake_case = True
print(F'''Building TensorFlow model from configuration: {config}''' )
snake_case = model_class(__lowerCAmelCase )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
snake_case = cached_file(
__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
snake_case = load_pytorch_checkpoint_in_tfa_model(__lowerCAmelCase , __lowerCAmelCase )
if compare_with_pt_model:
snake_case = tf_model(tf_model.dummy_inputs , training=__lowerCAmelCase ) # build the network
snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" )
snake_case = pt_model_class.from_pretrained(
pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase )
with torch.no_grad():
snake_case = pt_model(**pt_model.dummy_inputs )
snake_case = pto[0].numpy()
snake_case = tfo[0].numpy()
snake_case = np.amax(np.abs(np_pt - np_tf ) )
print(F'''Max absolute difference between models outputs {diff}''' )
assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}'''
# Save pytorch-model
print(F'''Save TensorFlow model to {tf_dump_path}''' )
tf_model.save_weights(__lowerCAmelCase , save_format="""h5""" )
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : Union[str, Any]=False , ) -> Union[str, Any]:
if args_model_type is None:
snake_case = list(MODEL_CLASSES.keys() )
else:
snake_case = [args_model_type]
for j, model_type in enumerate(__lowerCAmelCase , start=1 ):
print("""=""" * 1_00 )
print(F''' Converting model type {j}/{len(__lowerCAmelCase )}: {model_type}''' )
print("""=""" * 1_00 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' )
snake_case , snake_case , snake_case , snake_case , snake_case = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
snake_case = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
snake_case = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(__lowerCAmelCase , __lowerCAmelCase ) , start=1 ):
print("""-""" * 1_00 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' )
continue
snake_case = model_shortcut_name
elif only_convert_finetuned_models:
print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' )
continue
print(
F''' Converting checkpoint {i}/{len(__lowerCAmelCase )}: {model_shortcut_name} - model_type {model_type}''' )
print("""-""" * 1_00 )
if config_shortcut_name in aws_config_map:
snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models )
else:
snake_case = config_shortcut_name
if model_shortcut_name in aws_model_maps:
snake_case = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models )
else:
snake_case = model_shortcut_name
if os.path.isfile(__lowerCAmelCase ):
snake_case = """converted_model"""
convert_pt_checkpoint_to_tf(
model_type=__lowerCAmelCase , pytorch_checkpoint_path=__lowerCAmelCase , config_file=__lowerCAmelCase , tf_dump_path=os.path.join(__lowerCAmelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__lowerCAmelCase , )
if remove_cached_files:
os.remove(__lowerCAmelCase )
os.remove(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list:
snake_case = len(__lowerCAmelCase )
snake_case = [[0] * n for i in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
snake_case = y_points[i]
for i in range(2 , __lowerCAmelCase ):
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"GraphormerForGraphClassification",
"GraphormerModel",
"GraphormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 3 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
_SCREAMING_SNAKE_CASE = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| 3 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
_SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple:
snake_case = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , )
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
if not do_eval:
return
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
snake_case = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Tuple )-> int:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case )
@require_torch_multi_gpu
def lowerCAmelCase ( self : str )-> List[Any]:
self.run_seqaseq_quick(distributed=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> str:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> List[Any]:
self.run_seqaseq_quick(
distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case )
@require_apex
@require_torch_gpu
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
snake_case = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
snake_case = experiments[experiment_id]
snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
snake_case = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] )
snake_case = len(re.findall(__snake_case , cl.err ) )
self.assertEqual(__snake_case , data["""n_matches"""] )
@slow
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , )
# Check metrics
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
snake_case = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
# test if do_predict saves generations and metrics
snake_case = os.listdir(__snake_case )
snake_case = {os.path.basename(__snake_case ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowerCAmelCase ( self : str )-> Any:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]:
snake_case = """--skip_memory_metrics 0"""
snake_case = self.run_trainer(
max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , )
# Check metrics
snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
snake_case = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig
snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
snake_case = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
snake_case = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict:
snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
snake_case = self.get_auto_remove_tmp_dir()
snake_case = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__snake_case )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__snake_case )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
snake_case = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__snake_case )}
'''.split()
snake_case = """
--do_predict
""".split()
snake_case = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
snake_case = get_gpu_count()
snake_case = get_torch_dist_unique_port()
snake_case = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
snake_case = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__snake_case , env=self.get_env() )
else:
snake_case = ["""run_translation.py"""] + args
with patch.object(__snake_case , """argv""" , __snake_case ):
main()
return output_dir
| 3 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json",
"BridgeTower/bridgetower-base-itm-mlm": (
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"
),
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "bridgetower_vision_model"
def __init__( self : List[str] , __snake_case : Optional[int]=7_68 , __snake_case : int=12 , __snake_case : Optional[int]=3 , __snake_case : str=16 , __snake_case : Optional[int]=2_88 , __snake_case : List[Any]=1 , __snake_case : List[str]=1e-05 , __snake_case : Dict=False , __snake_case : str=True , __snake_case : Optional[int]=False , **__snake_case : str , )-> List[str]:
super().__init__(**__snake_case )
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_channels
snake_case = patch_size
snake_case = image_size
snake_case = initializer_factor
snake_case = layer_norm_eps
snake_case = stop_gradient
snake_case = share_layernorm
snake_case = remove_last_layer
@classmethod
def lowerCAmelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Optional[Any] )-> "PretrainedConfig":
snake_case , snake_case = cls.get_config_dict(__snake_case , **__snake_case )
if config_dict.get("""model_type""" ) == "bridgetower":
snake_case = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__snake_case , **__snake_case )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "bridgetower_text_model"
def __init__( self : int , __snake_case : Dict=5_02_65 , __snake_case : List[Any]=7_68 , __snake_case : Any=12 , __snake_case : Any=12 , __snake_case : str=1 , __snake_case : int=30_72 , __snake_case : int="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Any=5_14 , __snake_case : Tuple=1 , __snake_case : Tuple=1e-05 , __snake_case : Union[str, Any]=1 , __snake_case : str=0 , __snake_case : List[str]=2 , __snake_case : Optional[int]="absolute" , __snake_case : int=True , **__snake_case : Dict , )-> List[Any]:
super().__init__(**__snake_case )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = initializer_factor
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = pad_token_id
snake_case = bos_token_id
snake_case = eos_token_id
@classmethod
def lowerCAmelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Dict )-> "PretrainedConfig":
snake_case , snake_case = cls.get_config_dict(__snake_case , **__snake_case )
if config_dict.get("""model_type""" ) == "bridgetower":
snake_case = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__snake_case , **__snake_case )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "bridgetower"
def __init__( self : List[str] , __snake_case : List[Any]=True , __snake_case : str="gelu" , __snake_case : Union[str, Any]=7_68 , __snake_case : Any=1 , __snake_case : Any=1e-05 , __snake_case : Tuple=False , __snake_case : List[str]="add" , __snake_case : Tuple=12 , __snake_case : Union[str, Any]=6 , __snake_case : Optional[Any]=False , __snake_case : Tuple=False , __snake_case : Any=None , __snake_case : List[Any]=None , **__snake_case : List[Any] , )-> List[str]:
# TODO: remove this once the Hub files are updated.
snake_case = kwargs.pop("""text_config_dict""" , __snake_case )
snake_case = kwargs.pop("""vision_config_dict""" , __snake_case )
super().__init__(**__snake_case )
snake_case = share_cross_modal_transformer_layers
snake_case = hidden_act
snake_case = hidden_size
snake_case = initializer_factor
snake_case = layer_norm_eps
snake_case = share_link_tower_layers
snake_case = link_tower_type
snake_case = num_attention_heads
snake_case = num_hidden_layers
snake_case = tie_word_embeddings
snake_case = init_layernorm_from_vision_encoder
if text_config is None:
snake_case = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
snake_case = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
snake_case = BridgeTowerTextConfig(**__snake_case )
snake_case = BridgeTowerVisionConfig(**__snake_case )
@classmethod
def lowerCAmelCase ( cls : int , __snake_case : BridgeTowerTextConfig , __snake_case : BridgeTowerVisionConfig , **__snake_case : Tuple )-> str:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = copy.deepcopy(self.__dict__ )
snake_case = self.text_config.to_dict()
snake_case = self.vision_config.to_dict()
snake_case = self.__class__.model_type
return output
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
snake_case = k.replace(__lowerCAmelCase , __lowerCAmelCase )
if k.startswith("""encoder""" ):
snake_case = k.replace(""".attn""" , """.self_attn""" )
snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" )
snake_case = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
snake_case = k.replace("""norm1""" , """self_attn_layer_norm""" )
snake_case = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
snake_case = k.replace("""norm3""" , """final_layer_norm""" )
return k
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Tuple:
snake_case = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
snake_case = sd.pop(__lowerCAmelCase )
snake_case = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
snake_case = v
_SCREAMING_SNAKE_CASE = ["START"]
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> List[Any]:
snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" )
snake_case = model["""model"""]
snake_case = BlenderbotConfig.from_json_file(__lowerCAmelCase )
snake_case = BlenderbotForConditionalGeneration(__lowerCAmelCase )
snake_case = m.model.state_dict().keys()
snake_case = []
snake_case = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
snake_case = rename_state_dict_key(__lowerCAmelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
snake_case = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__lowerCAmelCase )
m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
m.half()
m.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 3 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
snake_case = 1
snake_case = 1
while repunit:
snake_case = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def __lowerCamelCase ( __lowerCAmelCase : int = 1_00_00_00 ) -> int:
snake_case = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"""{solution() = }""")
| 3 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
pass
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : Any )-> None:
snake_case = data
snake_case = None
def __iter__( self : Optional[int] )-> List[Any]:
snake_case = self
snake_case = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(__snake_case )
yield node.data
snake_case = node.next_node
@property
def lowerCAmelCase ( self : Optional[Any] )-> bool:
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = Node(1)
_SCREAMING_SNAKE_CASE = Node(2)
_SCREAMING_SNAKE_CASE = Node(3)
_SCREAMING_SNAKE_CASE = Node(4)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = root_node.next_node
print(root_node.has_loop) # True
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = Node(1)
print(root_node.has_loop) # False
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 18, """width""": 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = apply_ocr
def lowerCAmelCase ( self : List[Any] )-> List[str]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = LayoutLMvaImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple )-> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
def lowerCAmelCase ( self : Tuple )-> Dict:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , __snake_case )
self.assertIsInstance(encoding.boxes , __snake_case )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> List[Any]:
# with apply_OCR = True
snake_case = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __snake_case )
self.assertListEqual(encoding.boxes , __snake_case )
# with apply_OCR = False
snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 3 | 1 |
'''simple docstring'''
from collections.abc import Sequence
def __lowerCamelCase ( __lowerCAmelCase : Sequence[float] , __lowerCAmelCase : float ) -> float:
return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) )
def __lowerCamelCase ( __lowerCAmelCase : Sequence[float] , __lowerCAmelCase : float ) -> float:
snake_case = 0.0
for coeff in reversed(__lowerCAmelCase ):
snake_case = result * x + coeff
return result
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = (0.0, 0.0, 5.0, 9.3, 7.0)
_SCREAMING_SNAKE_CASE = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" )
snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int:
if len(__lowerCAmelCase ) < k or k < 0:
raise ValueError("""Invalid Input""" )
snake_case = snake_case = sum(array[:k] )
for i in range(len(__lowerCAmelCase ) - k ):
snake_case = current_sum - array[i] + array[i + k]
snake_case = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
_SCREAMING_SNAKE_CASE = [randint(-1000, 1000) for i in range(100)]
_SCREAMING_SNAKE_CASE = randint(0, 110)
print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
| 3 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 | 1 |
'''simple docstring'''
import argparse
_SCREAMING_SNAKE_CASE = "docs/source/_static/js/custom.js"
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> int:
with open(__lowerCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case = f.readlines()
snake_case = 0
# First let's put the right version
while not lines[index].startswith("""const stableVersion =""" ):
index += 1
snake_case = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith("""const versionMapping = {""" ):
index += 1
# We go until the end
while not lines[index].startswith("""}""" ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
update_custom_js(args.version)
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json",
"studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "luke"
def __init__( self : Dict , __snake_case : Any=5_02_67 , __snake_case : List[str]=50_00_00 , __snake_case : Any=7_68 , __snake_case : Dict=2_56 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : int=30_72 , __snake_case : Dict="gelu" , __snake_case : str=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=5_12 , __snake_case : Tuple=2 , __snake_case : str=0.02 , __snake_case : str=1e-12 , __snake_case : Any=True , __snake_case : Optional[int]=None , __snake_case : str=1 , __snake_case : List[str]=0 , __snake_case : Optional[int]=2 , **__snake_case : List[Any] , )-> Dict:
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
snake_case = vocab_size
snake_case = entity_vocab_size
snake_case = hidden_size
snake_case = entity_emb_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = use_entity_aware_attention
snake_case = classifier_dropout
| 3 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") )
return token
def __lowerCamelCase ( ) -> Any:
snake_case = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]:
snake_case = """imagenet-1k-id2label.json"""
snake_case = 10_00
snake_case = """huggingface/label-files"""
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 20]
snake_case = [3, 12, 16]
snake_case = [1_92, 7_68, 10_24]
snake_case = CvtForImageClassification(__lowerCAmelCase )
snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
snake_case = image_size
snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(__lowerCAmelCase )
snake_case = list_of_state_dict + embeddings(__lowerCAmelCase )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 3 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
_SCREAMING_SNAKE_CASE = {
"openbmb/cpm-ant-10b": 1024,
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str:
snake_case = collections.OrderedDict()
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader:
snake_case = reader.readlines()
for index, token in enumerate(__lowerCAmelCase ):
snake_case = token.rstrip("""\n""" )
snake_case = index
return vocab
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]:
snake_case = vocab
snake_case = unk_token
snake_case = max_input_chars_per_word
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]:
snake_case = list(__snake_case )
if len(__snake_case ) > self.max_input_chars_per_word:
return [self.unk_token]
snake_case = 0
snake_case = []
while start < len(__snake_case ):
snake_case = len(__snake_case )
snake_case = None
while start < end:
snake_case = """""".join(chars[start:end] )
if substr in self.vocab:
snake_case = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__snake_case )
snake_case = end
return sub_tokens
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = False
def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]:
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , )
snake_case = bod_token
snake_case = eod_token
snake_case = load_vocab(__snake_case )
snake_case = self.encoder[space_token]
snake_case = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def lowerCAmelCase ( self : Optional[int] )-> List[Any]:
return self.encoder[self.bod_token]
@property
def lowerCAmelCase ( self : str )-> Tuple:
return self.encoder[self.eod_token]
@property
def lowerCAmelCase ( self : str )-> List[str]:
return self.encoder["\n"]
@property
def lowerCAmelCase ( self : List[Any] )-> int:
return len(self.encoder )
def lowerCAmelCase ( self : Any )-> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]:
snake_case = []
for x in jieba.cut(__snake_case , cut_all=__snake_case ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) )
return output_tokens
def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]:
snake_case = [i for i in token_ids if i >= 0]
snake_case = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__snake_case , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]:
return token in self.encoder
def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str:
return "".join(__snake_case )
def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]:
return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str:
return self.decoder.get(__snake_case , self.unk_token )
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]:
if os.path.isdir(__snake_case ):
snake_case = os.path.join(
__snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
snake_case = 0
if " " in self.encoder:
snake_case = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
snake_case = self.encoder["""\n"""]
del self.encoder["\n"]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
snake_case = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is not None:
return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case ))
return [1] + ([0] * len(__snake_case ))
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : list[float] ) -> float:
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) )
return round(__lowerCAmelCase , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def __lowerCamelCase ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(__lowerCAmelCase )
snake_case , snake_case , snake_case , snake_case = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
snake_case = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> List[Any]:
snake_case , snake_case = [], []
while len(__lowerCAmelCase ) > 1:
snake_case , snake_case = min(__lowerCAmelCase ), max(__lowerCAmelCase )
start.append(__lowerCAmelCase )
end.append(__lowerCAmelCase )
collection.remove(__lowerCAmelCase )
collection.remove(__lowerCAmelCase )
end.reverse()
return start + collection + end
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip()
_SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")]
print(*merge_sort(unsorted), sep=",")
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" )
snake_case = soup.findAll("""h1""" )
snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 3 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[int] )-> str:
snake_case = """ylacombe/bark-small"""
snake_case = tempfile.mkdtemp()
snake_case = """en_speaker_1"""
snake_case = """This is a test string"""
snake_case = """speaker_embeddings_path.json"""
snake_case = """speaker_embeddings"""
def lowerCAmelCase ( self : Union[str, Any] , **__snake_case : Optional[Any] )-> Tuple:
return AutoTokenizer.from_pretrained(self.checkpoint , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = self.get_tokenizer()
snake_case = BarkProcessor(tokenizer=__snake_case )
processor.save_pretrained(self.tmpdirname )
snake_case = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCAmelCase ( self : List[str] )-> int:
snake_case = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
snake_case = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCAmelCase ( self : int )-> int:
snake_case = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
snake_case = 35
snake_case = 2
snake_case = 8
snake_case = {
"""semantic_prompt""": np.ones(__snake_case ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
snake_case = processor(text=self.input_string , voice_preset=__snake_case )
snake_case = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() )
# test loading voice preset from npz file
snake_case = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(__snake_case , **__snake_case )
snake_case = processor(text=self.input_string , voice_preset=__snake_case )
snake_case = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__snake_case , np.array([] ) ).tolist() )
# test loading voice preset from the hub
snake_case = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCAmelCase ( self : int )-> Any:
snake_case = self.get_tokenizer()
snake_case = BarkProcessor(tokenizer=__snake_case )
snake_case = processor(text=self.input_string )
snake_case = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=__snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 3 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
_SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = CamembertTokenizer
snake_case_ = CamembertTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = """<pad>"""
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__snake_case ) , 10_04 )
def lowerCAmelCase ( self : List[str] )-> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def lowerCAmelCase ( self : List[str] )-> List[str]:
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
snake_case = tokenizer.convert_ids_to_tokens(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Any:
if not self.test_rust_tokenizer:
return
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.tokenize(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = self.get_rust_tokenizer()
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
@slow
def lowerCAmelCase ( self : Any )-> Optional[int]:
# fmt: off
snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
snake_case = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
| 3 | 1 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Optional[int]:
snake_case = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() )
snake_case = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Dict:
if metric == "rouge2":
snake_case = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
snake_case = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
snake_case = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
snake_case = ModelCheckpoint(
dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> int:
return EarlyStopping(
monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , )
class _lowerCAmelCase ( pl.Callback ):
"""simple docstring"""
def lowerCAmelCase ( self : str , __snake_case : Tuple , __snake_case : Union[str, Any] )-> Dict:
snake_case = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__snake_case )
@rank_zero_only
def lowerCAmelCase ( self : Tuple , __snake_case : pl.Trainer , __snake_case : pl.LightningModule , __snake_case : str , __snake_case : Dict=True )-> None:
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
snake_case = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
snake_case = Path(pl_module.hparams.output_dir )
if type_path == "test":
snake_case = od / """test_results.txt"""
snake_case = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
snake_case = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
snake_case = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=__snake_case )
generations_file.parent.mkdir(exist_ok=__snake_case )
with open(__snake_case , """a+""" ) as writer:
for key in sorted(__snake_case ):
if key in ["log", "progress_bar", "preds"]:
continue
snake_case = metrics[key]
if isinstance(__snake_case , torch.Tensor ):
snake_case = val.item()
snake_case = f'''{key}: {val:.6f}\n'''
writer.write(__snake_case )
if not save_generations:
return
if "preds" in metrics:
snake_case = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(__snake_case )
@rank_zero_only
def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Tuple )-> Optional[int]:
try:
snake_case = pl_module.model.model.num_parameters()
except AttributeError:
snake_case = pl_module.model.num_parameters()
snake_case = count_trainable_parameters(__snake_case )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def lowerCAmelCase ( self : Dict , __snake_case : pl.Trainer , __snake_case : pl.LightningModule )-> str:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__snake_case , __snake_case , """test""" )
@rank_zero_only
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : pl.Trainer , __snake_case : Union[str, Any] )-> Any:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 3 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str:
snake_case = data
snake_case = previous
snake_case = next_node
def __str__( self : Union[str, Any] )-> str:
return f'''{self.data}'''
def lowerCAmelCase ( self : Tuple )-> int:
return self.data
def lowerCAmelCase ( self : str )-> str:
return self.next
def lowerCAmelCase ( self : Dict )-> Optional[int]:
return self.previous
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , __snake_case : List[Any] )-> List[str]:
snake_case = head
def __iter__( self : Optional[int] )-> Dict:
return self
def lowerCAmelCase ( self : Optional[Any] )-> List[str]:
if not self.current:
raise StopIteration
else:
snake_case = self.current.get_data()
snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] )-> str:
snake_case = None # First node in list
snake_case = None # Last node in list
def __str__( self : List[str] )-> Any:
snake_case = self.head
snake_case = []
while current is not None:
nodes.append(current.get_data() )
snake_case = current.get_next()
return " ".join(str(__snake_case ) for node in nodes )
def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]:
snake_case = self.head
while current:
if current.get_data() == value:
return True
snake_case = current.get_next()
return False
def __iter__( self : Dict )-> List[Any]:
return LinkedListIterator(self.head )
def lowerCAmelCase ( self : Tuple )-> int:
if self.head:
return self.head.get_data()
return None
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None:
if self.head is None:
snake_case = node
snake_case = node
else:
self.insert_before_node(self.head , __snake_case )
def lowerCAmelCase ( self : int , __snake_case : Node )-> None:
if self.head is None:
self.set_head(__snake_case )
else:
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> None:
snake_case = Node(__snake_case )
if self.head is None:
self.set_head(__snake_case )
else:
self.set_tail(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.previous
if node.get_previous() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.next
if node.get_next() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None:
snake_case = 1
snake_case = Node(__snake_case )
snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(__snake_case , __snake_case )
return
current_position += 1
snake_case = node.next
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> Node:
snake_case = self.head
while node:
if node.get_data() == item:
return node
snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple:
if (node := self.get_node(__snake_case )) is not None:
if node == self.head:
snake_case = self.head.get_next()
if node == self.tail:
snake_case = self.tail.get_previous()
self.remove_node_pointers(__snake_case )
@staticmethod
def lowerCAmelCase ( __snake_case : Node )-> None:
if node.get_next():
snake_case = node.previous
if node.get_previous():
snake_case = node.next
snake_case = None
snake_case = None
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
return self.head is None
def __lowerCamelCase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import requests
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> None:
snake_case = {"""Content-Type""": """application/json"""}
snake_case = requests.post(__lowerCAmelCase , json={"""text""": message_body} , headers=__lowerCAmelCase )
if response.status_code != 2_00:
snake_case = (
"""Request to slack returned an error """
F'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(__lowerCAmelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 3 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case = use_prompt
snake_case = prompt_length
snake_case = prompt_mid_dim
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 3 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
_SCREAMING_SNAKE_CASE = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 3 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
# A mock response for an HTTP head request to emulate server down
snake_case = mock.Mock()
snake_case = 5_00
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head:
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
snake_case = ViTImageProcessor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" )
def lowerCAmelCase ( self : Union[str, Any] )-> str:
with self.assertRaises(__snake_case ):
# config is in subfolder, the following should not work without specifying the subfolder
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" )
self.assertIsNotNone(__snake_case )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def lowerCAmelCase ( cls : Optional[int] )-> Dict:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : List[Any] )-> str:
try:
delete_repo(token=cls._token , repo_id="""test-image-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : List[Any] )-> int:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : str )-> Tuple:
CustomImageProcessor.register_for_auto_class()
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , )
snake_case = AutoImageProcessor.from_pretrained(
f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
| 3 | 1 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def lowerCAmelCase ( self : str )-> Any:
snake_case = 0
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig()
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write("""{}""" )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case )
snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Any )-> Tuple:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "AutoFeatureExtractor"
snake_case_ = "AutoTokenizer"
snake_case_ = False
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def lowerCAmelCase ( self : Any )-> List[str]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Tuple:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : Any )-> Optional[Any]:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , )
snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : List[str] )-> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f:
snake_case = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) )
repo.push_to_hub()
snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 3 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def lowerCAmelCase ( self : str )-> Any:
snake_case = 0
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig()
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write("""{}""" )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case )
snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Any )-> Tuple:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "AutoFeatureExtractor"
snake_case_ = "AutoTokenizer"
snake_case_ = False
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def lowerCAmelCase ( self : Any )-> List[str]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Tuple:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : Any )-> Optional[Any]:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , )
snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : List[str] )-> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f:
snake_case = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) )
repo.push_to_hub()
snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 3 | 1 |
'''simple docstring'''
from collections import deque
def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> List[Any]:
snake_case = len(__lowerCAmelCase )
snake_case = deque()
snake_case = [False for _ in range(__lowerCAmelCase )]
snake_case = [-1 for _ in range(__lowerCAmelCase )]
snake_case = index_of[:]
def strong_connect(__lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
snake_case = index # the number when this node is seen
snake_case = index # lowest rank node reachable from here
index += 1
stack.append(__lowerCAmelCase )
snake_case = True
for w in g[v]:
if index_of[w] == -1:
snake_case = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
snake_case = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
snake_case = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
snake_case = []
snake_case = stack.pop()
snake_case = False
component.append(__lowerCAmelCase )
while w != v:
snake_case = stack.pop()
snake_case = False
component.append(__lowerCAmelCase )
components.append(__lowerCAmelCase )
return index
snake_case = []
for v in range(__lowerCAmelCase ):
if index_of[v] == -1:
strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase )
return components
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ) -> List[Any]:
snake_case = [[] for _ in range(__lowerCAmelCase )]
for u, v in edges:
g[u].append(__lowerCAmelCase )
return g
if __name__ == "__main__":
# Test
_SCREAMING_SNAKE_CASE = 7
_SCREAMING_SNAKE_CASE = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_SCREAMING_SNAKE_CASE = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_SCREAMING_SNAKE_CASE = [(u, v) for u, v in zip(source, target)]
_SCREAMING_SNAKE_CASE = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case = use_prompt
snake_case = prompt_length
snake_case = prompt_mid_dim
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
_SCREAMING_SNAKE_CASE = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
_SCREAMING_SNAKE_CASE = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]:
snake_case = []
snake_case = len(__lowerCAmelCase )
for i in range(__lowerCAmelCase ):
snake_case = -1
for j in range(i + 1 , __lowerCAmelCase ):
if arr[i] < arr[j]:
snake_case = arr[j]
break
result.append(__lowerCAmelCase )
return result
def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]:
snake_case = []
for i, outer in enumerate(__lowerCAmelCase ):
snake_case = -1
for inner in arr[i + 1 :]:
if outer < inner:
snake_case = inner
break
result.append(__lowerCAmelCase )
return result
def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> list[float]:
snake_case = len(__lowerCAmelCase )
snake_case = []
snake_case = [-1] * arr_size
for index in reversed(range(__lowerCAmelCase ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
snake_case = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
_SCREAMING_SNAKE_CASE = (
"from __main__ import arr, next_greatest_element_slow, "
"next_greatest_element_fast, next_greatest_element"
)
print(
"next_greatest_element_slow():",
timeit("next_greatest_element_slow(arr)", setup=setup),
)
print(
"next_greatest_element_fast():",
timeit("next_greatest_element_fast(arr)", setup=setup),
)
print(
" next_greatest_element():",
timeit("next_greatest_element(arr)", setup=setup),
)
| 3 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
_SCREAMING_SNAKE_CASE = TypeVar("T")
class _lowerCAmelCase ( Generic[T] ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : T )-> List[Any]:
snake_case = data
snake_case = None
def __str__( self : List[Any] )-> str:
return f'''{self.data}'''
class _lowerCAmelCase ( Generic[T] ):
"""simple docstring"""
def __init__( self : str )-> None:
snake_case = None
def __iter__( self : Any )-> Iterator[T]:
snake_case = self.top
while node:
yield node.data
snake_case = node.next
def __str__( self : str )-> str:
return "->".join([str(__snake_case ) for item in self] )
def __len__( self : Dict )-> int:
return len(tuple(iter(self ) ) )
def lowerCAmelCase ( self : List[Any] )-> bool:
return self.top is None
def lowerCAmelCase ( self : List[str] , __snake_case : T )-> None:
snake_case = Node(__snake_case )
if not self.is_empty():
snake_case = self.top
snake_case = node
def lowerCAmelCase ( self : Optional[int] )-> T:
if self.is_empty():
raise IndexError("""pop from empty stack""" )
assert isinstance(self.top , __snake_case )
snake_case = self.top
snake_case = self.top.next
return pop_node.data
def lowerCAmelCase ( self : int )-> T:
if self.is_empty():
raise IndexError("""peek from empty stack""" )
assert self.top is not None
return self.top.data
def lowerCAmelCase ( self : Dict )-> None:
snake_case = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list:
snake_case = len(__lowerCAmelCase )
snake_case = [[0] * n for i in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
snake_case = y_points[i]
for i in range(2 , __lowerCAmelCase ):
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> Optional[Any]:
# Construct model
if gpta_config_file == "":
snake_case = GPTaConfig()
else:
snake_case = GPTaConfig.from_json_file(__lowerCAmelCase )
snake_case = GPTaModel(__lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
snake_case = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
snake_case = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , __lowerCAmelCase )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 3 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 3 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = FunnelTokenizer
snake_case_ = FunnelTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
super().setUp()
snake_case = [
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowerCAmelCase ( self : Any , **__snake_case : Dict )-> int:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , **__snake_case : Tuple )-> Union[str, Any]:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case )
def lowerCAmelCase ( self : List[str] , __snake_case : Optional[int] )-> List[str]:
snake_case = """UNwant\u00E9d,running"""
snake_case = """unwanted, running"""
return input_text, output_text
def lowerCAmelCase ( self : Dict )-> str:
snake_case = self.tokenizer_class(self.vocab_file )
snake_case = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__snake_case , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [7, 4, 5, 10, 8, 9] )
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.get_tokenizers(do_lower_case=__snake_case )
for tokenizer in tokenizers:
snake_case = tokenizer("""UNwant\u00E9d,running""" )
snake_case = len(inputs["""input_ids"""] ) - 1
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len )
snake_case = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" )
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
| 3 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
_SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple:
snake_case = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , )
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
if not do_eval:
return
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
snake_case = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Tuple )-> int:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case )
@require_torch_multi_gpu
def lowerCAmelCase ( self : str )-> List[Any]:
self.run_seqaseq_quick(distributed=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> str:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> List[Any]:
self.run_seqaseq_quick(
distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case )
@require_apex
@require_torch_gpu
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
snake_case = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
snake_case = experiments[experiment_id]
snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
snake_case = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] )
snake_case = len(re.findall(__snake_case , cl.err ) )
self.assertEqual(__snake_case , data["""n_matches"""] )
@slow
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , )
# Check metrics
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
snake_case = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
# test if do_predict saves generations and metrics
snake_case = os.listdir(__snake_case )
snake_case = {os.path.basename(__snake_case ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowerCAmelCase ( self : str )-> Any:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]:
snake_case = """--skip_memory_metrics 0"""
snake_case = self.run_trainer(
max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , )
# Check metrics
snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
snake_case = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig
snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
snake_case = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
snake_case = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict:
snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
snake_case = self.get_auto_remove_tmp_dir()
snake_case = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__snake_case )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__snake_case )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
snake_case = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__snake_case )}
'''.split()
snake_case = """
--do_predict
""".split()
snake_case = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
snake_case = get_gpu_count()
snake_case = get_torch_dist_unique_port()
snake_case = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
snake_case = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__snake_case , env=self.get_env() )
else:
snake_case = ["""run_translation.py"""] + args
with patch.object(__snake_case , """argv""" , __snake_case ):
main()
return output_dir
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list[int] ) -> list[list[int]]:
snake_case = []
if len(__lowerCAmelCase ) == 1:
return [nums.copy()]
for _ in range(len(__lowerCAmelCase ) ):
snake_case = nums.pop(0 )
snake_case = permute(__lowerCAmelCase )
for perm in permutations:
perm.append(__lowerCAmelCase )
result.extend(__lowerCAmelCase )
nums.append(__lowerCAmelCase )
return result
def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> int:
def backtrack(__lowerCAmelCase : List[Any] ):
if start == len(__lowerCAmelCase ) - 1:
output.append(nums[:] )
else:
for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ):
snake_case , snake_case = nums[i], nums[start]
backtrack(start + 1 )
snake_case , snake_case = nums[i], nums[start] # backtrack
snake_case = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
_SCREAMING_SNAKE_CASE = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = "https://openaipublic.azureedge.net/jukebox/models/"
_SCREAMING_SNAKE_CASE = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Any:
snake_case = {}
import re
snake_case = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__lowerCAmelCase ):
snake_case = re_encoder_block_conv_in.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[2] ) * 2 + int(groups[3] )
snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
snake_case = re_encoder_block_conv_in.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_encoder_block_resnet.fullmatch(__lowerCAmelCase ):
snake_case = re_encoder_block_resnet.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[2] ) * 2 + int(groups[3] )
snake_case = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
snake_case = prefix + resnet_block
snake_case = re_encoder_block_resnet.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_encoder_block_proj_out.fullmatch(__lowerCAmelCase ):
snake_case = re_encoder_block_proj_out.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
snake_case = re_encoder_block_proj_out.sub(__lowerCAmelCase , __lowerCAmelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__lowerCAmelCase ):
snake_case = re_decoder_block_conv_out.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
snake_case = re_decoder_block_conv_out.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_decoder_block_resnet.fullmatch(__lowerCAmelCase ):
snake_case = re_decoder_block_resnet.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
snake_case = prefix + resnet_block
snake_case = re_decoder_block_resnet.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_decoder_block_proj_in.fullmatch(__lowerCAmelCase ):
snake_case = re_decoder_block_proj_in.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
snake_case = re_decoder_block_proj_in.sub(__lowerCAmelCase , __lowerCAmelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__lowerCAmelCase ):
snake_case = re_prior_cond_conv_out.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
snake_case = re_prior_cond_conv_out.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_prior_cond_resnet.fullmatch(__lowerCAmelCase ):
snake_case = re_prior_cond_resnet.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
snake_case = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
snake_case = prefix + resnet_block
snake_case = re_prior_cond_resnet.sub(__lowerCAmelCase , __lowerCAmelCase )
elif re_prior_cond_proj_in.fullmatch(__lowerCAmelCase ):
snake_case = re_prior_cond_proj_in.match(__lowerCAmelCase )
snake_case = regex_match.groups()
snake_case = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
snake_case = re_prior_cond_proj_in.sub(__lowerCAmelCase , __lowerCAmelCase )
# keep original key
else:
snake_case = original_key
snake_case = replace_key(__lowerCAmelCase )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
snake_case = model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
snake_case = original_key
snake_case = original_key
snake_case = value
return new_dict
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None ) -> Union[str, Any]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ):
snake_case = requests.get(F'''{PREFIX}{file}''' , allow_redirects=__lowerCAmelCase )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__lowerCAmelCase )
open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content )
snake_case = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case = JukeboxConfig.from_pretrained(__lowerCAmelCase )
snake_case = JukeboxModel(__lowerCAmelCase )
snake_case = []
snake_case = {}
for i, dict_name in enumerate(__lowerCAmelCase ):
snake_case = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""]
snake_case = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case = old_dic[k]
elif k.endswith(""".w""" ):
snake_case = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case = old_dic[k]
else:
snake_case = old_dic[k]
snake_case = """vqvae""" if i == 0 else F'''priors.{3 - i}'''
snake_case = fix_jukebox_keys(__lowerCAmelCase , model.state_dict() , __lowerCAmelCase , __lowerCAmelCase )
weight_dict.append(__lowerCAmelCase )
snake_case = weight_dict.pop(0 )
model.vqvae.load_state_dict(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
return weight_dict
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 3 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_SCREAMING_SNAKE_CASE = 8
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=BITS ) -> List[Any]:
snake_case = x.device
snake_case = (x * 2_55).int().clamp(0 , 2_55 )
snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase )
snake_case = rearrange(__lowerCAmelCase , """d -> d 1 1""" )
snake_case = rearrange(__lowerCAmelCase , """b c h w -> b c 1 h w""" )
snake_case = ((x & mask) != 0).float()
snake_case = rearrange(__lowerCAmelCase , """b c d h w -> b (c d) h w""" )
snake_case = bits * 2 - 1
return bits
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any]=BITS ) -> Optional[Any]:
snake_case = x.device
snake_case = (x > 0).int()
snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa )
snake_case = rearrange(__lowerCAmelCase , """d -> d 1 1""" )
snake_case = rearrange(__lowerCAmelCase , """b (c d) h w -> b c d h w""" , d=8 )
snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 2_55).clamp(0.0 , 1.0 )
def __lowerCamelCase ( self : str , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict=None , __lowerCAmelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
snake_case = self.alphas_cumprod[timestep]
snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
snake_case = self.bit_scale
if self.config.clip_sample:
snake_case = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
snake_case = self._get_variance(__lowerCAmelCase , __lowerCAmelCase )
snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
snake_case = model_output.device if torch.is_tensor(__lowerCAmelCase ) else """cpu"""
snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase )
snake_case = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise
snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase )
def __lowerCamelCase ( self : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[int]="epsilon" , __lowerCAmelCase : Dict=None , __lowerCAmelCase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
snake_case , snake_case = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 )
else:
snake_case = None
# 1. compute alphas, betas
snake_case = self.alphas_cumprod[t]
snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
snake_case = 1 - alpha_prod_t
snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
snake_case = model_output
else:
raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' )
# 3. Clip "predicted x_0"
snake_case = self.bit_scale
if self.config.clip_sample:
snake_case = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
snake_case = 0
if t > 0:
snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device )
snake_case = (self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise
snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : UNetaDConditionModel , __snake_case : Union[DDIMScheduler, DDPMScheduler] , __snake_case : Optional[float] = 1.0 , )-> List[str]:
super().__init__()
snake_case = bit_scale
snake_case = (
ddim_bit_scheduler_step if isinstance(__snake_case , __snake_case ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[Any] , __snake_case : Optional[int] = 2_56 , __snake_case : Optional[int] = 2_56 , __snake_case : Optional[int] = 50 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[int] = 1 , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : int , )-> Union[Tuple, ImagePipelineOutput]:
snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=__snake_case , )
snake_case = decimal_to_bits(__snake_case ) * self.bit_scale
snake_case = latents.to(self.device )
self.scheduler.set_timesteps(__snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
snake_case = self.unet(__snake_case , __snake_case ).sample
# compute the previous noisy sample x_t -> x_t-1
snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample
snake_case = bits_to_decimal(__snake_case )
if output_type == "pil":
snake_case = self.numpy_to_pil(__snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__snake_case )
| 3 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Optional[Any] )-> Tuple:
return 32
@property
def lowerCAmelCase ( self : List[str] )-> Dict:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> int:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : List[Any] )-> int:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : List[Any] , __snake_case : Tuple , __snake_case : str=0 )-> Any:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Any )-> int:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Any )-> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = """A robot, 4k photo"""
snake_case = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case = pipeline(
image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 18, """width""": 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = apply_ocr
def lowerCAmelCase ( self : List[Any] )-> List[str]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = LayoutLMvaImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple )-> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
def lowerCAmelCase ( self : Tuple )-> Dict:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , __snake_case )
self.assertIsInstance(encoding.boxes , __snake_case )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> List[Any]:
# with apply_OCR = True
snake_case = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __snake_case )
self.assertListEqual(encoding.boxes , __snake_case )
# with apply_OCR = False
snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 3 | 1 |
'''simple docstring'''
import os
import sys
import unittest
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_SCREAMING_SNAKE_CASE = os.path.join("tests", "models", "bert", "test_modeling_bert.py")
_SCREAMING_SNAKE_CASE = os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[Any] )-> Tuple:
snake_case = get_test_to_tester_mapping(__snake_case )
snake_case = get_test_to_tester_mapping(__snake_case )
snake_case = {"""BertModelTest""": """BertModelTester"""}
snake_case = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = get_model_to_test_mapping(__snake_case )
snake_case = get_model_to_test_mapping(__snake_case )
snake_case = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
snake_case = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Optional[Any] )-> int:
snake_case = get_model_to_tester_mapping(__snake_case )
snake_case = get_model_to_tester_mapping(__snake_case )
snake_case = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
snake_case = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" )
snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 3 | 1 |
'''simple docstring'''
import requests
_SCREAMING_SNAKE_CASE = "YOUR API KEY"
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str = giphy_api_key ) -> list:
snake_case = """+""".join(query.split() )
snake_case = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
snake_case = requests.get(__lowerCAmelCase ).json()["""data"""]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("\n".join(get_gifs("space ship")))
| 3 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : int ) -> Tuple:
# Initialise PyTorch model
snake_case = MobileBertConfig.from_json_file(__lowerCAmelCase )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = MobileBertForPreTraining(__lowerCAmelCase )
# Load weights from tf checkpoint
snake_case = load_tf_weights_in_mobilebert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , __lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( __lowerCAmelCase : SplitDict ) -> int:
snake_case = split_dict._to_yaml_list()
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
snake_case = SplitDict._from_yaml_list(__lowerCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
snake_case = None
# the split name of split_dict takes over the name of the split info object
snake_case = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=__lowerCAmelCase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> str:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
snake_case = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 3 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") )
return token
def __lowerCamelCase ( ) -> Any:
snake_case = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]:
snake_case = """imagenet-1k-id2label.json"""
snake_case = 10_00
snake_case = """huggingface/label-files"""
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 20]
snake_case = [3, 12, 16]
snake_case = [1_92, 7_68, 10_24]
snake_case = CvtForImageClassification(__lowerCAmelCase )
snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
snake_case = image_size
snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(__lowerCAmelCase )
snake_case = list_of_state_dict + embeddings(__lowerCAmelCase )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 3 | 1 |
'''simple docstring'''
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
@add_end_docstrings(A__ )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Any , *__snake_case : Dict , **__snake_case : Dict )-> Dict:
super().__init__(*__snake_case , **__snake_case )
self.check_model_type(__snake_case )
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : Tuple=None , **__snake_case : Optional[int] )-> Optional[Any]:
snake_case , snake_case = {}, {}
if padding is not None:
snake_case = padding
if truncation is not None:
snake_case = truncation
if top_k is not None:
snake_case = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , __snake_case : Union["Image.Image", str] , __snake_case : str = None , **__snake_case : Any )-> int:
if isinstance(__snake_case , (Image.Image, str) ) and isinstance(__snake_case , __snake_case ):
snake_case = {"""image""": image, """question""": question}
else:
snake_case = image
snake_case = super().__call__(__snake_case , **__snake_case )
return results
def lowerCAmelCase ( self : Any , __snake_case : List[Any] , __snake_case : Optional[Any]=False , __snake_case : Union[str, Any]=False )-> str:
snake_case = load_image(inputs["""image"""] )
snake_case = self.tokenizer(
inputs["""question"""] , return_tensors=self.framework , padding=__snake_case , truncation=__snake_case )
snake_case = self.image_processor(images=__snake_case , return_tensors=self.framework )
model_inputs.update(__snake_case )
return model_inputs
def lowerCAmelCase ( self : Optional[int] , __snake_case : Union[str, Any] )-> str:
snake_case = self.model(**__snake_case )
return model_outputs
def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : int=5 )-> int:
if top_k > self.model.config.num_labels:
snake_case = self.model.config.num_labels
if self.framework == "pt":
snake_case = model_outputs.logits.sigmoid()[0]
snake_case , snake_case = probs.topk(__snake_case )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
snake_case = scores.tolist()
snake_case = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
| 3 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
_SCREAMING_SNAKE_CASE = {
"openbmb/cpm-ant-10b": 1024,
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str:
snake_case = collections.OrderedDict()
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader:
snake_case = reader.readlines()
for index, token in enumerate(__lowerCAmelCase ):
snake_case = token.rstrip("""\n""" )
snake_case = index
return vocab
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]:
snake_case = vocab
snake_case = unk_token
snake_case = max_input_chars_per_word
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]:
snake_case = list(__snake_case )
if len(__snake_case ) > self.max_input_chars_per_word:
return [self.unk_token]
snake_case = 0
snake_case = []
while start < len(__snake_case ):
snake_case = len(__snake_case )
snake_case = None
while start < end:
snake_case = """""".join(chars[start:end] )
if substr in self.vocab:
snake_case = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__snake_case )
snake_case = end
return sub_tokens
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = False
def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]:
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , )
snake_case = bod_token
snake_case = eod_token
snake_case = load_vocab(__snake_case )
snake_case = self.encoder[space_token]
snake_case = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def lowerCAmelCase ( self : Optional[int] )-> List[Any]:
return self.encoder[self.bod_token]
@property
def lowerCAmelCase ( self : str )-> Tuple:
return self.encoder[self.eod_token]
@property
def lowerCAmelCase ( self : str )-> List[str]:
return self.encoder["\n"]
@property
def lowerCAmelCase ( self : List[Any] )-> int:
return len(self.encoder )
def lowerCAmelCase ( self : Any )-> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]:
snake_case = []
for x in jieba.cut(__snake_case , cut_all=__snake_case ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) )
return output_tokens
def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]:
snake_case = [i for i in token_ids if i >= 0]
snake_case = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__snake_case , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]:
return token in self.encoder
def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str:
return "".join(__snake_case )
def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]:
return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str:
return self.decoder.get(__snake_case , self.unk_token )
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]:
if os.path.isdir(__snake_case ):
snake_case = os.path.join(
__snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
snake_case = 0
if " " in self.encoder:
snake_case = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
snake_case = self.encoder["""\n"""]
del self.encoder["\n"]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
snake_case = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is not None:
return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case ))
return [1] + ([0] * len(__snake_case ))
| 3 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> int:
snake_case = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class _lowerCAmelCase ( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = StableDiffusionLatentUpscalePipeline
snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case_ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case_ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case_ = frozenset([] )
snake_case_ = True
@property
def lowerCAmelCase ( self : Any )-> List[Any]:
snake_case = 1
snake_case = 4
snake_case = (16, 16)
snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case )
return image
def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]:
torch.manual_seed(0 )
snake_case = UNetaDConditionModel(
act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__snake_case , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"""KDownBlock2D""",
"""KCrossAttnDownBlock2D""",
"""KCrossAttnDownBlock2D""",
"""KCrossAttnDownBlock2D""",
) , in_channels=8 , mid_block_type=__snake_case , only_cross_attention=__snake_case , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , )
snake_case = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
"""DownEncoderBlock2D""",
] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
snake_case = EulerDiscreteScheduler(prediction_type="""sample""" )
snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , )
snake_case = CLIPTextModel(__snake_case )
snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
snake_case = {
"""unet""": model.eval(),
"""vae""": vae.eval(),
"""scheduler""": scheduler,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCAmelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple=0 )-> Optional[int]:
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": self.dummy_image.cpu(),
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = self.get_dummy_inputs(__snake_case )
snake_case = pipe(**__snake_case ).images
snake_case = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case = np.array(
[0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] )
snake_case = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__snake_case , 1e-3 )
def lowerCAmelCase ( self : Optional[int] )-> List[Any]:
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def lowerCAmelCase ( self : str )-> List[Any]:
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def lowerCAmelCase ( self : int )-> str:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def lowerCAmelCase ( self : Tuple )-> int:
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def lowerCAmelCase ( self : List[Any] )-> str:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def lowerCAmelCase ( self : List[Any] )-> Dict:
super().test_save_load_local(expected_max_difference=3e-3 )
def lowerCAmelCase ( self : str )-> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
snake_case = [
"""DDIMScheduler""",
"""DDPMScheduler""",
"""PNDMScheduler""",
"""HeunDiscreteScheduler""",
"""EulerAncestralDiscreteScheduler""",
"""KDPM2DiscreteScheduler""",
"""KDPM2AncestralDiscreteScheduler""",
"""DPMSolverSDEScheduler""",
]
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=__snake_case )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = self.get_dummy_inputs(__snake_case )
snake_case = 2
snake_case = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case = getattr(__snake_case , scheduler_enum.name )
snake_case = scheduler_cls.from_config(pipe.scheduler.config )
snake_case = pipe(**__snake_case )[0]
outputs.append(__snake_case )
assert check_same_shape(__snake_case )
@require_torch_gpu
@slow
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Any )-> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Any )-> Optional[int]:
snake_case = torch.manual_seed(33 )
snake_case = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa )
pipe.to("""cuda""" )
snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained(
"""stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa )
upscaler.to("""cuda""" )
snake_case = """a photo of an astronaut high resolution, unreal engine, ultra realistic"""
snake_case = pipe(__snake_case , generator=__snake_case , output_type="""latent""" ).images
snake_case = upscaler(
prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0]
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" )
assert np.abs((expected_image - image).mean() ) < 5e-2
def lowerCAmelCase ( self : Any )-> List[Any]:
snake_case = torch.manual_seed(33 )
snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained(
"""stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa )
upscaler.to("""cuda""" )
snake_case = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"""
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" )
snake_case = upscaler(
prompt=__snake_case , image=__snake_case , num_inference_steps=20 , guidance_scale=0 , generator=__snake_case , output_type="""np""" , ).images[0]
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" )
assert np.abs((expected_image - image).max() ) < 5e-2
| 3 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def __lowerCamelCase ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(__lowerCAmelCase )
snake_case , snake_case , snake_case , snake_case = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
snake_case = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 3 | 1 |
'''simple docstring'''
import math
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 ) -> list:
snake_case = end or len(__lowerCAmelCase )
for i in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = i
snake_case = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
snake_case = array[temp_index - 1]
temp_index -= 1
snake_case = temp_index_value
return array
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Max Heap
snake_case = index
snake_case = 2 * index + 1 # Left Node
snake_case = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
snake_case = left_index
if right_index < heap_size and array[largest] < array[right_index]:
snake_case = right_index
if largest != index:
snake_case , snake_case = array[largest], array[index]
heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : list ) -> list:
snake_case = len(__lowerCAmelCase )
for i in range(n // 2 , -1 , -1 ):
heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for i in range(n - 1 , 0 , -1 ):
snake_case , snake_case = array[0], array[i]
heapify(__lowerCAmelCase , 0 , __lowerCAmelCase )
return array
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
snake_case = low
snake_case = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
snake_case , snake_case = array[j], array[i]
i += 1
def __lowerCamelCase ( __lowerCAmelCase : list ) -> list:
if len(__lowerCAmelCase ) == 0:
return array
snake_case = 2 * math.ceil(math.loga(len(__lowerCAmelCase ) ) )
snake_case = 16
return intro_sort(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(__lowerCAmelCase )
max_depth -= 1
snake_case = median_of_a(__lowerCAmelCase , __lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 )
snake_case = partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
intro_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
snake_case = p
return insertion_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma : ").strip()
_SCREAMING_SNAKE_CASE = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" )
snake_case = soup.findAll("""h1""" )
snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["RemBertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["RemBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RemBertForCausalLM",
"RemBertForMaskedLM",
"RemBertForMultipleChoice",
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRemBertForCausalLM",
"TFRemBertForMaskedLM",
"TFRemBertForMultipleChoice",
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
_SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = CamembertTokenizer
snake_case_ = CamembertTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = """<pad>"""
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__snake_case ) , 10_04 )
def lowerCAmelCase ( self : List[str] )-> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def lowerCAmelCase ( self : List[str] )-> List[str]:
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
snake_case = tokenizer.convert_ids_to_tokens(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Any:
if not self.test_rust_tokenizer:
return
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.tokenize(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = self.get_rust_tokenizer()
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
@slow
def lowerCAmelCase ( self : Any )-> Optional[int]:
# fmt: off
snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
snake_case = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
| 3 | 1 |
'''simple docstring'''
import copy
import re
class _lowerCAmelCase :
"""simple docstring"""
snake_case_ = "hp"
snake_case_ = {}
snake_case_ = None
@classmethod
def lowerCAmelCase ( cls : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] )-> Union[str, Any]:
snake_case = prefix
snake_case = defaults
cls.build_naming_info()
@staticmethod
def lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Tuple )-> Dict:
if len(__snake_case ) == 0:
return ""
snake_case = None
if any(char.isdigit() for char in word ):
raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(__snake_case ) + 1 ):
snake_case = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
snake_case = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(__snake_case : Dict ):
snake_case = """"""
while integer != 0:
snake_case = chr(ord("""A""" ) + integer % 10 ) + s
integer //= 10
return s
snake_case = 0
while True:
snake_case = word + """#""" + int_to_alphabetic(__snake_case )
if sword in info["reverse_short_word"]:
continue
else:
snake_case = sword
break
snake_case = short_word
snake_case = word
return short_word
@staticmethod
def lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] )-> List[str]:
snake_case = param_name.split("""_""" )
snake_case = [TrialShortNamer.shortname_for_word(__snake_case , __snake_case ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
snake_case = ["""""", """_"""]
for separator in separators:
snake_case = separator.join(__snake_case )
if shortname not in info["reverse_short_param"]:
snake_case = shortname
snake_case = param_name
return shortname
return param_name
@staticmethod
def lowerCAmelCase ( __snake_case : Dict , __snake_case : Union[str, Any] )-> Dict:
snake_case = TrialShortNamer.shortname_for_key(__snake_case , __snake_case )
snake_case = short_name
snake_case = param_name
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] )-> Optional[int]:
if cls.NAMING_INFO is not None:
return
snake_case = {
"""short_word""": {},
"""reverse_short_word""": {},
"""short_param""": {},
"""reverse_short_param""": {},
}
snake_case = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(__snake_case , __snake_case )
snake_case = info
@classmethod
def lowerCAmelCase ( cls : int , __snake_case : Union[str, Any] )-> int:
cls.build_naming_info()
assert cls.PREFIX is not None
snake_case = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
snake_case = cls.NAMING_INFO["""short_param"""][k]
if isinstance(__snake_case , __snake_case ):
snake_case = 1 if v else 0
snake_case = """""" if isinstance(__snake_case , (int, float) ) else """-"""
snake_case = f'''{key}{sep}{v}'''
name.append(__snake_case )
return "_".join(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] , __snake_case : List[str] )-> List[str]:
snake_case = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
snake_case = []
else:
snake_case = repr.split("""_""" )
snake_case = {}
for value in values:
if "-" in value:
snake_case , snake_case = value.split("""-""" )
else:
snake_case = re.sub("""[0-9.]""" , """""" , __snake_case )
snake_case = float(re.sub("""[^0-9.]""" , """""" , __snake_case ) )
snake_case = cls.NAMING_INFO["""reverse_short_param"""][p_k]
snake_case = p_v
for k in cls.DEFAULTS:
if k not in parameters:
snake_case = cls.DEFAULTS[k]
return parameters
| 3 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str:
snake_case = data
snake_case = previous
snake_case = next_node
def __str__( self : Union[str, Any] )-> str:
return f'''{self.data}'''
def lowerCAmelCase ( self : Tuple )-> int:
return self.data
def lowerCAmelCase ( self : str )-> str:
return self.next
def lowerCAmelCase ( self : Dict )-> Optional[int]:
return self.previous
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , __snake_case : List[Any] )-> List[str]:
snake_case = head
def __iter__( self : Optional[int] )-> Dict:
return self
def lowerCAmelCase ( self : Optional[Any] )-> List[str]:
if not self.current:
raise StopIteration
else:
snake_case = self.current.get_data()
snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] )-> str:
snake_case = None # First node in list
snake_case = None # Last node in list
def __str__( self : List[str] )-> Any:
snake_case = self.head
snake_case = []
while current is not None:
nodes.append(current.get_data() )
snake_case = current.get_next()
return " ".join(str(__snake_case ) for node in nodes )
def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]:
snake_case = self.head
while current:
if current.get_data() == value:
return True
snake_case = current.get_next()
return False
def __iter__( self : Dict )-> List[Any]:
return LinkedListIterator(self.head )
def lowerCAmelCase ( self : Tuple )-> int:
if self.head:
return self.head.get_data()
return None
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None:
if self.head is None:
snake_case = node
snake_case = node
else:
self.insert_before_node(self.head , __snake_case )
def lowerCAmelCase ( self : int , __snake_case : Node )-> None:
if self.head is None:
self.set_head(__snake_case )
else:
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> None:
snake_case = Node(__snake_case )
if self.head is None:
self.set_head(__snake_case )
else:
self.set_tail(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.previous
if node.get_previous() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.next
if node.get_next() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None:
snake_case = 1
snake_case = Node(__snake_case )
snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(__snake_case , __snake_case )
return
current_position += 1
snake_case = node.next
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> Node:
snake_case = self.head
while node:
if node.get_data() == item:
return node
snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple:
if (node := self.get_node(__snake_case )) is not None:
if node == self.head:
snake_case = self.head.get_next()
if node == self.tail:
snake_case = self.tail.get_previous()
self.remove_node_pointers(__snake_case )
@staticmethod
def lowerCAmelCase ( __snake_case : Node )-> None:
if node.get_next():
snake_case = node.previous
if node.get_previous():
snake_case = node.next
snake_case = None
snake_case = None
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
return self.head is None
def __lowerCamelCase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case = use_prompt
snake_case = prompt_length
snake_case = prompt_mid_dim
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 3 | 1 |
'''simple docstring'''
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_SCREAMING_SNAKE_CASE = 16
_SCREAMING_SNAKE_CASE = 32
def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> List[Any]:
snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__lowerCAmelCase : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case = datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCAmelCase : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case = 16
elif accelerator.mixed_precision != "no":
snake_case = 8
else:
snake_case = None
return tokenizer.pad(
__lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case = DataLoader(
tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase )
snake_case = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , )
return train_dataloader, eval_dataloader
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ) -> Optional[Any]:
# Initialize accelerator
snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case = config["""lr"""]
snake_case = int(config["""num_epochs"""] )
snake_case = int(config["""seed"""] )
snake_case = int(config["""batch_size"""] )
snake_case = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
snake_case = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case = batch_size // MAX_GPU_BATCH_SIZE
snake_case = MAX_GPU_BATCH_SIZE
set_seed(__lowerCAmelCase )
snake_case , snake_case = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case = model.to(accelerator.device )
# Instantiate optimizer
snake_case = AdamW(params=model.parameters() , lr=__lowerCAmelCase )
# Instantiate scheduler
snake_case = get_linear_schedule_with_warmup(
optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Now we train the model
for epoch in range(__lowerCAmelCase ):
model.train()
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case = model(**__lowerCAmelCase )
snake_case = outputs.loss
snake_case = loss / gradient_accumulation_steps
accelerator.backward(__lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case = model(**__lowerCAmelCase )
snake_case = outputs.logits.argmax(dim=-1 )
snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__lowerCAmelCase , references=__lowerCAmelCase , )
snake_case = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase )
def __lowerCamelCase ( ) -> Dict:
snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
snake_case = parser.parse_args()
snake_case = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
# A mock response for an HTTP head request to emulate server down
snake_case = mock.Mock()
snake_case = 5_00
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head:
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
snake_case = ViTImageProcessor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" )
def lowerCAmelCase ( self : Union[str, Any] )-> str:
with self.assertRaises(__snake_case ):
# config is in subfolder, the following should not work without specifying the subfolder
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" )
self.assertIsNotNone(__snake_case )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def lowerCAmelCase ( cls : Optional[int] )-> Dict:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : List[Any] )-> str:
try:
delete_repo(token=cls._token , repo_id="""test-image-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : List[Any] )-> int:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : str )-> Tuple:
CustomImageProcessor.register_for_auto_class()
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , )
snake_case = AutoImageProcessor.from_pretrained(
f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
| 3 | 1 |
'''simple docstring'''
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
_SCREAMING_SNAKE_CASE = logging.getLogger()
def __lowerCamelCase ( __lowerCAmelCase : Path , __lowerCAmelCase : list ) -> Union[str, Any]:
snake_case = """\n""".join(__lowerCAmelCase )
Path(__lowerCAmelCase ).open("""w""" ).writelines(__lowerCAmelCase )
_SCREAMING_SNAKE_CASE = "patrickvonplaten/t5-tiny-random"
_SCREAMING_SNAKE_CASE = "sshleifer/bart-tiny-random"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
_SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : Any , __snake_case : Union[str, Any] )-> Any:
snake_case = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
snake_case = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
snake_case = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(__snake_case , __snake_case )
snake_case = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
snake_case = """translation_en_to_de""" if model == T5_TINY else """summarization"""
snake_case = f'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(__snake_case , """argv""" , __snake_case ):
run_generate()
assert Path(__snake_case ).exists()
# os.remove(Path(output_file_name))
def lowerCAmelCase ( self : List[str] )-> Union[str, Any]:
self.run_eval_tester(__snake_case )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Optional[int] )-> Dict:
self.run_eval_tester(__snake_case )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def lowerCAmelCase ( self : Tuple , __snake_case : Dict )-> Any:
snake_case = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
snake_case = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
snake_case = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
snake_case = Path(self.get_auto_remove_tmp_dir() )
snake_case = str(tmp_dir / """scores.json""" )
snake_case = str(tmp_dir / """val.target""" )
_dump_articles(__snake_case , text["""en"""] )
_dump_articles(__snake_case , text["""de"""] )
snake_case = """translation_en_to_de""" if model == T5_TINY else """summarization"""
snake_case = f'''
run_eval_search.py
{model}
{str(__snake_case )}
{str(__snake_case )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(__snake_case , """argv""" , __snake_case ):
with CaptureStdout() as cs:
run_search()
snake_case = [""" num_beams | length_penalty""", model, """Best score args"""]
snake_case = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(__snake_case )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(__snake_case ).exists()
os.remove(Path(__snake_case ) )
| 3 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def lowerCAmelCase ( self : str )-> Any:
snake_case = 0
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig()
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write("""{}""" )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case )
snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Any )-> Tuple:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "AutoFeatureExtractor"
snake_case_ = "AutoTokenizer"
snake_case_ = False
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def lowerCAmelCase ( self : Any )-> List[str]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Tuple:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : Any )-> Optional[Any]:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , )
snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : List[str] )-> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f:
snake_case = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) )
repo.push_to_hub()
snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 3 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_SCREAMING_SNAKE_CASE = 16
_SCREAMING_SNAKE_CASE = 32
def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> List[str]:
snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__lowerCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case = datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case = 16
elif accelerator.mixed_precision != "no":
snake_case = 8
else:
snake_case = None
return tokenizer.pad(
__lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case = DataLoader(
tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase )
snake_case = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> List[Any]:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1":
snake_case = 2
# New Code #
snake_case = int(args.gradient_accumulation_steps )
snake_case = int(args.local_sgd_steps )
# Initialize accelerator
snake_case = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case = config["""lr"""]
snake_case = int(config["""num_epochs"""] )
snake_case = int(config["""seed"""] )
snake_case = int(config["""batch_size"""] )
snake_case = evaluate.load("""glue""" , """mrpc""" )
set_seed(__lowerCAmelCase )
snake_case , snake_case = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case = model.to(accelerator.device )
# Instantiate optimizer
snake_case = AdamW(params=model.parameters() , lr=__lowerCAmelCase )
# Instantiate scheduler
snake_case = get_linear_schedule_with_warmup(
optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Now we train the model
for epoch in range(__lowerCAmelCase ):
model.train()
with LocalSGD(
accelerator=__lowerCAmelCase , model=__lowerCAmelCase , local_sgd_steps=__lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__lowerCAmelCase ):
snake_case = model(**__lowerCAmelCase )
snake_case = output.loss
accelerator.backward(__lowerCAmelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case = model(**__lowerCAmelCase )
snake_case = outputs.logits.argmax(dim=-1 )
snake_case , snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__lowerCAmelCase , references=__lowerCAmelCase , )
snake_case = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase )
def __lowerCamelCase ( ) -> Tuple:
snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument(
"""--local_sgd_steps""" , type=__lowerCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
snake_case = parser.parse_args()
snake_case = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
_SCREAMING_SNAKE_CASE = [
"openmmlab/upernet-convnext-tiny",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
_SCREAMING_SNAKE_CASE = "UperNetConfig"
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : Union[int, Tuple[int, int]] , __snake_case : Union[int, Tuple[int, int], str] = 0 , __snake_case : bool = False , __snake_case : Union[int, Tuple[int, int]] = 1 , )-> None:
super().__init__()
snake_case = nn.Convad(
in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , padding=__snake_case , bias=__snake_case , dilation=__snake_case , )
snake_case = nn.BatchNormad(__snake_case )
snake_case = nn.ReLU()
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : torch.Tensor )-> torch.Tensor:
snake_case = self.conv(__snake_case )
snake_case = self.batch_norm(__snake_case )
snake_case = self.activation(__snake_case )
return output
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : int , __snake_case : int , __snake_case : int )-> None:
super().__init__()
snake_case = [
nn.AdaptiveAvgPoolad(__snake_case ),
UperNetConvModule(__snake_case , __snake_case , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Any , __snake_case : torch.Tensor )-> torch.Tensor:
snake_case = input
for layer in self.layers:
snake_case = layer(__snake_case )
return hidden_state
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : Tuple[int, ...] , __snake_case : int , __snake_case : int , __snake_case : bool )-> None:
super().__init__()
snake_case = pool_scales
snake_case = align_corners
snake_case = in_channels
snake_case = channels
snake_case = []
for i, pool_scale in enumerate(__snake_case ):
snake_case = UperNetPyramidPoolingBlock(pool_scale=__snake_case , in_channels=__snake_case , channels=__snake_case )
self.blocks.append(__snake_case )
self.add_module(str(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Optional[int] , __snake_case : torch.Tensor )-> List[torch.Tensor]:
snake_case = []
for ppm in self.blocks:
snake_case = ppm(__snake_case )
snake_case = nn.functional.interpolate(
__snake_case , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners )
ppm_outs.append(__snake_case )
return ppm_outs
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : Union[str, Any] , __snake_case : int )-> Tuple:
super().__init__()
snake_case = config
snake_case = config.pool_scales # e.g. (1, 2, 3, 6)
snake_case = in_channels
snake_case = config.hidden_size
snake_case = False
snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
snake_case = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
snake_case = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
snake_case = nn.ModuleList()
snake_case = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
snake_case = UperNetConvModule(__snake_case , self.channels , kernel_size=1 )
snake_case = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(__snake_case )
self.fpn_convs.append(__snake_case )
snake_case = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def lowerCAmelCase ( self : str )-> List[Any]:
self.apply(self._init_weights )
def lowerCAmelCase ( self : Dict , __snake_case : Tuple )-> List[Any]:
if isinstance(__snake_case , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def lowerCAmelCase ( self : Optional[int] , __snake_case : List[str] )-> Union[str, Any]:
snake_case = inputs[-1]
snake_case = [x]
psp_outs.extend(self.psp_modules(__snake_case ) )
snake_case = torch.cat(__snake_case , dim=1 )
snake_case = self.bottleneck(__snake_case )
return output
def lowerCAmelCase ( self : Any , __snake_case : torch.Tensor )-> torch.Tensor:
# build laterals
snake_case = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(__snake_case ) )
# build top-down path
snake_case = len(__snake_case )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
snake_case = laterals[i - 1].shape[2:]
snake_case = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=__snake_case , mode="""bilinear""" , align_corners=self.align_corners )
# build outputs
snake_case = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
snake_case = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners )
snake_case = torch.cat(__snake_case , dim=1 )
snake_case = self.fpn_bottleneck(__snake_case )
snake_case = self.classifier(__snake_case )
return output
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int = 2 , __snake_case : int = 3 , __snake_case : Union[int, Tuple[int, int]] = 1 )-> None:
super().__init__()
snake_case = config
snake_case = config.auxiliary_in_channels
snake_case = config.auxiliary_channels
snake_case = config.auxiliary_num_convs
snake_case = config.auxiliary_concat_input
snake_case = in_index
snake_case = (kernel_size // 2) * dilation
snake_case = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) )
if self.num_convs == 0:
snake_case = nn.Identity()
else:
snake_case = nn.Sequential(*__snake_case )
if self.concat_input:
snake_case = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=__snake_case , padding=kernel_size // 2 )
snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def lowerCAmelCase ( self : List[Any] )-> str:
self.apply(self._init_weights )
def lowerCAmelCase ( self : Any , __snake_case : Tuple )-> Dict:
if isinstance(__snake_case , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : torch.Tensor )-> torch.Tensor:
# just take the relevant feature maps
snake_case = encoder_hidden_states[self.in_index]
snake_case = self.convs(__snake_case )
if self.concat_input:
snake_case = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
snake_case = self.classifier(__snake_case )
return output
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = UperNetConfig
snake_case_ = "pixel_values"
snake_case_ = True
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : int )-> List[str]:
if isinstance(__snake_case , __snake_case ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def lowerCAmelCase ( self : int )-> Union[str, Any]:
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any] , __snake_case : List[str]=False )-> List[Any]:
if isinstance(__snake_case , __snake_case ):
snake_case = value
_SCREAMING_SNAKE_CASE = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
_SCREAMING_SNAKE_CASE = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , A__ , )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : Union[str, Any] )-> Tuple:
super().__init__(__snake_case )
snake_case = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
snake_case = UperNetHead(__snake_case , in_channels=self.backbone.channels )
snake_case = UperNetFCNHead(__snake_case ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) )
@replace_return_docstrings(output_type=__snake_case , config_class=_CONFIG_FOR_DOC )
def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , )-> Union[tuple, SemanticSegmenterOutput]:
snake_case = return_dict if return_dict is not None else self.config.use_return_dict
snake_case = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case = output_attentions if output_attentions is not None else self.config.output_attentions
snake_case = self.backbone.forward_with_filtered_kwargs(
__snake_case , output_hidden_states=__snake_case , output_attentions=__snake_case )
snake_case = outputs.feature_maps
snake_case = self.decode_head(__snake_case )
snake_case = nn.functional.interpolate(__snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__snake_case )
snake_case = None
if self.auxiliary_head is not None:
snake_case = self.auxiliary_head(__snake_case )
snake_case = nn.functional.interpolate(
__snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__snake_case )
snake_case = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("""The number of labels should be greater than one""" )
else:
# compute weighted loss
snake_case = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
snake_case = loss_fct(__snake_case , __snake_case )
snake_case = loss_fct(__snake_case , __snake_case )
snake_case = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
snake_case = (logits,) + outputs[1:]
else:
snake_case = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 | 1 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class _lowerCAmelCase :
"""simple docstring"""
snake_case_ = 42
snake_case_ = None
@staticmethod
def lowerCAmelCase ( )-> List[str]:
raise NotImplementedError
def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] )-> List[Any]:
raise NotImplementedError
def lowerCAmelCase ( self : Optional[int] , __snake_case : List[str] )-> Union[str, Any]:
raise NotImplementedError
def lowerCAmelCase ( self : str )-> Optional[int]:
if not self.is_available():
raise RuntimeError(
f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> List[Any]:
return f'''`pip install {cls.pip_package or cls.name}`'''
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "optuna"
@staticmethod
def lowerCAmelCase ( )-> str:
return is_optuna_available()
def lowerCAmelCase ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Optional[Any] )-> Optional[Any]:
return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case )
def lowerCAmelCase ( self : List[str] , __snake_case : Dict )-> str:
return default_hp_space_optuna(__snake_case )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "ray"
snake_case_ = "'ray[tune]'"
@staticmethod
def lowerCAmelCase ( )-> List[str]:
return is_ray_available()
def lowerCAmelCase ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : str , **__snake_case : Dict )-> Dict:
return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , __snake_case : Union[str, Any] )-> Optional[Any]:
return default_hp_space_ray(__snake_case )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "sigopt"
@staticmethod
def lowerCAmelCase ( )-> List[str]:
return is_sigopt_available()
def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : str , **__snake_case : int )-> Dict:
return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[Any] , __snake_case : int )-> int:
return default_hp_space_sigopt(__snake_case )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "wandb"
@staticmethod
def lowerCAmelCase ( )-> Union[str, Any]:
return is_wandb_available()
def lowerCAmelCase ( self : Optional[int] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : List[Any] )-> Dict:
return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Optional[Any] )-> Optional[int]:
return default_hp_space_wandb(__snake_case )
_SCREAMING_SNAKE_CASE = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def __lowerCamelCase ( ) -> str:
snake_case = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(__lowerCAmelCase ) > 0:
snake_case = available_backends[0].name
if len(__lowerCAmelCase ) > 1:
logger.info(
F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
F''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 3 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 | 1 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=False ) -> int:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
if not is_sharded:
snake_case = os.path.abspath(__lowerCAmelCase )
logger.info(F'''Loading PyTorch weights from {pt_path}''' )
snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" )
logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' )
snake_case = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
snake_case = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase )
return flax_state_dict
def __lowerCamelCase ( __lowerCAmelCase : Tuple[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, jnp.ndarray] , __lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__lowerCAmelCase : Tuple[str] ) -> bool:
return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
snake_case = pt_tuple_key[:-1] + ("""scale""",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
snake_case = pt_tuple_key[:-1] + ("""mean""",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
snake_case = pt_tuple_key[:-1] + ("""var""",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
snake_case = pt_tuple_key[:-1] + ("""embedding""",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
snake_case = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
snake_case = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ):
snake_case = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
snake_case = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
snake_case = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
snake_case = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
snake_case = pt_tuple_key[-2] + """_g"""
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
snake_case = pt_tuple_key[-2] + """_v"""
if name is not None:
snake_case = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ) -> List[Any]:
# convert pytorch tensor to numpy
snake_case = {k: v.numpy() for k, v in pt_state_dict.items()}
snake_case = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
snake_case = flax_model.params["""params"""]
else:
snake_case = flax_model.params
snake_case = flatten_dict(__lowerCAmelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
snake_case = flatten_dict(flax_model.params["""batch_stats"""] )
random_flax_state_dict.update(__lowerCAmelCase )
snake_case = {}
snake_case = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()}
)
snake_case = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
snake_case = tuple(pt_key.split(""".""" ) )
# remove base model prefix if necessary
snake_case = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case = pt_tuple_key[1:]
# Correctly rename weight parameters
snake_case , snake_case = rename_key_and_reshape_tensor(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# add model prefix if necessary
snake_case = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
snake_case = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
snake_case = jnp.asarray(__lowerCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
continue
# also add unexpected weight so that warning is thrown
snake_case = jnp.asarray(__lowerCAmelCase )
else:
# also add unexpected weight so that warning is thrown
snake_case = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ) -> str:
import torch
# Load the index
snake_case = {}
for shard_file in shard_filenames:
# load using msgpack utils
snake_case = torch.load(__lowerCAmelCase )
snake_case = {k: v.numpy() for k, v in pt_state_dict.items()}
snake_case = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
snake_case = flax_model.params["""params"""]
snake_case = flatten_dict(__lowerCAmelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) )
else:
snake_case = flax_model.params
snake_case = flatten_dict(__lowerCAmelCase )
snake_case = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()}
)
snake_case = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
snake_case = tuple(pt_key.split(""".""" ) )
# remove base model prefix if necessary
snake_case = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case = pt_tuple_key[1:]
# Correctly rename weight parameters
snake_case , snake_case = rename_key_and_reshape_tensor(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# add model prefix if necessary
snake_case = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
snake_case = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
snake_case = jnp.asarray(__lowerCAmelCase )
continue
if "var" in flax_key[-1]:
snake_case = jnp.asarray(__lowerCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
continue
# also add unexpected weight so that warning is thrown
snake_case = jnp.asarray(__lowerCAmelCase )
else:
# also add unexpected weight so that warning is thrown
snake_case = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ) -> str:
snake_case = os.path.abspath(__lowerCAmelCase )
logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' )
# import correct flax class
snake_case = getattr(__lowerCAmelCase , """Flax""" + model.__class__.__name__ )
# load flax weight dict
with open(__lowerCAmelCase , """rb""" ) as state_f:
try:
snake_case = from_bytes(__lowerCAmelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
snake_case = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values()
if any(__lowerCAmelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
snake_case = jax.tree_util.tree_map(
lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase )
snake_case = flatten_dict(__lowerCAmelCase )
snake_case = pt_model.state_dict()
snake_case = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()}
)
snake_case = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
snake_case = []
snake_case = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
snake_case = flax_key_tuple[0] == pt_model.base_model_prefix
snake_case = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
snake_case = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict:
# conv layer
snake_case = flax_key_tuple[:-1] + ("""weight""",)
snake_case = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict:
# linear layer
snake_case = flax_key_tuple[:-1] + ("""weight""",)
snake_case = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
snake_case = flax_key_tuple[:-1] + ("""weight""",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
snake_case = flax_key_tuple[:-1] + ("""running_mean""",)
elif "var" in flax_key_tuple[-1]:
snake_case = flax_key_tuple[:-1] + ("""running_var""",)
if "batch_stats" in flax_state:
snake_case = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
snake_case = """.""".join(__lowerCAmelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
snake_case = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
snake_case = key.split(""".""" )
snake_case = None
if key_components[-3::2] == ["parametrizations", "original0"]:
snake_case = key_components[-2] + """_g"""
elif key_components[-3::2] == ["parametrizations", "original1"]:
snake_case = key_components[-2] + """_v"""
if name is not None:
snake_case = key_components[:-3] + [name]
snake_case = """.""".join(__lowerCAmelCase )
snake_case = key
if flax_key in special_pt_names:
snake_case = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
snake_case = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor
snake_case = torch.from_numpy(__lowerCAmelCase )
# remove from missing keys
missing_keys.remove(__lowerCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCAmelCase )
pt_model.load_state_dict(__lowerCAmelCase )
# re-transform missing_keys to list
snake_case = list(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
else:
logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' )
if len(__lowerCAmelCase ) > 0:
logger.warning(
F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
""" use it for predictions and inference.""" )
else:
logger.warning(
F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'''
"""If your task is similar to the task the model of the checkpoint was trained on, """
F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' )
return pt_model
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list:
snake_case = len(__lowerCAmelCase )
snake_case = [[0] * n for i in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
snake_case = y_points[i]
for i in range(2 , __lowerCAmelCase ):
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class _lowerCAmelCase ( A__ , A__ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , __snake_case : int = 7_68 , )-> Any:
super().__init__()
snake_case = nn.Parameter(torch.zeros(1 , __snake_case ) )
snake_case = nn.Parameter(torch.ones(1 , __snake_case ) )
def lowerCAmelCase ( self : str , __snake_case : Optional[Union[str, torch.device]] = None , __snake_case : Optional[torch.dtype] = None , )-> Any:
snake_case = nn.Parameter(self.mean.to(__snake_case ).to(__snake_case ) )
snake_case = nn.Parameter(self.std.to(__snake_case ).to(__snake_case ) )
return self
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Tuple:
snake_case = (embeds - self.mean) * 1.0 / self.std
return embeds
def lowerCAmelCase ( self : List[Any] , __snake_case : Union[str, Any] )-> Any:
snake_case = (embeds * self.std) + self.mean
return embeds
| 3 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 3 | 1 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] )-> Dict:
snake_case = None
snake_case = None
snake_case = graph
self._normalize_graph(__snake_case , __snake_case )
snake_case = len(__snake_case )
snake_case = None
def lowerCAmelCase ( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] )-> str:
if sources is int:
snake_case = [sources]
if sinks is int:
snake_case = [sinks]
if len(__snake_case ) == 0 or len(__snake_case ) == 0:
return
snake_case = sources[0]
snake_case = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__snake_case ) > 1 or len(__snake_case ) > 1:
snake_case = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
snake_case = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
snake_case = max_input_flow
snake_case = 0
snake_case = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
snake_case = max_input_flow
snake_case = size - 1
def lowerCAmelCase ( self : Optional[int] )-> Tuple:
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] )-> Any:
snake_case = algorithm(self )
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : str , __snake_case : Any )-> Union[str, Any]:
snake_case = flow_network
snake_case = flow_network.verticesCount
snake_case = flow_network.sourceIndex
snake_case = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
snake_case = flow_network.graph
snake_case = False
def lowerCAmelCase ( self : List[Any] )-> Dict:
if not self.executed:
self._algorithm()
snake_case = True
def lowerCAmelCase ( self : List[Any] )-> int:
pass
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : Tuple )-> Tuple:
super().__init__(__snake_case )
# use this to save your result
snake_case = -1
def lowerCAmelCase ( self : Any )-> Optional[int]:
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : Tuple )-> Tuple:
super().__init__(__snake_case )
snake_case = [[0] * self.verticies_count for i in range(self.verticies_count )]
snake_case = [0] * self.verticies_count
snake_case = [0] * self.verticies_count
def lowerCAmelCase ( self : int )-> Union[str, Any]:
snake_case = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
snake_case = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
snake_case = 0
while i < len(__snake_case ):
snake_case = vertices_list[i]
snake_case = self.heights[vertex_index]
self.process_vertex(__snake_case )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(__snake_case ) )
snake_case = 0
else:
i += 1
snake_case = sum(self.preflow[self.source_index] )
def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[Any] )-> str:
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__snake_case , __snake_case )
self.relabel(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : str , __snake_case : Optional[Any] )-> List[str]:
snake_case = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Optional[int] )-> Tuple:
snake_case = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
snake_case = self.heights[to_index]
if min_height is not None:
snake_case = min_height + 1
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = [0]
_SCREAMING_SNAKE_CASE = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
_SCREAMING_SNAKE_CASE = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
_SCREAMING_SNAKE_CASE = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
_SCREAMING_SNAKE_CASE = flow_network.find_maximum_flow()
print(F"""maximum flow is {maximum_flow}""")
| 3 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
_SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple:
snake_case = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , )
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
if not do_eval:
return
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
snake_case = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Tuple )-> int:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case )
@require_torch_multi_gpu
def lowerCAmelCase ( self : str )-> List[Any]:
self.run_seqaseq_quick(distributed=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> str:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> List[Any]:
self.run_seqaseq_quick(
distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case )
@require_apex
@require_torch_gpu
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
snake_case = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
snake_case = experiments[experiment_id]
snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
snake_case = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] )
snake_case = len(re.findall(__snake_case , cl.err ) )
self.assertEqual(__snake_case , data["""n_matches"""] )
@slow
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , )
# Check metrics
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
snake_case = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
# test if do_predict saves generations and metrics
snake_case = os.listdir(__snake_case )
snake_case = {os.path.basename(__snake_case ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowerCAmelCase ( self : str )-> Any:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]:
snake_case = """--skip_memory_metrics 0"""
snake_case = self.run_trainer(
max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , )
# Check metrics
snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
snake_case = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig
snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
snake_case = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
snake_case = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict:
snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
snake_case = self.get_auto_remove_tmp_dir()
snake_case = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__snake_case )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__snake_case )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
snake_case = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__snake_case )}
'''.split()
snake_case = """
--do_predict
""".split()
snake_case = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
snake_case = get_gpu_count()
snake_case = get_torch_dist_unique_port()
snake_case = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
snake_case = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__snake_case , env=self.get_env() )
else:
snake_case = ["""run_translation.py"""] + args
with patch.object(__snake_case , """argv""" , __snake_case ):
main()
return output_dir
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "EncodecFeatureExtractor"
snake_case_ = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] )-> Tuple:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : int , __snake_case : Any=None , __snake_case : List[Any]=None , __snake_case : Dict=True )-> List[Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] )-> str:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
snake_case = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
snake_case = audio_inputs["""padding_mask"""]
return inputs
def lowerCAmelCase ( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : Optional[int] )-> List[Any]:
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""padding_mask""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio_values is not None:
return self._decode_audio(__snake_case , padding_mask=__snake_case )
else:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : int , *__snake_case : Optional[Any] , **__snake_case : List[str] )-> Tuple:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : Optional = None )-> List[np.ndarray]:
snake_case = to_numpy(__snake_case )
snake_case , snake_case , snake_case = audio_values.shape
if padding_mask is None:
return list(__snake_case )
snake_case = to_numpy(__snake_case )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
snake_case = seq_len - padding_mask.shape[-1]
snake_case = 1 - self.feature_extractor.padding_value
snake_case = np.pad(__snake_case , ((0, 0), (0, difference)) , """constant""" , constant_values=__snake_case )
snake_case = audio_values.tolist()
for i in range(__snake_case ):
snake_case = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
snake_case = sliced_audio.reshape(__snake_case , -1 )
return audio_values
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 | 1 |
'''simple docstring'''
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=13 , __snake_case : Union[str, Any]=7 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : List[Any]=True , __snake_case : List[str]=99 , __snake_case : int=32 , __snake_case : List[Any]=5 , __snake_case : Tuple=4 , __snake_case : Dict=4 , __snake_case : Tuple="gelu" , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=0.1 , __snake_case : str=True , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : Optional[int]=2 , __snake_case : Dict=0.02 , __snake_case : List[Any]=3 , __snake_case : Union[str, Any]=4 , __snake_case : Dict=None , )-> Dict:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_multiple_size
snake_case = hidden_act
snake_case = hidden_dropout
snake_case = attention_dropout
snake_case = weight_tying
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_labels
snake_case = num_choices
snake_case = scope
def lowerCAmelCase ( self : int )-> str:
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case = None
if self.use_input_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case = self.get_config()
return config, input_ids, input_mask, token_labels
def lowerCAmelCase ( self : str )-> Any:
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs()
snake_case = True
return config, input_ids, input_mask, token_labels
def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] )-> List[Any]:
snake_case = GPTNeoXJapaneseModel(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case )
snake_case = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[Any] )-> Optional[int]:
snake_case = True
snake_case = GPTNeoXJapaneseModel(__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : int , __snake_case : str )-> Tuple:
snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] )-> Dict:
snake_case = True
snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
# first forward pass
snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case )
snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case )
snake_case = output_from_no_past["""hidden_states"""][0]
snake_case = model(
__snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )["""hidden_states"""][0]
# select random slice
snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) )
def lowerCAmelCase ( self : List[Any] )-> List[str]:
snake_case = self.prepare_config_and_inputs()
snake_case , snake_case , snake_case , snake_case = config_and_inputs
snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
snake_case_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
snake_case = GPTNeoXJapaneseModelTester(self )
snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] )-> str:
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]:
snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> Tuple:
# This regression test was failing with PyTorch < 1.3
snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case = None
self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Dict:
snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> List[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__snake_case )
@slow
def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]:
snake_case = """abeja/gpt-neox-japanese-2.7b"""
snake_case = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""]
snake_case = [
"""データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""",
"""100年後に必要とされる会社は、「人」が中心の会社です。""",
"""フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""",
"""国境の長いトンネルを抜けると、そこは雪国だった。""",
"""美味しい日本食といえば、やっぱりお寿司ですよね。""",
]
snake_case = GPTNeoXJapaneseTokenizer.from_pretrained(__snake_case )
snake_case = GPTNeoXJapaneseForCausalLM.from_pretrained(__snake_case )
snake_case = []
for prompt in prompts:
snake_case = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids
snake_case = model.generate(__snake_case , max_length=50 )
snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case )
predicted_outputs += generated_string
self.assertListEqual(__snake_case , __snake_case )
| 3 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( ) -> int:
return 1
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : int = 2_00 ) -> int:
return two_pound(__lowerCAmelCase )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 18, """width""": 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = apply_ocr
def lowerCAmelCase ( self : List[Any] )-> List[str]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = LayoutLMvaImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple )-> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
def lowerCAmelCase ( self : Tuple )-> Dict:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , __snake_case )
self.assertIsInstance(encoding.boxes , __snake_case )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> List[Any]:
# with apply_OCR = True
snake_case = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __snake_case )
self.assertListEqual(encoding.boxes , __snake_case )
# with apply_OCR = False
snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 3 | 1 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str]=13 , __snake_case : List[Any]=7 , __snake_case : List[Any]=False , __snake_case : int=True , __snake_case : List[Any]=False , __snake_case : List[Any]=True , __snake_case : Optional[int]=33 , __snake_case : Optional[int]=32 , __snake_case : int=5 , __snake_case : Optional[int]=4 , __snake_case : Dict=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=0.1 , __snake_case : int=0.1 , __snake_case : List[Any]=5_12 , __snake_case : Tuple=16 , __snake_case : List[str]=2 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=3 , __snake_case : List[str]=4 , __snake_case : Optional[int]=None , )-> Dict:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_labels
snake_case = num_choices
snake_case = scope
def lowerCAmelCase ( self : str )-> Any:
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case = None
if self.use_input_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = None
snake_case = None
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case = ids_tensor([self.batch_size] , self.num_choices )
snake_case = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str )-> Tuple:
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : int )-> Union[str, Any]:
snake_case = EsmModel(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case )
snake_case = model(__snake_case )
snake_case = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] )-> List[str]:
snake_case = EsmForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Dict , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] )-> Optional[int]:
snake_case = self.num_labels
snake_case = EsmForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] )-> int:
snake_case = self.prepare_config_and_inputs()
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) = config_and_inputs
snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = False
snake_case_ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = ()
snake_case_ = (
{
"feature-extraction": EsmModel,
"fill-mask": EsmForMaskedLM,
"text-classification": EsmForSequenceClassification,
"token-classification": EsmForTokenClassification,
"zero-shot": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = True
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = EsmModelTester(self )
snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def lowerCAmelCase ( self : str )-> Any:
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Union[str, Any] )-> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def lowerCAmelCase ( self : Dict )-> int:
snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case = type
self.model_tester.create_and_check_model(*__snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def lowerCAmelCase ( self : int )-> Union[str, Any]:
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case = EsmModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def lowerCAmelCase ( self : str )-> List[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()[0]
snake_case = EsmEmbeddings(config=__snake_case )
snake_case = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
snake_case = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
snake_case = create_position_ids_from_input_ids(__snake_case , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__snake_case , __snake_case ) ) )
def lowerCAmelCase ( self : Tuple )-> Dict:
snake_case = self.model_tester.prepare_config_and_inputs()[0]
snake_case = EsmEmbeddings(config=__snake_case )
snake_case = torch.empty(2 , 4 , 30 )
snake_case = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
snake_case = torch.as_tensor([expected_single_positions, expected_single_positions] )
snake_case = embeddings.create_position_ids_from_inputs_embeds(__snake_case )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__snake_case , __snake_case ) ) )
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCAmelCase ( self : int )-> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCAmelCase ( self : Optional[int] )-> List[str]:
pass
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Optional[Any] )-> int:
with torch.no_grad():
snake_case = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] )
snake_case = model(__snake_case )[0]
snake_case = 33
snake_case = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , __snake_case )
snake_case = torch.tensor(
[[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
@slow
def lowerCAmelCase ( self : str )-> str:
with torch.no_grad():
snake_case = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
snake_case = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
snake_case = model(__snake_case )[0]
# compare the actual values for a slice.
snake_case = torch.tensor(
[[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" )
snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 3 | 1 |
'''simple docstring'''
from copy import deepcopy
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , __snake_case : list[int] | None = None , __snake_case : int | None = None )-> None:
if arr is None and size is not None:
snake_case = size
snake_case = [0] * size
elif arr is not None:
self.init(__snake_case )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCAmelCase ( self : List[Any] , __snake_case : list[int] )-> None:
snake_case = len(__snake_case )
snake_case = deepcopy(__snake_case )
for i in range(1 , self.size ):
snake_case = self.next_(__snake_case )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCAmelCase ( self : str )-> list[int]:
snake_case = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case = self.next_(__snake_case )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCAmelCase ( __snake_case : int )-> int:
return index + (index & (-index))
@staticmethod
def lowerCAmelCase ( __snake_case : int )-> int:
return index - (index & (-index))
def lowerCAmelCase ( self : Dict , __snake_case : int , __snake_case : int )-> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case = self.next_(__snake_case )
def lowerCAmelCase ( self : Tuple , __snake_case : int , __snake_case : int )-> None:
self.add(__snake_case , value - self.get(__snake_case ) )
def lowerCAmelCase ( self : Optional[int] , __snake_case : int )-> int:
if right == 0:
return 0
snake_case = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case = self.prev(__snake_case )
return result
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> int:
return self.prefix(__snake_case ) - self.prefix(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : int )-> int:
return self.query(__snake_case , index + 1 )
def lowerCAmelCase ( self : int , __snake_case : int )-> int:
value -= self.tree[0]
if value < 0:
return -1
snake_case = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_SCREAMING_SNAKE_CASE = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
_SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": 512 for name in _model_names}
_SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = FunnelTokenizer
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 2
def __init__( self : Any , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]="<unk>" , __snake_case : Any="<sep>" , __snake_case : Optional[Any]="<pad>" , __snake_case : Dict="<cls>" , __snake_case : int="<mask>" , __snake_case : List[Any]="<s>" , __snake_case : Any="</s>" , __snake_case : Union[str, Any]=True , __snake_case : Any=True , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]="##" , **__snake_case : Dict , )-> Optional[Any]:
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , clean_text=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , wordpieces_prefix=__snake_case , **__snake_case , )
snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __snake_case ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __snake_case ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __snake_case ) != tokenize_chinese_chars
):
snake_case = getattr(__snake_case , normalizer_state.pop("""type""" ) )
snake_case = do_lower_case
snake_case = strip_accents
snake_case = tokenize_chinese_chars
snake_case = normalizer_class(**__snake_case )
snake_case = do_lower_case
def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : Any=None )-> List[str]:
snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]:
snake_case = self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def __lowerCamelCase ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(__lowerCAmelCase )
snake_case , snake_case , snake_case , snake_case = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
snake_case = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 3 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") )
return token
def __lowerCamelCase ( ) -> Any:
snake_case = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]:
snake_case = """imagenet-1k-id2label.json"""
snake_case = 10_00
snake_case = """huggingface/label-files"""
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 20]
snake_case = [3, 12, 16]
snake_case = [1_92, 7_68, 10_24]
snake_case = CvtForImageClassification(__lowerCAmelCase )
snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
snake_case = image_size
snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(__lowerCAmelCase )
snake_case = list_of_state_dict + embeddings(__lowerCAmelCase )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 3 | 1 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
_SCREAMING_SNAKE_CASE = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
_SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : str=False ) -> int:
snake_case , snake_case = create_model(
"""HTSAT-tiny""" , """roberta""" , __lowerCAmelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__lowerCAmelCase , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def __lowerCamelCase ( __lowerCAmelCase : int ) -> Tuple:
snake_case = {}
snake_case = r""".*sequential.(\d+).*"""
snake_case = r""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
snake_case = key.replace(__lowerCAmelCase , __lowerCAmelCase )
if re.match(__lowerCAmelCase , __lowerCAmelCase ):
# replace sequential layers with list
snake_case = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 )
snake_case = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__lowerCAmelCase )//3}.linear.''' )
elif re.match(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
snake_case = 1 if projecton_layer == 0 else 2
snake_case = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
snake_case = value
snake_case = mixed_qkv.size(0 ) // 3
snake_case = mixed_qkv[:qkv_dim]
snake_case = mixed_qkv[qkv_dim : qkv_dim * 2]
snake_case = mixed_qkv[qkv_dim * 2 :]
snake_case = query_layer
snake_case = key_layer
snake_case = value_layer
else:
snake_case = value
return model_state_dict
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : int=False ) -> List[Any]:
snake_case , snake_case = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase )
clap_model.eval()
snake_case = clap_model.state_dict()
snake_case = rename_state_dict(__lowerCAmelCase )
snake_case = ClapConfig()
snake_case = enable_fusion
snake_case = ClapModel(__lowerCAmelCase )
# ignore the spectrogram embedding layer
model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
transformers_config.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
_SCREAMING_SNAKE_CASE = {
"openbmb/cpm-ant-10b": 1024,
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str:
snake_case = collections.OrderedDict()
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader:
snake_case = reader.readlines()
for index, token in enumerate(__lowerCAmelCase ):
snake_case = token.rstrip("""\n""" )
snake_case = index
return vocab
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]:
snake_case = vocab
snake_case = unk_token
snake_case = max_input_chars_per_word
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]:
snake_case = list(__snake_case )
if len(__snake_case ) > self.max_input_chars_per_word:
return [self.unk_token]
snake_case = 0
snake_case = []
while start < len(__snake_case ):
snake_case = len(__snake_case )
snake_case = None
while start < end:
snake_case = """""".join(chars[start:end] )
if substr in self.vocab:
snake_case = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__snake_case )
snake_case = end
return sub_tokens
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = False
def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]:
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , )
snake_case = bod_token
snake_case = eod_token
snake_case = load_vocab(__snake_case )
snake_case = self.encoder[space_token]
snake_case = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def lowerCAmelCase ( self : Optional[int] )-> List[Any]:
return self.encoder[self.bod_token]
@property
def lowerCAmelCase ( self : str )-> Tuple:
return self.encoder[self.eod_token]
@property
def lowerCAmelCase ( self : str )-> List[str]:
return self.encoder["\n"]
@property
def lowerCAmelCase ( self : List[Any] )-> int:
return len(self.encoder )
def lowerCAmelCase ( self : Any )-> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]:
snake_case = []
for x in jieba.cut(__snake_case , cut_all=__snake_case ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) )
return output_tokens
def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]:
snake_case = [i for i in token_ids if i >= 0]
snake_case = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__snake_case , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]:
return token in self.encoder
def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str:
return "".join(__snake_case )
def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]:
return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str:
return self.decoder.get(__snake_case , self.unk_token )
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]:
if os.path.isdir(__snake_case ):
snake_case = os.path.join(
__snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
snake_case = 0
if " " in self.encoder:
snake_case = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
snake_case = self.encoder["""\n"""]
del self.encoder["\n"]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
snake_case = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is not None:
return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case ))
return [1] + ([0] * len(__snake_case ))
| 3 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def __lowerCamelCase ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(__lowerCAmelCase )
snake_case , snake_case , snake_case , snake_case = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
snake_case = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections import Counter
def __lowerCamelCase ( __lowerCAmelCase : int ) -> typing.Counter[int]:
snake_case = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ):
snake_case = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCAmelCase ):
snake_case = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def __lowerCamelCase ( __lowerCAmelCase : int = 10_00 ) -> int:
snake_case = pythagorean_triple(__lowerCAmelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F"""Perimeter {solution()} has maximum solutions""")
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" )
snake_case = soup.findAll("""h1""" )
snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> tuple:
snake_case = namedtuple("""result""" , """name value""" )
if (voltage, current, power).count(0 ) != 1:
raise ValueError("""Only one argument must be 0""" )
elif power < 0:
raise ValueError(
"""Power cannot be negative in any electrical/electronics system""" )
elif voltage == 0:
return result("""voltage""" , power / current )
elif current == 0:
return result("""current""" , power / voltage )
elif power == 0:
return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
_SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = CamembertTokenizer
snake_case_ = CamembertTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = """<pad>"""
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__snake_case ) , 10_04 )
def lowerCAmelCase ( self : List[str] )-> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def lowerCAmelCase ( self : List[str] )-> List[str]:
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
snake_case = tokenizer.convert_ids_to_tokens(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Any:
if not self.test_rust_tokenizer:
return
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.tokenize(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = self.get_rust_tokenizer()
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
@slow
def lowerCAmelCase ( self : Any )-> Optional[int]:
# fmt: off
snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
snake_case = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
| 3 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "convbert"
def __init__( self : Tuple , __snake_case : Optional[Any]=3_05_22 , __snake_case : str=7_68 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Tuple=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Any=5_12 , __snake_case : int=2 , __snake_case : Dict=0.02 , __snake_case : Dict=1e-12 , __snake_case : Union[str, Any]=1 , __snake_case : int=0 , __snake_case : List[str]=2 , __snake_case : List[str]=7_68 , __snake_case : int=2 , __snake_case : Tuple=9 , __snake_case : Dict=1 , __snake_case : Tuple=None , **__snake_case : Optional[int] , )-> str:
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = embedding_size
snake_case = head_ratio
snake_case = conv_kernel_size
snake_case = num_groups
snake_case = classifier_dropout
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple )-> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 3 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str:
snake_case = data
snake_case = previous
snake_case = next_node
def __str__( self : Union[str, Any] )-> str:
return f'''{self.data}'''
def lowerCAmelCase ( self : Tuple )-> int:
return self.data
def lowerCAmelCase ( self : str )-> str:
return self.next
def lowerCAmelCase ( self : Dict )-> Optional[int]:
return self.previous
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , __snake_case : List[Any] )-> List[str]:
snake_case = head
def __iter__( self : Optional[int] )-> Dict:
return self
def lowerCAmelCase ( self : Optional[Any] )-> List[str]:
if not self.current:
raise StopIteration
else:
snake_case = self.current.get_data()
snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] )-> str:
snake_case = None # First node in list
snake_case = None # Last node in list
def __str__( self : List[str] )-> Any:
snake_case = self.head
snake_case = []
while current is not None:
nodes.append(current.get_data() )
snake_case = current.get_next()
return " ".join(str(__snake_case ) for node in nodes )
def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]:
snake_case = self.head
while current:
if current.get_data() == value:
return True
snake_case = current.get_next()
return False
def __iter__( self : Dict )-> List[Any]:
return LinkedListIterator(self.head )
def lowerCAmelCase ( self : Tuple )-> int:
if self.head:
return self.head.get_data()
return None
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None:
if self.head is None:
snake_case = node
snake_case = node
else:
self.insert_before_node(self.head , __snake_case )
def lowerCAmelCase ( self : int , __snake_case : Node )-> None:
if self.head is None:
self.set_head(__snake_case )
else:
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> None:
snake_case = Node(__snake_case )
if self.head is None:
self.set_head(__snake_case )
else:
self.set_tail(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.previous
if node.get_previous() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.next
if node.get_next() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None:
snake_case = 1
snake_case = Node(__snake_case )
snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(__snake_case , __snake_case )
return
current_position += 1
snake_case = node.next
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> Node:
snake_case = self.head
while node:
if node.get_data() == item:
return node
snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple:
if (node := self.get_node(__snake_case )) is not None:
if node == self.head:
snake_case = self.head.get_next()
if node == self.tail:
snake_case = self.tail.get_previous()
self.remove_node_pointers(__snake_case )
@staticmethod
def lowerCAmelCase ( __snake_case : Node )-> None:
if node.get_next():
snake_case = node.previous
if node.get_previous():
snake_case = node.next
snake_case = None
snake_case = None
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
return self.head is None
def __lowerCamelCase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
assert (
isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number_of_steps > 0
), F'''number_of_steps needs to be positive integer, your input {number_of_steps}'''
if number_of_steps == 1:
return 1
snake_case , snake_case = 1, 1
for _ in range(number_of_steps - 1 ):
snake_case , snake_case = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case = use_prompt
snake_case = prompt_length
snake_case = prompt_mid_dim
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 3 | 1 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
# See all BART models at https://huggingface.co/models?filter=bart
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "bart"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Any , __snake_case : Union[str, Any]=5_02_65 , __snake_case : Tuple=10_24 , __snake_case : Union[str, Any]=12 , __snake_case : List[Any]=40_96 , __snake_case : Any=16 , __snake_case : Union[str, Any]=12 , __snake_case : List[str]=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=10_24 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : List[str]=0.02 , __snake_case : str=0.0 , __snake_case : Any=False , __snake_case : List[str]=True , __snake_case : Dict=3 , __snake_case : Union[str, Any]=1 , __snake_case : List[str]=0 , __snake_case : Any=2 , __snake_case : Any=True , __snake_case : List[str]=2 , __snake_case : Tuple=2 , **__snake_case : List[str] , )-> str:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
@property
def lowerCAmelCase ( self : int )-> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
snake_case = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case = {0: """batch"""}
snake_case = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
snake_case = {0: """batch""", 1: """decoder_sequence"""}
snake_case = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(__snake_case , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
snake_case = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
snake_case , snake_case = self.num_layers
for i in range(__snake_case ):
snake_case = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case = {0: """batch""", 2: """past_sequence + sequence"""}
else:
snake_case = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : int )-> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
snake_case = super().outputs
else:
snake_case = super(__snake_case , self ).outputs
if self.use_past:
snake_case , snake_case = self.num_layers
for i in range(__snake_case ):
snake_case = {0: """batch""", 2: """past_sequence + sequence"""}
snake_case = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def lowerCAmelCase ( self : int , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]:
snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Generate decoder inputs
snake_case = seq_length if not self.use_past else 1
snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
snake_case = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
snake_case = dict(**__snake_case , **__snake_case )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case , snake_case = common_inputs["""input_ids"""].shape
snake_case = common_inputs["""decoder_input_ids"""].shape[1]
snake_case , snake_case = self.num_attention_heads
snake_case = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case = decoder_seq_length + 3
snake_case = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
snake_case = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 )
snake_case = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
snake_case , snake_case = self.num_layers
snake_case = min(__snake_case , __snake_case )
snake_case = max(__snake_case , __snake_case ) - min_num_layers
snake_case = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(__snake_case ):
common_inputs["past_key_values"].append(
(
torch.zeros(__snake_case ),
torch.zeros(__snake_case ),
torch.zeros(__snake_case ),
torch.zeros(__snake_case ),
) )
# TODO: test this.
snake_case = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(__snake_case , __snake_case ):
common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) )
return common_inputs
def lowerCAmelCase ( self : Any , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]:
snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case , snake_case = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case = seqlen + 2
snake_case , snake_case = self.num_layers
snake_case , snake_case = self.num_attention_heads
snake_case = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
snake_case = common_inputs["""attention_mask"""].dtype
snake_case = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 )
snake_case = [
(torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case )
]
return common_inputs
def lowerCAmelCase ( self : List[str] , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
snake_case = compute_effective_axis_dimension(
__snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
snake_case = tokenizer.num_special_tokens_to_add(__snake_case )
snake_case = compute_effective_axis_dimension(
__snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case )
# Generate dummy inputs according to compute batch and sequence
snake_case = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
snake_case = dict(tokenizer(__snake_case , return_tensors=__snake_case ) )
return common_inputs
def lowerCAmelCase ( self : Dict , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case )
elif self.task == "causal-lm":
snake_case = self._generate_dummy_inputs_for_causal_lm(
__snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case )
else:
snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case )
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] )-> str:
if self.task in ["default", "seq2seq-lm"]:
snake_case = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case )
else:
snake_case = super(__snake_case , self )._flatten_past_key_values_(
__snake_case , __snake_case , __snake_case , __snake_case )
| 3 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
# A mock response for an HTTP head request to emulate server down
snake_case = mock.Mock()
snake_case = 5_00
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head:
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
snake_case = ViTImageProcessor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" )
def lowerCAmelCase ( self : Union[str, Any] )-> str:
with self.assertRaises(__snake_case ):
# config is in subfolder, the following should not work without specifying the subfolder
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" )
self.assertIsNotNone(__snake_case )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def lowerCAmelCase ( cls : Optional[int] )-> Dict:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : List[Any] )-> str:
try:
delete_repo(token=cls._token , repo_id="""test-image-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : List[Any] )-> int:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : str )-> Tuple:
CustomImageProcessor.register_for_auto_class()
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , )
snake_case = AutoImageProcessor.from_pretrained(
f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
| 3 | 1 |
'''simple docstring'''
from collections import deque
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , __snake_case : str , __snake_case : int , __snake_case : int )-> None:
snake_case = process_name # process name
snake_case = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
snake_case = arrival_time
snake_case = burst_time # remaining burst time
snake_case = 0 # total time of the process wait in ready queue
snake_case = 0 # time from arrival time to completion time
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : list[int] , __snake_case : deque[Process] , __snake_case : int , )-> None:
# total number of mlfq's queues
snake_case = number_of_queues
# time slice of queues that round robin algorithm applied
snake_case = time_slices
# unfinished process is in this ready_queue
snake_case = queue
# current time
snake_case = current_time
# finished process is in this sequence queue
snake_case = deque()
def lowerCAmelCase ( self : Union[str, Any] )-> list[str]:
snake_case = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def lowerCAmelCase ( self : int , __snake_case : list[Process] )-> list[int]:
snake_case = []
for i in range(len(__snake_case ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def lowerCAmelCase ( self : Optional[Any] , __snake_case : list[Process] )-> list[int]:
snake_case = []
for i in range(len(__snake_case ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def lowerCAmelCase ( self : Optional[Any] , __snake_case : list[Process] )-> list[int]:
snake_case = []
for i in range(len(__snake_case ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def lowerCAmelCase ( self : Optional[int] , __snake_case : deque[Process] )-> list[int]:
return [q.burst_time for q in queue]
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Process )-> int:
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def lowerCAmelCase ( self : Optional[Any] , __snake_case : deque[Process] )-> deque[Process]:
snake_case = deque() # sequence deque of finished process
while len(__snake_case ) != 0:
snake_case = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(__snake_case )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
snake_case = 0
# set the process's turnaround time because it is finished
snake_case = self.current_time - cp.arrival_time
# set the completion time
snake_case = self.current_time
# add the process to queue that has finished queue
finished.append(__snake_case )
self.finish_queue.extend(__snake_case ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def lowerCAmelCase ( self : List[str] , __snake_case : deque[Process] , __snake_case : int )-> tuple[deque[Process], deque[Process]]:
snake_case = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(__snake_case ) ):
snake_case = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(__snake_case )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
snake_case = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(__snake_case )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
snake_case = 0
# set the finish time
snake_case = self.current_time
# update the process' turnaround time because it is finished
snake_case = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(__snake_case )
self.finish_queue.extend(__snake_case ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def lowerCAmelCase ( self : Union[str, Any] )-> deque[Process]:
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
snake_case , snake_case = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_SCREAMING_SNAKE_CASE = Process("P1", 0, 53)
_SCREAMING_SNAKE_CASE = Process("P2", 0, 17)
_SCREAMING_SNAKE_CASE = Process("P3", 0, 68)
_SCREAMING_SNAKE_CASE = Process("P4", 0, 24)
_SCREAMING_SNAKE_CASE = 3
_SCREAMING_SNAKE_CASE = [17, 25]
_SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
_SCREAMING_SNAKE_CASE = Process("P1", 0, 53)
_SCREAMING_SNAKE_CASE = Process("P2", 0, 17)
_SCREAMING_SNAKE_CASE = Process("P3", 0, 68)
_SCREAMING_SNAKE_CASE = Process("P4", 0, 24)
_SCREAMING_SNAKE_CASE = 3
_SCREAMING_SNAKE_CASE = [17, 25]
_SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa])
_SCREAMING_SNAKE_CASE = MLFQ(number_of_queues, time_slices, queue, 0)
_SCREAMING_SNAKE_CASE = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
F"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
F"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 3 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def lowerCAmelCase ( self : str )-> Any:
snake_case = 0
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig()
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write("""{}""" )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case )
snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Any )-> Tuple:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "AutoFeatureExtractor"
snake_case_ = "AutoTokenizer"
snake_case_ = False
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def lowerCAmelCase ( self : Any )-> List[str]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Tuple:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : Any )-> Optional[Any]:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , )
snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : List[str] )-> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f:
snake_case = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) )
repo.push_to_hub()
snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 3 | 1 |
'''simple docstring'''
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
# TF training parameters
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( __lowerCAmelCase : Namespace ) -> List[Any]:
return TrainCommand(__lowerCAmelCase )
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
@staticmethod
def lowerCAmelCase ( __snake_case : ArgumentParser )-> str:
snake_case = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" )
train_parser.add_argument(
"""--train_data""" , type=__snake_case , required=__snake_case , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , )
train_parser.add_argument(
"""--column_label""" , type=__snake_case , default=0 , help="""Column of the dataset csv file with example labels.""" )
train_parser.add_argument(
"""--column_text""" , type=__snake_case , default=1 , help="""Column of the dataset csv file with example texts.""" )
train_parser.add_argument(
"""--column_id""" , type=__snake_case , default=2 , help="""Column of the dataset csv file with example ids.""" )
train_parser.add_argument(
"""--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" )
train_parser.add_argument("""--validation_data""" , type=__snake_case , default="""""" , help="""path to validation dataset.""" )
train_parser.add_argument(
"""--validation_split""" , type=__snake_case , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , )
train_parser.add_argument("""--output""" , type=__snake_case , default="""./""" , help="""path to saved the trained model.""" )
train_parser.add_argument(
"""--task""" , type=__snake_case , default="""text_classification""" , help="""Task to train the model on.""" )
train_parser.add_argument(
"""--model""" , type=__snake_case , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" )
train_parser.add_argument("""--train_batch_size""" , type=__snake_case , default=32 , help="""Batch size for training.""" )
train_parser.add_argument("""--valid_batch_size""" , type=__snake_case , default=64 , help="""Batch size for validation.""" )
train_parser.add_argument("""--learning_rate""" , type=__snake_case , default=3e-5 , help="""Learning rate.""" )
train_parser.add_argument("""--adam_epsilon""" , type=__snake_case , default=1e-08 , help="""Epsilon for Adam optimizer.""" )
train_parser.set_defaults(func=__snake_case )
def __init__( self : str , __snake_case : Namespace )-> Any:
snake_case = logging.get_logger("""transformers-cli/training""" )
snake_case = """tf""" if is_tf_available() else """torch"""
os.makedirs(args.output , exist_ok=__snake_case )
snake_case = args.output
snake_case = args.column_label
snake_case = args.column_text
snake_case = args.column_id
self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' )
if args.task == "text_classification":
snake_case = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'''Loading dataset from {args.train_data}''' )
snake_case = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
snake_case = None
if args.validation_data:
self.logger.info(f'''Loading validation dataset from {args.validation_data}''' )
snake_case = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
snake_case = args.validation_split
snake_case = args.train_batch_size
snake_case = args.valid_batch_size
snake_case = args.learning_rate
snake_case = args.adam_epsilon
def lowerCAmelCase ( self : List[Any] )-> List[str]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def lowerCAmelCase ( self : Any )-> Tuple:
raise NotImplementedError
def lowerCAmelCase ( self : Dict )-> int:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list ) -> list:
snake_case = len(__lowerCAmelCase )
for i in range(1 , __lowerCAmelCase ):
snake_case = collection[i]
snake_case = 0
snake_case = i - 1
while low <= high:
snake_case = (low + high) // 2
if val < collection[mid]:
snake_case = mid - 1
else:
snake_case = mid + 1
for j in range(__lowerCAmelCase , __lowerCAmelCase , -1 ):
snake_case = collection[j - 1]
snake_case = val
return collection
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip()
_SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "falcon"
snake_case_ = ["past_key_values"]
def __init__( self : Dict , __snake_case : Optional[int]=6_50_24 , __snake_case : Optional[int]=45_44 , __snake_case : List[Any]=32 , __snake_case : Tuple=71 , __snake_case : Dict=1e-5 , __snake_case : Optional[int]=0.02 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : Union[str, Any]=True , __snake_case : int=True , __snake_case : Optional[Any]=False , __snake_case : Union[str, Any]=11 , __snake_case : str=11 , **__snake_case : Optional[Any] , )-> List[Any]:
snake_case = vocab_size
# Backward compatibility with n_embed kwarg
snake_case = kwargs.pop("""n_embed""" , __snake_case )
snake_case = hidden_size if n_embed is None else n_embed
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = layer_norm_epsilon
snake_case = initializer_range
snake_case = use_cache
snake_case = hidden_dropout
snake_case = attention_dropout
snake_case = bos_token_id
snake_case = eos_token_id
snake_case = num_attention_heads if num_kv_heads is None else num_kv_heads
snake_case = alibi
snake_case = new_decoder_architecture
snake_case = multi_query # Ignored when new_decoder_architecture is True
snake_case = parallel_attn
snake_case = bias
super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
@property
def lowerCAmelCase ( self : Union[str, Any] )-> int:
return self.hidden_size // self.num_attention_heads
@property
def lowerCAmelCase ( self : int )-> List[str]:
return not self.alibi
| 3 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 | 1 |
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
_SCREAMING_SNAKE_CASE = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
_SCREAMING_SNAKE_CASE = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ) -> Optional[int]:
return float((preds == labels).mean() )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> int:
snake_case = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )
snake_case = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Dict:
snake_case = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] )
snake_case = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def lowerCAmelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] )-> Optional[Any]:
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )}
elif self.config_name == "stsb":
return pearson_and_spearman(__snake_case , __snake_case )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(__snake_case , __snake_case )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(__snake_case , __snake_case )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list:
snake_case = len(__lowerCAmelCase )
snake_case = [[0] * n for i in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
snake_case = y_points[i]
for i in range(2 , __lowerCAmelCase ):
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegaForCausalLM",
"MegaForMaskedLM",
"MegaForMultipleChoice",
"MegaForQuestionAnswering",
"MegaForSequenceClassification",
"MegaForTokenClassification",
"MegaModel",
"MegaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 3 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
_SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple:
snake_case = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , )
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
if not do_eval:
return
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
snake_case = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Tuple )-> int:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case )
@require_torch_multi_gpu
def lowerCAmelCase ( self : str )-> List[Any]:
self.run_seqaseq_quick(distributed=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> str:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> List[Any]:
self.run_seqaseq_quick(
distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case )
@require_apex
@require_torch_gpu
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
snake_case = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
snake_case = experiments[experiment_id]
snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
snake_case = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] )
snake_case = len(re.findall(__snake_case , cl.err ) )
self.assertEqual(__snake_case , data["""n_matches"""] )
@slow
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , )
# Check metrics
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
snake_case = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
# test if do_predict saves generations and metrics
snake_case = os.listdir(__snake_case )
snake_case = {os.path.basename(__snake_case ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowerCAmelCase ( self : str )-> Any:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]:
snake_case = """--skip_memory_metrics 0"""
snake_case = self.run_trainer(
max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , )
# Check metrics
snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
snake_case = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig
snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
snake_case = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
snake_case = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict:
snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
snake_case = self.get_auto_remove_tmp_dir()
snake_case = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__snake_case )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__snake_case )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
snake_case = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__snake_case )}
'''.split()
snake_case = """
--do_predict
""".split()
snake_case = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
snake_case = get_gpu_count()
snake_case = get_torch_dist_unique_port()
snake_case = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
snake_case = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__snake_case , env=self.get_env() )
else:
snake_case = ["""run_translation.py"""] + args
with patch.object(__snake_case , """argv""" , __snake_case ):
main()
return output_dir
| 3 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json",
"uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json",
"uclanlp/visualbert-vqa-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json",
"uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json",
"uclanlp/visualbert-vcr-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "visual_bert"
def __init__( self : Optional[Any] , __snake_case : List[str]=3_05_22 , __snake_case : Any=7_68 , __snake_case : Union[str, Any]=5_12 , __snake_case : List[str]=12 , __snake_case : Union[str, Any]=12 , __snake_case : Optional[Any]=30_72 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=5_12 , __snake_case : Any=2 , __snake_case : Union[str, Any]=0.02 , __snake_case : Optional[int]=1e-12 , __snake_case : Optional[Any]=False , __snake_case : Tuple=True , __snake_case : Any=1 , __snake_case : List[str]=0 , __snake_case : Optional[Any]=2 , **__snake_case : str , )-> str:
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = hidden_size
snake_case = visual_embedding_dim
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = initializer_range
snake_case = type_vocab_size
snake_case = layer_norm_eps
snake_case = bypass_transformer
snake_case = special_visual_initialize
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_SCREAMING_SNAKE_CASE = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : Tuple , __snake_case : Dict=7 , __snake_case : int=3 , __snake_case : List[Any]=18 , __snake_case : Optional[Any]=30 , __snake_case : List[Any]=4_00 , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : Dict=None , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 20, """width""": 20}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = size
snake_case = do_normalize
snake_case = do_convert_rgb
snake_case = [5_12, 10_24, 20_48, 40_96]
snake_case = patch_size if patch_size is not None else {"""height""": 16, """width""": 16}
def lowerCAmelCase ( self : Optional[int] )-> str:
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def lowerCAmelCase ( self : str )-> List[str]:
snake_case = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"""
snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Tuple )-> str:
snake_case = PixaStructImageProcessingTester(self )
@property
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : str )-> List[str]:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_normalize""" ) )
self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) )
def lowerCAmelCase ( self : List[str] )-> Union[str, Any]:
snake_case = self.image_processor_tester.prepare_dummy_image()
snake_case = self.image_processing_class(**self.image_processor_dict )
snake_case = 20_48
snake_case = image_processor(__snake_case , return_tensors="""pt""" , max_patches=__snake_case )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) )
def lowerCAmelCase ( self : str )-> Optional[Any]:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case = image_processor(
__snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase ( self : str )-> Any:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
snake_case = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(__snake_case ):
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
snake_case = """Hello"""
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case = image_processor(
__snake_case , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase ( self : Union[str, Any] )-> List[str]:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
snake_case = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case = image_processor(
__snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case = image_processor(
__snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Any )-> List[Any]:
snake_case = PixaStructImageProcessingTester(self , num_channels=4 )
snake_case = 3
@property
def lowerCAmelCase ( self : Optional[int] )-> str:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : List[str] )-> int:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_normalize""" ) )
self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) )
def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case = image_processor(
__snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 3 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list[list[int]]:
snake_case = []
create_all_state(1 , __lowerCAmelCase , __lowerCAmelCase , [] , __lowerCAmelCase )
return result
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : list[list[int]] , ) -> None:
if level == 0:
total_list.append(current_list[:] )
return
for i in range(__lowerCAmelCase , total_number - level + 2 ):
current_list.append(__lowerCAmelCase )
create_all_state(i + 1 , __lowerCAmelCase , level - 1 , __lowerCAmelCase , __lowerCAmelCase )
current_list.pop()
def __lowerCamelCase ( __lowerCAmelCase : list[list[int]] ) -> None:
for i in total_list:
print(*__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = 4
_SCREAMING_SNAKE_CASE = 2
_SCREAMING_SNAKE_CASE = generate_all_combinations(n, k)
print_all_state(total_list)
| 3 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 | 1 |
'''simple docstring'''
from math import factorial
_SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(10)}
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def __lowerCamelCase ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 1_00_00_00 ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
snake_case = 0
# the cached sizes of the previous chains
snake_case = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
snake_case = set()
snake_case = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
snake_case = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
snake_case = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
snake_case = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution()}""")
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 18, """width""": 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = apply_ocr
def lowerCAmelCase ( self : List[Any] )-> List[str]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = LayoutLMvaImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple )-> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
def lowerCAmelCase ( self : Tuple )-> Dict:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , __snake_case )
self.assertIsInstance(encoding.boxes , __snake_case )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> List[Any]:
# with apply_OCR = True
snake_case = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __snake_case )
self.assertListEqual(encoding.boxes , __snake_case )
# with apply_OCR = False
snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 3 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = ["pixel_values"]
def __init__( self : List[str] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Any , )-> None:
super().__init__(**__snake_case )
snake_case = size if size is not None else {"""shortest_edge""": 3_84}
snake_case = get_size_dict(__snake_case , default_to_square=__snake_case )
snake_case = do_resize
snake_case = size
# Default value set here for backwards compatibility where the value in config is None
snake_case = crop_pct if crop_pct is not None else 2_24 / 2_56
snake_case = resample
snake_case = do_rescale
snake_case = rescale_factor
snake_case = do_normalize
snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : float , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : str , )-> np.ndarray:
snake_case = get_size_dict(__snake_case , default_to_square=__snake_case )
if "shortest_edge" not in size:
raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
snake_case = size["""shortest_edge"""]
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
snake_case = int(shortest_edge / crop_pct )
snake_case = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case )
snake_case = resize(image=__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=__snake_case , size=(shortest_edge, shortest_edge) , data_format=__snake_case , **__snake_case )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
__snake_case , size=(shortest_edge, shortest_edge) , resample=__snake_case , data_format=__snake_case , **__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> Any:
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def lowerCAmelCase ( self : List[str] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> np.ndarray:
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : Optional[int] , )-> PIL.Image.Image:
snake_case = do_resize if do_resize is not None else self.do_resize
snake_case = crop_pct if crop_pct is not None else self.crop_pct
snake_case = resample if resample is not None else self.resample
snake_case = do_rescale if do_rescale is not None else self.do_rescale
snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case = do_normalize if do_normalize is not None else self.do_normalize
snake_case = image_mean if image_mean is not None else self.image_mean
snake_case = image_std if image_std is not None else self.image_std
snake_case = size if size is not None else self.size
snake_case = get_size_dict(__snake_case , default_to_square=__snake_case )
snake_case = make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError("""crop_pct must be specified if size < 384.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
snake_case = [to_numpy_array(__snake_case ) for image in images]
if do_resize:
snake_case = [self.resize(image=__snake_case , size=__snake_case , crop_pct=__snake_case , resample=__snake_case ) for image in images]
if do_rescale:
snake_case = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_normalize:
snake_case = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images]
snake_case = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
snake_case = {"""pixel_values""": images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" )
snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 3 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
_SCREAMING_SNAKE_CASE = None
try:
import msvcrt
except ImportError:
_SCREAMING_SNAKE_CASE = None
try:
import fcntl
except ImportError:
_SCREAMING_SNAKE_CASE = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
_SCREAMING_SNAKE_CASE = OSError
# Data
# ------------------------------------------------
_SCREAMING_SNAKE_CASE = [
"Timeout",
"BaseFileLock",
"WindowsFileLock",
"UnixFileLock",
"SoftFileLock",
"FileLock",
]
_SCREAMING_SNAKE_CASE = "3.0.12"
_SCREAMING_SNAKE_CASE = None
def __lowerCamelCase ( ) -> str:
global _logger
snake_case = _logger or logging.getLogger(__name__ )
return _logger
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : str )-> Dict:
snake_case = lock_file
return None
def __str__( self : List[Any] )-> Tuple:
snake_case = f'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , __snake_case : List[str] )-> Optional[Any]:
snake_case = lock
return None
def __enter__( self : Optional[int] )-> str:
return self.lock
def __exit__( self : Tuple , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[Any] )-> Optional[Any]:
self.lock.release()
return None
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , __snake_case : Any , __snake_case : int=-1 , __snake_case : Any=None )-> Any:
snake_case = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
snake_case = self.hash_filename_if_too_long(__snake_case , __snake_case )
# The path to the lock file.
snake_case = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
snake_case = None
# The default timeout value.
snake_case = timeout
# We use this lock primarily for the lock counter.
snake_case = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
snake_case = 0
return None
@property
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
return self._lock_file
@property
def lowerCAmelCase ( self : Optional[Any] )-> List[Any]:
return self._timeout
@timeout.setter
def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] )-> Dict:
snake_case = float(__snake_case )
return None
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
raise NotImplementedError()
def lowerCAmelCase ( self : Dict )-> str:
raise NotImplementedError()
@property
def lowerCAmelCase ( self : Any )-> Tuple:
return self._lock_file_fd is not None
def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : int=0.05 )-> Optional[int]:
# Use the default timeout, if no timeout is provided.
if timeout is None:
snake_case = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
snake_case = id(self )
snake_case = self._lock_file
snake_case = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(__snake_case )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
snake_case = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def lowerCAmelCase ( self : Dict , __snake_case : List[str]=False )-> Union[str, Any]:
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
snake_case = id(self )
snake_case = self._lock_file
logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
snake_case = 0
logger().debug(f'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self : Union[str, Any] )-> int:
self.acquire()
return self
def __exit__( self : Optional[int] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] )-> Optional[Any]:
self.release()
return None
def __del__( self : Any )-> List[Any]:
self.release(force=__snake_case )
return None
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : int )-> str:
snake_case = os.path.basename(__snake_case )
if len(__snake_case ) > max_length and max_length > 0:
snake_case = os.path.dirname(__snake_case )
snake_case = str(hash(__snake_case ) )
snake_case = filename[: max_length - len(__snake_case ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(__snake_case , __snake_case )
else:
return path
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : str=-1 , __snake_case : List[Any]=None )-> int:
from .file_utils import relative_to_absolute_path
super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case )
snake_case = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]:
snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
snake_case = os.open(self._lock_file , __snake_case )
except OSError:
pass
else:
try:
msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__snake_case )
else:
snake_case = fd
return None
def lowerCAmelCase ( self : Optional[Any] )-> List[Any]:
snake_case = self._lock_file_fd
snake_case = None
msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1 )
os.close(__snake_case )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : List[Any] , __snake_case : str=-1 , __snake_case : List[str]=None )-> int:
snake_case = os.statvfs(os.path.dirname(__snake_case ) ).f_namemax
super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case )
def lowerCAmelCase ( self : Optional[Any] )-> Dict:
snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC
snake_case = os.open(self._lock_file , __snake_case )
try:
fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__snake_case )
else:
snake_case = fd
return None
def lowerCAmelCase ( self : List[str] )-> Dict:
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
snake_case = self._lock_file_fd
snake_case = None
fcntl.flock(__snake_case , fcntl.LOCK_UN )
os.close(__snake_case )
return None
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
snake_case = os.open(self._lock_file , __snake_case )
except OSError:
pass
else:
snake_case = fd
return None
def lowerCAmelCase ( self : Dict )-> List[str]:
os.close(self._lock_file_fd )
snake_case = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
_SCREAMING_SNAKE_CASE = None
if msvcrt:
_SCREAMING_SNAKE_CASE = WindowsFileLock
elif fcntl:
_SCREAMING_SNAKE_CASE = UnixFileLock
else:
_SCREAMING_SNAKE_CASE = SoftFileLock
if warnings is not None:
warnings.warn("only soft file lock is available")
| 3 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> list[int]:
if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""Length must be a positive integer.""" )
return [n * (2 * n - 1) for n in range(__lowerCAmelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 1
for i in range(0 , len(__lowerCAmelCase ) ):
total *= numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
snake_case = 0
snake_case = str(__lowerCAmelCase )
while len(__lowerCAmelCase ) != 1:
snake_case = [int(__lowerCAmelCase ) for i in num_string]
snake_case = 0
for i in range(0 , len(__lowerCAmelCase ) ):
total += numbers[i]
snake_case = str(__lowerCAmelCase )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = PegasusTokenizer
snake_case_ = PegasusTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : int )-> int:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = PegasusTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase ( self : int )-> List[str]:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCAmelCase ( self : Dict , **__snake_case : Dict )-> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Dict:
return ("This is a test", "This is a test")
def lowerCAmelCase ( self : Union[str, Any] )-> List[str]:
snake_case = """</s>"""
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Union[str, Any] )-> Optional[int]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(__snake_case ) , 11_03 )
def lowerCAmelCase ( self : Dict )-> str:
self.assertEqual(self.get_tokenizer().vocab_size , 11_03 )
def lowerCAmelCase ( self : str )-> Dict:
snake_case = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname )
snake_case = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
snake_case = rust_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0]
snake_case = py_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0]
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Optional[Any]:
snake_case = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
snake_case = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
snake_case = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
snake_case = tokenizer([raw_input_str] , return_tensors=__snake_case ).input_ids[0]
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
snake_case = """To ensure a smooth flow of bank resolutions."""
snake_case = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
snake_case = tokenizer([raw_input_str] , return_tensors=__snake_case ).input_ids[0]
self.assertListEqual(__snake_case , __snake_case )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCAmelCase ( self : Any )-> Dict:
snake_case = ["""This is going to be way too long.""" * 1_50, """short example"""]
snake_case = ["""not super long but more than 5 tokens""", """tiny"""]
snake_case = self._large_tokenizer(__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
snake_case = self._large_tokenizer(
text_target=__snake_case , max_length=5 , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(__snake_case ) == 2 # input_ids, attention_mask.
@slow
def lowerCAmelCase ( self : str )-> str:
# fmt: off
snake_case = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = PegasusTokenizer
snake_case_ = PegasusTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Any )-> int:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = PegasusTokenizer(__snake_case , offset=0 , mask_token_sent=__snake_case , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase ( self : str )-> Dict:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCAmelCase ( self : Any , **__snake_case : Optional[int] )-> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__snake_case )
def lowerCAmelCase ( self : Dict , __snake_case : List[str] )-> Any:
return ("This is a test", "This is a test")
def lowerCAmelCase ( self : Union[str, Any] )-> Optional[Any]:
snake_case = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname )
snake_case = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
snake_case = rust_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0]
snake_case = py_tokenizer([raw_input_str] , return_tensors=__snake_case , add_special_tokens=__snake_case ).input_ids[0]
self.assertListEqual(__snake_case , __snake_case )
@require_torch
def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]:
snake_case = ["""This is going to be way too long.""" * 10_00, """short example"""]
snake_case = ["""not super long but more than 5 tokens""", """tiny"""]
snake_case = self._large_tokenizer(__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
snake_case = self._large_tokenizer(
text_target=__snake_case , max_length=5 , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(__snake_case ) == 2 # input_ids, attention_mask.
def lowerCAmelCase ( self : Union[str, Any] )-> Tuple:
snake_case = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
snake_case = self._large_tokenizer(__snake_case ).input_ids
self.assertListEqual(
__snake_case , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
| 3 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") )
return token
def __lowerCamelCase ( ) -> Any:
snake_case = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]:
snake_case = """imagenet-1k-id2label.json"""
snake_case = 10_00
snake_case = """huggingface/label-files"""
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 20]
snake_case = [3, 12, 16]
snake_case = [1_92, 7_68, 10_24]
snake_case = CvtForImageClassification(__lowerCAmelCase )
snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
snake_case = image_size
snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(__lowerCAmelCase )
snake_case = list_of_state_dict + embeddings(__lowerCAmelCase )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float ) -> tuple:
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
_SCREAMING_SNAKE_CASE = {
"openbmb/cpm-ant-10b": 1024,
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str:
snake_case = collections.OrderedDict()
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader:
snake_case = reader.readlines()
for index, token in enumerate(__lowerCAmelCase ):
snake_case = token.rstrip("""\n""" )
snake_case = index
return vocab
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]:
snake_case = vocab
snake_case = unk_token
snake_case = max_input_chars_per_word
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]:
snake_case = list(__snake_case )
if len(__snake_case ) > self.max_input_chars_per_word:
return [self.unk_token]
snake_case = 0
snake_case = []
while start < len(__snake_case ):
snake_case = len(__snake_case )
snake_case = None
while start < end:
snake_case = """""".join(chars[start:end] )
if substr in self.vocab:
snake_case = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__snake_case )
snake_case = end
return sub_tokens
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = False
def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]:
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , )
snake_case = bod_token
snake_case = eod_token
snake_case = load_vocab(__snake_case )
snake_case = self.encoder[space_token]
snake_case = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def lowerCAmelCase ( self : Optional[int] )-> List[Any]:
return self.encoder[self.bod_token]
@property
def lowerCAmelCase ( self : str )-> Tuple:
return self.encoder[self.eod_token]
@property
def lowerCAmelCase ( self : str )-> List[str]:
return self.encoder["\n"]
@property
def lowerCAmelCase ( self : List[Any] )-> int:
return len(self.encoder )
def lowerCAmelCase ( self : Any )-> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]:
snake_case = []
for x in jieba.cut(__snake_case , cut_all=__snake_case ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) )
return output_tokens
def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]:
snake_case = [i for i in token_ids if i >= 0]
snake_case = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__snake_case , **__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]:
return token in self.encoder
def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str:
return "".join(__snake_case )
def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]:
return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str:
return self.decoder.get(__snake_case , self.unk_token )
def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]:
if os.path.isdir(__snake_case ):
snake_case = os.path.join(
__snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
snake_case = 0
if " " in self.encoder:
snake_case = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
snake_case = self.encoder["""\n"""]
del self.encoder["\n"]
snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
snake_case = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is not None:
return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case ))
return [1] + ([0] * len(__snake_case ))
| 3 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Any )-> List[Any]:
torch.manual_seed(0 )
snake_case = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def lowerCAmelCase ( self : List[str] )-> Union[str, Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def lowerCAmelCase ( self : Tuple )-> str:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__snake_case )
def lowerCAmelCase ( self : Optional[Any] )-> List[str]:
snake_case = self.dummy_uncond_unet
snake_case = DDIMScheduler()
snake_case = self.dummy_vq_model
snake_case = LDMPipeline(unet=__snake_case , vqvae=__snake_case , scheduler=__snake_case )
ldm.to(__snake_case )
ldm.set_progress_bar_config(disable=__snake_case )
snake_case = torch.manual_seed(0 )
snake_case = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" ).images
snake_case = torch.manual_seed(0 )
snake_case = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" , return_dict=__snake_case )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] )
snake_case = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[int] )-> str:
snake_case = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__snake_case )
ldm.set_progress_bar_config(disable=__snake_case )
snake_case = torch.manual_seed(0 )
snake_case = ldm(generator=__snake_case , num_inference_steps=5 , output_type="""numpy""" ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
snake_case = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] )
snake_case = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 3 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def __lowerCamelCase ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(__lowerCAmelCase )
snake_case , snake_case , snake_case , snake_case = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
snake_case = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : int = 10_00 ) -> int:
snake_case = 2**power
snake_case = str(__lowerCAmelCase )
snake_case = list(__lowerCAmelCase )
snake_case = 0
for i in list_num:
sum_of_num += int(__lowerCAmelCase )
return sum_of_num
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = int(input("Enter the power of 2: ").strip())
print("2 ^ ", power, " = ", 2**power)
_SCREAMING_SNAKE_CASE = solution(power)
print("Sum of the digits is: ", result)
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" )
snake_case = soup.findAll("""h1""" )
snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> int:
assert x is not None
assert y is not None
snake_case = len(__lowerCAmelCase )
snake_case = len(__lowerCAmelCase )
# declaring the array for storing the dp values
snake_case = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
snake_case = 1 if x[i - 1] == y[j - 1] else 0
snake_case = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
snake_case = """"""
snake_case , snake_case = m, n
while i > 0 and j > 0:
snake_case = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
snake_case = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = "AGGTAB"
_SCREAMING_SNAKE_CASE = "GXTXAYB"
_SCREAMING_SNAKE_CASE = 4
_SCREAMING_SNAKE_CASE = "GTAB"
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
_SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = CamembertTokenizer
snake_case_ = CamembertTokenizerFast
snake_case_ = True
snake_case_ = True
def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = """<pad>"""
snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__snake_case ) , 10_04 )
def lowerCAmelCase ( self : List[str] )-> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def lowerCAmelCase ( self : List[str] )-> List[str]:
snake_case = CamembertTokenizer(__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
snake_case = tokenizer.convert_ids_to_tokens(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def lowerCAmelCase ( self : str )-> Any:
if not self.test_rust_tokenizer:
return
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = """I was born in 92000, and this is falsé."""
snake_case = tokenizer.tokenize(__snake_case )
snake_case = rust_tokenizer.tokenize(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
self.assertListEqual(__snake_case , __snake_case )
snake_case = self.get_rust_tokenizer()
snake_case = tokenizer.encode(__snake_case )
snake_case = rust_tokenizer.encode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
@slow
def lowerCAmelCase ( self : Any )-> Optional[int]:
# fmt: off
snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
snake_case = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
_SCREAMING_SNAKE_CASE = list[tuple[int, int]]
_SCREAMING_SNAKE_CASE = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_SCREAMING_SNAKE_CASE = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : Node | None , )-> Union[str, Any]:
snake_case = pos_x
snake_case = pos_y
snake_case = (pos_y, pos_x)
snake_case = goal_x
snake_case = goal_y
snake_case = g_cost
snake_case = parent
snake_case = self.calculate_heuristic()
def lowerCAmelCase ( self : List[Any] )-> float:
snake_case = abs(self.pos_x - self.goal_x )
snake_case = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self : Any , __snake_case : Union[str, Any] )-> bool:
return self.f_cost < other.f_cost
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[str] , __snake_case : tuple[int, int] , __snake_case : tuple[int, int] )-> Optional[Any]:
snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __snake_case )
snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __snake_case )
snake_case = [self.start]
snake_case = []
snake_case = False
def lowerCAmelCase ( self : Optional[int] )-> Path | None:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
snake_case = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
snake_case = True
return self.retrace_path(__snake_case )
self.closed_nodes.append(__snake_case )
snake_case = self.get_successors(__snake_case )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__snake_case )
else:
# retrieve the best current path
snake_case = self.open_nodes.pop(self.open_nodes.index(__snake_case ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__snake_case )
else:
self.open_nodes.append(__snake_case )
if not self.reached:
return [self.start.pos]
return None
def lowerCAmelCase ( self : str , __snake_case : Node )-> list[Node]:
snake_case = []
for action in delta:
snake_case = parent.pos_x + action[1]
snake_case = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__snake_case , __snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __snake_case , ) )
return successors
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Node | None )-> Path:
snake_case = node
snake_case = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = (0, 0)
_SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
_SCREAMING_SNAKE_CASE = GreedyBestFirst(init, goal)
_SCREAMING_SNAKE_CASE = greedy_bf.search()
if path:
for pos_x, pos_y in path:
_SCREAMING_SNAKE_CASE = 2
for elem in grid:
print(elem)
| 3 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str:
snake_case = data
snake_case = previous
snake_case = next_node
def __str__( self : Union[str, Any] )-> str:
return f'''{self.data}'''
def lowerCAmelCase ( self : Tuple )-> int:
return self.data
def lowerCAmelCase ( self : str )-> str:
return self.next
def lowerCAmelCase ( self : Dict )-> Optional[int]:
return self.previous
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , __snake_case : List[Any] )-> List[str]:
snake_case = head
def __iter__( self : Optional[int] )-> Dict:
return self
def lowerCAmelCase ( self : Optional[Any] )-> List[str]:
if not self.current:
raise StopIteration
else:
snake_case = self.current.get_data()
snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] )-> str:
snake_case = None # First node in list
snake_case = None # Last node in list
def __str__( self : List[str] )-> Any:
snake_case = self.head
snake_case = []
while current is not None:
nodes.append(current.get_data() )
snake_case = current.get_next()
return " ".join(str(__snake_case ) for node in nodes )
def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]:
snake_case = self.head
while current:
if current.get_data() == value:
return True
snake_case = current.get_next()
return False
def __iter__( self : Dict )-> List[Any]:
return LinkedListIterator(self.head )
def lowerCAmelCase ( self : Tuple )-> int:
if self.head:
return self.head.get_data()
return None
def lowerCAmelCase ( self : Dict )-> Optional[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None:
if self.head is None:
snake_case = node
snake_case = node
else:
self.insert_before_node(self.head , __snake_case )
def lowerCAmelCase ( self : int , __snake_case : Node )-> None:
if self.head is None:
self.set_head(__snake_case )
else:
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> None:
snake_case = Node(__snake_case )
if self.head is None:
self.set_head(__snake_case )
else:
self.set_tail(__snake_case )
def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.previous
if node.get_previous() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None:
snake_case = node
snake_case = node.next
if node.get_next() is None:
snake_case = node_to_insert
else:
snake_case = node_to_insert
snake_case = node_to_insert
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None:
snake_case = 1
snake_case = Node(__snake_case )
snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(__snake_case , __snake_case )
return
current_position += 1
snake_case = node.next
self.insert_after_node(self.tail , __snake_case )
def lowerCAmelCase ( self : str , __snake_case : int )-> Node:
snake_case = self.head
while node:
if node.get_data() == item:
return node
snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple:
if (node := self.get_node(__snake_case )) is not None:
if node == self.head:
snake_case = self.head.get_next()
if node == self.tail:
snake_case = self.tail.get_previous()
self.remove_node_pointers(__snake_case )
@staticmethod
def lowerCAmelCase ( __snake_case : Node )-> None:
if node.get_next():
snake_case = node.previous
if node.get_previous():
snake_case = node.next
snake_case = None
snake_case = None
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
return self.head is None
def __lowerCamelCase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 3 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]:
snake_case = vocab_size
snake_case = max_position_embeddings
snake_case = d_model
snake_case = encoder_ffn_dim
snake_case = encoder_layers
snake_case = encoder_attention_heads
snake_case = decoder_ffn_dim
snake_case = decoder_layers
snake_case = decoder_attention_heads
snake_case = dropout
snake_case = attention_dropout
snake_case = activation_dropout
snake_case = activation_function
snake_case = init_std
snake_case = encoder_layerdrop
snake_case = decoder_layerdrop
snake_case = classifier_dropout
snake_case = use_cache
snake_case = encoder_layers
snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
snake_case = use_prompt
snake_case = prompt_length
snake_case = prompt_mid_dim
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ):
snake_case = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
| 3 | 1 |
'''simple docstring'''
from math import factorial
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float ) -> float:
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
snake_case = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
snake_case = float(factorial(__lowerCAmelCase ) )
coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 3 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
# A mock response for an HTTP head request to emulate server down
snake_case = mock.Mock()
snake_case = 5_00
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head:
snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
snake_case = ViTImageProcessor.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" )
def lowerCAmelCase ( self : Union[str, Any] )-> str:
with self.assertRaises(__snake_case ):
# config is in subfolder, the following should not work without specifying the subfolder
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" )
self.assertIsNotNone(__snake_case )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def lowerCAmelCase ( cls : Optional[int] )-> Dict:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : List[Any] )-> str:
try:
delete_repo(token=cls._token , repo_id="""test-image-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : List[Any] )-> int:
snake_case = ViTImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
__snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" )
for k, v in image_processor.__dict__.items():
self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) )
def lowerCAmelCase ( self : str )-> Tuple:
CustomImageProcessor.register_for_auto_class()
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , )
snake_case = AutoImageProcessor.from_pretrained(
f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
| 3 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[int] )-> List[str]:
snake_case = tf.convert_to_tensor(
[
[
8.2_22_09_91, # 3rd highest value; idx. 0
-0.5_62_00_44,
5.23_22_97_52,
4.0_38_63_93,
-6.8_79_83_78,
-0.54_78_58_02,
-3.2_01_21_53,
2.92_77_71_76,
1.88_17_19_53,
7.35_34_12_76, # 5th highest value; idx. 9
8.43_20_78_33, # 2nd highest value; idx. 10
-9.85_71_18_36,
-5.96_20_92_36,
-1.13_03_91_61,
-7.1_11_52_94,
-0.8_36_96_33,
-5.3_18_64_08,
7.06_42_74_07,
0.81_36_93_44,
-0.82_02_38_17,
-5.9_17_97_96,
0.58_81_34_43,
-6.99_77_84_38,
4.71_55_11_89,
-0.18_77_16_37,
7.44_02_07_59, # 4th highest value; idx. 25
9.38_45_09_87, # 1st highest value; idx. 26
2.12_66_29_41,
-9.32_56_20_38,
2.35_65_25_22,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_42_55_18,
4.53_13_92_38,
-5.57_51_04_64,
-6.28_03_06_99,
-7.19_52_95_03,
-4.02_12_25_51,
1.39_33_70_37,
-6.06_70_70_57,
1.59_48_05_17,
-9.64_31_19,
0.03_90_77_99,
0.67_23_17_62,
-8.88_20_67_26,
6.27_11_59_22, # 4th highest value; idx. 13
2.28_52_07_23,
4.82_76_75_06,
4.30_42_13_68,
8.8_27_53_13, # 2nd highest value; idx. 17
5.44_02_99_58, # 5th highest value; idx. 18
-4.4_73_57_94,
7.38_57_95_36, # 3rd highest value; idx. 20
-2.91_05_16_63,
2.61_94_60_77,
-2.5_67_47_62,
-9.48_95_93_02,
-4.02_92_26_45,
-1.35_41_69_18,
9.67_70_23_23, # 1st highest value; idx. 27
-5.89_47_85_53,
1.85_37_04_67,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case = tf.convert_to_tensor(
[8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case = tf_top_k_top_p_filtering(__snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case = output[output != -float("""inf""" )]
snake_case = tf.cast(
tf.where(tf.not_equal(__snake_case , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-12 )
tf.debugging.assert_equal(__snake_case , __snake_case )
@require_tf
class _lowerCAmelCase ( unittest.TestCase , A__ ):
"""simple docstring"""
if is_tf_available():
snake_case_ = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def lowerCAmelCase ( self : str )-> Optional[Any]:
# TF-only test: tf.saved_model export
snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
snake_case = 2
snake_case = 2
class _lowerCAmelCase ( tf.Module ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : Any )-> List[str]:
super(__snake_case , self ).__init__()
snake_case = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__snake_case , )
def lowerCAmelCase ( self : List[Any] , __snake_case : List[Any] , __snake_case : List[str] )-> Any:
snake_case = self.model.generate(
input_ids=__snake_case , attention_mask=__snake_case , max_new_tokens=__snake_case , return_dict_in_generate=__snake_case , )
return {"sequences": outputs["sequences"]}
snake_case = [[2, 0], [1_02, 1_03]]
snake_case = [[1, 0], [1, 1]]
snake_case = DummyModel(model=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__snake_case , __snake_case , signatures={"""serving_default""": dummy_model.serving} )
snake_case = tf.saved_model.load(__snake_case ).signatures["""serving_default"""]
for batch_size in range(1 , len(__snake_case ) + 1 ):
snake_case = {
"""input_ids""": tf.constant(dummy_input_ids[:batch_size] ),
"""attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case = serving_func(**__snake_case )["""sequences"""]
snake_case = test_model.generate(**__snake_case , max_new_tokens=__snake_case )
tf.debugging.assert_equal(__snake_case , __snake_case )
@slow
def lowerCAmelCase ( self : Optional[Any] )-> str:
# TF-only test: tf.saved_model export
snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
snake_case = 1
snake_case = 2
class _lowerCAmelCase ( tf.Module ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : Tuple )-> Optional[int]:
super(__snake_case , self ).__init__()
snake_case = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ),
) , jit_compile=__snake_case , )
def lowerCAmelCase ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict )-> Dict:
snake_case = self.model.generate(
input_ids=__snake_case , attention_mask=__snake_case , max_new_tokens=__snake_case , return_dict_in_generate=__snake_case , )
return {"sequences": outputs["sequences"]}
snake_case = [[2], [1_02, 1_03]]
snake_case = [[1], [1, 1]]
snake_case = DummyModel(model=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__snake_case , __snake_case , signatures={"""serving_default""": dummy_model.serving} )
snake_case = tf.saved_model.load(__snake_case ).signatures["""serving_default"""]
for input_row in range(len(__snake_case ) ):
snake_case = {
"""input_ids""": tf.constant([dummy_input_ids[input_row]] ),
"""attention_mask""": tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case = serving_func(**__snake_case )["""sequences"""]
snake_case = test_model.generate(**__snake_case , max_new_tokens=__snake_case )
tf.debugging.assert_equal(__snake_case , __snake_case )
@slow
@require_tensorflow_text
def lowerCAmelCase ( self : Optional[int] )-> List[str]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__snake_case )
class _lowerCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict )-> Any:
super().__init__()
snake_case = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__snake_case , """spiece.model""" ) , """rb""" ).read() )
snake_case = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" )
def lowerCAmelCase ( self : int , __snake_case : Any , *__snake_case : str , **__snake_case : int )-> str:
snake_case = self.tokenizer.tokenize(__snake_case )
snake_case , snake_case = text.pad_model_inputs(
__snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
snake_case = self.model.generate(input_ids=__snake_case , attention_mask=__snake_case )
return self.tokenizer.detokenize(__snake_case )
snake_case = CompleteSentenceTransformer()
snake_case = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" )
snake_case = complete_model(__snake_case )
snake_case = tf.keras.Model(__snake_case , __snake_case )
keras_model.save(__snake_case )
def lowerCAmelCase ( self : Any )-> List[Any]:
# Has PT equivalent: this test relies on random sampling
snake_case = {
"""do_sample""": True,
"""num_beams""": 1,
"""top_p""": 0.7,
"""top_k""": 10,
"""temperature""": 0.7,
}
snake_case = 14
snake_case = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
snake_case = """Hello, my dog is cute and"""
snake_case = tokenizer(__snake_case , return_tensors="""tf""" )
snake_case = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
snake_case = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
snake_case = model.generate(**__snake_case , eos_token_id=__snake_case , **__snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case = [6_38, 1_98]
with tf.device(""":/CPU:0""" ):
tf.random.set_seed(0 )
snake_case = model.generate(**__snake_case , eos_token_id=__snake_case , **__snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def lowerCAmelCase ( self : Tuple )-> Tuple:
# Has PT equivalent: ample use of framework-specific code
snake_case = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
snake_case = """Hugging Face is a technology company based in New York and Paris."""
snake_case = bart_tokenizer(__snake_case , return_tensors="""tf""" ).input_ids
snake_case = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
snake_case = bart_model.generate(__snake_case ).numpy()
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Any , __snake_case : List[Any]=None , **__snake_case : Tuple )-> Union[str, Any]:
return super().call(__snake_case , **__snake_case )
snake_case = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" )
snake_case = bart_model.generate(__snake_case , foo="""bar""" ).numpy()
self.assertTrue(np.array_equal(__snake_case , __snake_case ) )
class _lowerCAmelCase ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Union[str, Any] , **__snake_case : Union[str, Any] )-> Union[str, Any]:
return super().call(__snake_case , **__snake_case )
snake_case = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case = bart_model.generate(__snake_case ).numpy()
with self.assertRaises(__snake_case ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__snake_case , foo="""bar""" )
| 3 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def lowerCAmelCase ( self : str )-> Any:
snake_case = 0
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig()
snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Dict )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaFeatureExtractor()
snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
snake_case = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f:
snake_case = json.load(__snake_case )
config_dict.pop("""processor_class""" )
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write(json.dumps(__snake_case ) )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Optional[int] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f:
f.write("""{}""" )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
snake_case = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
snake_case = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case )
snake_case = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
snake_case = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Any )-> Tuple:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = False
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "AutoFeatureExtractor"
snake_case_ = "AutoTokenizer"
snake_case_ = False
try:
AutoConfig.register("""custom""" , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
snake_case = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : str )-> Union[str, Any]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def lowerCAmelCase ( self : Any )-> List[str]:
snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Tuple:
snake_case = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def lowerCAmelCase ( self : List[Any] )-> str:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token )
snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : Any )-> Optional[Any]:
snake_case = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , )
snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase ( self : List[str] )-> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__snake_case , """vocab.txt""" )
with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__snake_case )
snake_case = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f:
snake_case = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) )
repo.push_to_hub()
snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 3 | 1 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]:
snake_case = 0
snake_case = len(__lowerCAmelCase ) # No of vertices in graph
snake_case = [0] * n
snake_case = [False] * n
def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
snake_case = True
snake_case = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ )
snake_case = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case = min(low[at] , low[to] )
snake_case = []
for i in range(__lowerCAmelCase ):
if not visited[i]:
dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import pprint
import requests
_SCREAMING_SNAKE_CASE = "https://zenquotes.io/api"
def __lowerCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def __lowerCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = random_quotes()
pprint.pprint(response)
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]:
snake_case = SEWConfig()
if is_finetuned:
snake_case = model.wav_encoder.wav_model.cfg
else:
snake_case = model.cfg
snake_case = fs_config.conv_bias
snake_case = eval(fs_config.conv_feature_layers )
snake_case = [x[0] for x in conv_layers]
snake_case = [x[1] for x in conv_layers]
snake_case = [x[2] for x in conv_layers]
snake_case = """gelu"""
snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case = 0.0
snake_case = fs_config.activation_fn.name
snake_case = fs_config.encoder_embed_dim
snake_case = 0.02
snake_case = fs_config.encoder_ffn_embed_dim
snake_case = 1e-5
snake_case = fs_config.encoder_layerdrop
snake_case = fs_config.encoder_attention_heads
snake_case = fs_config.conv_pos_groups
snake_case = fs_config.conv_pos
snake_case = len(__lowerCAmelCase )
snake_case = fs_config.encoder_layers
snake_case = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case = model.cfg
snake_case = fs_config.final_dropout
snake_case = fs_config.layerdrop
snake_case = fs_config.activation_dropout
snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case = fs_config.attention_dropout
snake_case = fs_config.dropout_input
snake_case = fs_config.dropout
snake_case = fs_config.mask_channel_length
snake_case = fs_config.mask_channel_prob
snake_case = fs_config.mask_length
snake_case = fs_config.mask_prob
snake_case = """Wav2Vec2FeatureExtractor"""
snake_case = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any:
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case = SEWConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = convert_config(model[0] , __lowerCAmelCase )
snake_case = model[0].eval()
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = SEWForCTC(__lowerCAmelCase )
else:
snake_case = SEWModel(__lowerCAmelCase )
feature_extractor.save_pretrained(__lowerCAmelCase )
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 3 | 1 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : str ) -> str:
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : int , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] )-> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Any , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] )-> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : str , **__snake_case : str )-> int:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : str , *__snake_case : Any , **__snake_case : Union[str, Any] )-> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Dict , *__snake_case : Tuple , **__snake_case : Dict )-> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *__snake_case : Union[str, Any] , **__snake_case : Any )-> Any:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Dict , *__snake_case : List[str] , **__snake_case : Dict )-> List[str]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : Dict , **__snake_case : Dict )-> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[Any] , *__snake_case : List[str] , **__snake_case : Tuple )-> List[str]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : str , *__snake_case : str , **__snake_case : Union[str, Any] )-> Tuple:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Tuple , *__snake_case : Union[str, Any] , **__snake_case : Tuple )-> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *__snake_case : Dict , **__snake_case : Optional[Any] )-> List[str]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Any )-> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *__snake_case : int , **__snake_case : Any )-> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *__snake_case : List[Any] , **__snake_case : Tuple )-> List[Any]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Dict , *__snake_case : Optional[Any] , **__snake_case : Optional[int] )-> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Dict , *__snake_case : Dict , **__snake_case : Optional[Any] )-> List[str]:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *__snake_case : List[str] , **__snake_case : str )-> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Optional[int] , *__snake_case : Dict , **__snake_case : Dict )-> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Tuple , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] )-> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Optional[int] , *__snake_case : Dict , **__snake_case : Dict )-> Optional[int]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : List[str] , *__snake_case : int , **__snake_case : Tuple )-> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *__snake_case : Union[str, Any] , **__snake_case : Tuple )-> List[Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : str , *__snake_case : Dict , **__snake_case : Dict )-> Dict:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : List[str] )-> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] )-> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : int , *__snake_case : Optional[Any] , **__snake_case : int )-> int:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : List[str] , *__snake_case : List[str] , **__snake_case : str )-> List[str]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Dict , *__snake_case : List[Any] , **__snake_case : List[str] )-> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : str , *__snake_case : List[str] , **__snake_case : Optional[int] )-> int:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Optional[int] , *__snake_case : Any , **__snake_case : str )-> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Tuple , *__snake_case : Tuple , **__snake_case : Optional[Any] )-> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : int , *__snake_case : List[str] , **__snake_case : Any )-> Dict:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : str , *__snake_case : Dict , **__snake_case : Optional[int] )-> str:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : str , *__snake_case : Optional[int] , **__snake_case : Tuple )-> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[str] , *__snake_case : Optional[int] , **__snake_case : Tuple )-> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class _lowerCAmelCase ( metaclass=A__ ):
"""simple docstring"""
snake_case_ = ["flax"]
def __init__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : Dict )-> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Dict )-> List[str]:
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCAmelCase ( cls : List[Any] , *__snake_case : int , **__snake_case : Union[str, Any] )-> int:
requires_backends(cls , ["""flax"""] )
| 3 |
'''simple docstring'''
def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list:
snake_case = len(__lowerCAmelCase )
snake_case = [[0] * n for i in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
snake_case = y_points[i]
for i in range(2 , __lowerCAmelCase ):
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str , **__lowerCAmelCase : Tuple ) -> Union[str, Any]:
snake_case = AutoConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
snake_case = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 3 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 3 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyVaaControlnetImgaImgPipeline
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"]
snake_case_ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def lowerCAmelCase ( self : Dict )-> str:
return 32
@property
def lowerCAmelCase ( self : int )-> List[str]:
return 32
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return self.time_input_dim
@property
def lowerCAmelCase ( self : Optional[Any] )-> Any:
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : str )-> Union[str, Any]:
return 1_00
@property
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
torch.manual_seed(0 )
snake_case = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case = UNetaDConditionModel(**__snake_case )
return model
@property
def lowerCAmelCase ( self : List[Any] )-> str:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : str )-> List[str]:
torch.manual_seed(0 )
snake_case = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : int )-> Dict:
snake_case = self.dummy_unet
snake_case = self.dummy_movq
snake_case = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
snake_case = DDIMScheduler(**__snake_case )
snake_case = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]:
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__snake_case )
# create init_image
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
if str(__snake_case ).startswith("""mps""" ):
snake_case = torch.manual_seed(__snake_case )
else:
snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
snake_case = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : Dict )-> Optional[int]:
snake_case = """cpu"""
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**__snake_case )
snake_case = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
snake_case = pipe(**self.get_dummy_inputs(__snake_case ) )
snake_case = output.images
snake_case = pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case = np.array(
[0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] )-> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] )-> Optional[int]:
snake_case = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
snake_case = init_image.resize((5_12, 5_12) )
snake_case = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0
snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case = """A robot, 4k photo"""
snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case = pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case , snake_case = pipe_prior(
__snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple()
snake_case = pipeline(
image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
snake_case = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 3 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
_SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
_SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1"
_SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart"
@require_torch
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple:
snake_case = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , )
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
if not do_eval:
return
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
snake_case = eval_metrics[-1]
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Tuple )-> int:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case )
@require_torch_multi_gpu
def lowerCAmelCase ( self : str )-> List[Any]:
self.run_seqaseq_quick(distributed=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> Dict:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : int )-> str:
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case )
@unittest.skip("""Requires an update of the env running those tests""" )
@require_torch_multi_gpu
@require_fairscale
def lowerCAmelCase ( self : Any )-> List[Any]:
self.run_seqaseq_quick(
distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case )
@require_apex
@require_torch_gpu
def lowerCAmelCase ( self : Tuple )-> Union[str, Any]:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" )
@parameterized.expand(["""base""", """low""", """high""", """mixed"""] )
@require_torch_multi_gpu
def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
snake_case = {
# test with the default log_level - should be info and thus log info once
"""base""": {"""extra_args_str""": """""", """n_matches""": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"""low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"""high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"""mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0},
}
snake_case = experiments[experiment_id]
snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False}
snake_case = """Running training"""
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] )
snake_case = len(re.findall(__snake_case , cl.err ) )
self.assertEqual(__snake_case , data["""n_matches"""] )
@slow
def lowerCAmelCase ( self : Tuple )-> List[Any]:
snake_case = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , )
# Check metrics
snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = [log for log in logs if """eval_loss""" in log.keys()]
snake_case = eval_metrics[0]
snake_case = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case )
# test if do_predict saves generations and metrics
snake_case = os.listdir(__snake_case )
snake_case = {os.path.basename(__snake_case ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowerCAmelCase ( self : str )-> Any:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]:
snake_case = """--skip_memory_metrics 0"""
snake_case = self.run_trainer(
max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , )
# Check metrics
snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history
snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 )
snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 )
snake_case = logs[0]["""train_loss"""]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig
snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
snake_case = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
snake_case = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , )
self.assertGreater(
__snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"""
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , )
self.assertEqual(
__snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict:
snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro"""
snake_case = self.get_auto_remove_tmp_dir()
snake_case = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__snake_case )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__snake_case )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
snake_case = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__snake_case )}
'''.split()
snake_case = """
--do_predict
""".split()
snake_case = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
snake_case = get_gpu_count()
snake_case = get_torch_dist_unique_port()
snake_case = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
snake_case = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__snake_case , env=self.get_env() )
else:
snake_case = ["""run_translation.py"""] + args
with patch.object(__snake_case , """argv""" , __snake_case ):
main()
return output_dir
| 3 | 1 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
for attribute in key.split(""".""" ):
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
snake_case = True
else:
for key, mapped_key in MAPPING.items():
snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned):
snake_case = True
if "*" in mapped_key:
snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
snake_case = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
snake_case = """weight_g"""
elif "weight_v" in name:
snake_case = """weight_v"""
elif "weight" in name:
snake_case = """weight"""
elif "bias" in name:
snake_case = """bias"""
else:
snake_case = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]:
snake_case = full_name.split("""conv_layers.""" )[-1]
snake_case = name.split(""".""" )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]:
if config_path is not None:
snake_case = HubertConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case = HubertConfig()
if is_finetuned:
if dict_path:
snake_case = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __lowerCAmelCase )
snake_case = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
snake_case = True if config.feat_extract_norm == """layer""" else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case = HubertForCTC(__lowerCAmelCase )
else:
snake_case = HubertModel(__lowerCAmelCase )
if is_finetuned:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
snake_case = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
_SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
_SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
_SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowerCAmelCase ( self : Dict )-> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , )
def lowerCAmelCase ( self : Optional[Any] , __snake_case : Any , __snake_case : str )-> Dict:
snake_case = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
snake_case = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
snake_case = evaluate(dataset=__snake_case , predictions=__snake_case )
return score
| 3 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = 0
def lowerCAmelCase ( self : str )-> Any:
snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> str:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[str] )-> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : Tuple )-> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict()
config_dict.pop("""image_processor_type""" )
snake_case = CLIPImageProcessor(**__snake_case )
# save in new folder
model_config.save_pretrained(__snake_case )
config.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
# make sure private variable is not incorrectly saved
snake_case = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def lowerCAmelCase ( self : int )-> Dict:
with self.assertRaisesRegex(
__snake_case , """clip-base is not a local folder and is not a valid model identifier""" ):
snake_case = AutoImageProcessor.from_pretrained("""clip-base""" )
def lowerCAmelCase ( self : Tuple )-> int:
with self.assertRaisesRegex(
__snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" )
def lowerCAmelCase ( self : str )-> Union[str, Any]:
with self.assertRaisesRegex(
__snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase ( self : List[str] )-> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def lowerCAmelCase ( self : List[str] )-> Dict:
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoImageProcessor.register(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case = Path(__snake_case ) / """preprocessor_config.json"""
snake_case = Path(__snake_case ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) )
snake_case = CustomImageProcessor.from_pretrained(__snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__snake_case )
snake_case = AutoImageProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase ( self : Dict )-> Optional[int]:
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = True
try:
AutoConfig.register("""custom""" , __snake_case )
AutoImageProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local
snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__snake_case , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 3 | 1 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {str(digit): digit**5 for digit in range(10)}
def __lowerCamelCase ( __lowerCAmelCase : int ) -> int:
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__lowerCAmelCase ) )
def __lowerCamelCase ( ) -> int:
return sum(
number
for number in range(10_00 , 1_00_00_00 )
if number == digits_fifth_powers_sum(__lowerCAmelCase ) )
if __name__ == "__main__":
print(solution())
| 3 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "Salesforce/blip-image-captioning-base"
snake_case_ = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
snake_case_ = "image_captioner"
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ["image"]
snake_case_ = ["text"]
def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]:
requires_backends(self , ["""vision"""] )
super().__init__(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int:
return self.pre_processor(images=__snake_case , return_tensors="""pt""" )
def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]:
return self.model.generate(**__snake_case )
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict:
return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] )-> Dict:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Union[str, Any] , __snake_case : int = 1 , __snake_case : int = 1_00 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[float] = None , __snake_case : bool = True , )-> Union[AudioPipelineOutput, Tuple]:
if audio_length_in_s is None:
snake_case = self.unet.config.sample_size / self.unet.config.sample_rate
snake_case = audio_length_in_s * self.unet.config.sample_rate
snake_case = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
snake_case = int(__snake_case )
if sample_size % down_scale_factor != 0:
snake_case = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
snake_case = int(__snake_case )
snake_case = next(iter(self.unet.parameters() ) ).dtype
snake_case = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
snake_case = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case )
# set step values
self.scheduler.set_timesteps(__snake_case , device=audio.device )
snake_case = self.scheduler.timesteps.to(__snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
snake_case = self.unet(__snake_case , __snake_case ).sample
# 2. compute previous image: x_t -> t_t-1
snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample
snake_case = audio.clamp(-1 , 1 ).float().cpu().numpy()
snake_case = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=__snake_case )
| 3 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]:
snake_case = size if size is not None else {"""height""": 18, """width""": 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = apply_ocr
def lowerCAmelCase ( self : List[Any] )-> List[str]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def lowerCAmelCase ( self : int )-> Tuple:
snake_case = LayoutLMvaImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple )-> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] )-> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__snake_case , """do_resize""" ) )
self.assertTrue(hasattr(__snake_case , """size""" ) )
self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) )
def lowerCAmelCase ( self : List[str] )-> List[Any]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Dict )-> Union[str, Any]:
pass
def lowerCAmelCase ( self : Tuple )-> Dict:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , __snake_case )
self.assertIsInstance(encoding.boxes , __snake_case )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] )-> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case )
for image in image_inputs:
self.assertIsInstance(__snake_case , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCAmelCase ( self : int )-> List[Any]:
# with apply_OCR = True
snake_case = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __snake_case )
self.assertListEqual(encoding.boxes , __snake_case )
# with apply_OCR = False
snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case )
snake_case = image_processing(__snake_case , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 3 | 1 |
'''simple docstring'''
import sys
def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> Optional[int]:
snake_case = len(__lowerCAmelCase )
snake_case = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )]
snake_case = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )]
for chain_length in range(2 , __lowerCAmelCase ):
for a in range(1 , n - chain_length + 1 ):
snake_case = a + chain_length - 1
snake_case = sys.maxsize
for c in range(__lowerCAmelCase , __lowerCAmelCase ):
snake_case = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
snake_case = cost
snake_case = c
return matrix, sol
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Tuple ) -> List[Any]:
if i == j:
print("""A""" + str(__lowerCAmelCase ) , end=""" """ )
else:
print("""(""" , end=""" """ )
print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] )
print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase )
print(""")""" , end=""" """ )
def __lowerCamelCase ( ) -> Tuple:
snake_case = [30, 35, 15, 5, 10, 20, 25]
snake_case = len(__lowerCAmelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
snake_case , snake_case = matrix_chain_order(__lowerCAmelCase )
print("""No. of Operation required: """ + str(matrix[1][n - 1] ) )
print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 3 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str:
snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" )
snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 3 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
_SCREAMING_SNAKE_CASE = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=8 ) -> Optional[Any]:
snake_case = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
snake_case = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Optional[int]=5_12 ) -> Optional[Any]:
snake_case = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
snake_case = np.array(pil_image.convert("""RGB""" ) )
snake_case = arr.astype(np.floataa ) / 127.5 - 1
snake_case = np.transpose(__lowerCAmelCase , [2, 0, 1] )
snake_case = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 )
return image
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : VQModel , )-> Union[str, Any]:
super().__init__()
self.register_modules(
unet=__snake_case , scheduler=__snake_case , movq=__snake_case , )
snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple )-> Any:
# get the original timestep using init_timestep
snake_case = min(int(num_inference_steps * strength ) , __snake_case )
snake_case = max(num_inference_steps - init_timestep , 0 )
snake_case = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCAmelCase ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Any , __snake_case : str=None )-> List[Any]:
if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}''' )
snake_case = image.to(device=__snake_case , dtype=__snake_case )
snake_case = batch_size * num_images_per_prompt
if image.shape[1] == 4:
snake_case = image
else:
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
elif isinstance(__snake_case , __snake_case ):
snake_case = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case )
]
snake_case = torch.cat(__snake_case , dim=0 )
else:
snake_case = self.movq.encode(__snake_case ).latent_dist.sample(__snake_case )
snake_case = self.movq.config.scaling_factor * init_latents
snake_case = torch.cat([init_latents] , dim=0 )
snake_case = init_latents.shape
snake_case = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case )
# get latents
snake_case = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case )
snake_case = init_latents
return latents
def lowerCAmelCase ( self : int , __snake_case : Optional[Any]=0 )-> Optional[int]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
snake_case = torch.device(f'''cuda:{gpu_id}''' )
snake_case = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__snake_case , __snake_case )
def lowerCAmelCase ( self : int , __snake_case : int=0 )-> List[Any]:
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
snake_case = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=__snake_case )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
snake_case = None
for cpu_offloaded_model in [self.unet, self.movq]:
snake_case , snake_case = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case )
# We'll offload the last model manually.
snake_case = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase ( self : List[Any] )-> List[Any]:
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__snake_case , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__snake_case )
def __call__( self : int , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 1_00 , __snake_case : float = 4.0 , __snake_case : float = 0.3 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , )-> Union[str, Any]:
snake_case = self._execution_device
snake_case = guidance_scale > 1.0
if isinstance(__snake_case , __snake_case ):
snake_case = torch.cat(__snake_case , dim=0 )
snake_case = image_embeds.shape[0]
if isinstance(__snake_case , __snake_case ):
snake_case = torch.cat(__snake_case , dim=0 )
if do_classifier_free_guidance:
snake_case = image_embeds.repeat_interleave(__snake_case , dim=0 )
snake_case = negative_image_embeds.repeat_interleave(__snake_case , dim=0 )
snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case )
if not isinstance(__snake_case , __snake_case ):
snake_case = [image]
if not all(isinstance(__snake_case , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f'''Input is in incorrect format: {[type(__snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' )
snake_case = torch.cat([prepare_image(__snake_case , __snake_case , __snake_case ) for i in image] , dim=0 )
snake_case = image.to(dtype=image_embeds.dtype , device=__snake_case )
snake_case = self.movq.encode(__snake_case )["""latents"""]
snake_case = latents.repeat_interleave(__snake_case , dim=0 )
self.scheduler.set_timesteps(__snake_case , device=__snake_case )
snake_case , snake_case = self.get_timesteps(__snake_case , __snake_case , __snake_case )
snake_case = timesteps[:1].repeat(batch_size * num_images_per_prompt )
snake_case , snake_case = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor )
snake_case = self.prepare_latents(
__snake_case , __snake_case , __snake_case , __snake_case , image_embeds.dtype , __snake_case , __snake_case )
for i, t in enumerate(self.progress_bar(__snake_case ) ):
# expand the latents if we are doing classifier free guidance
snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case = {"""image_embeds""": image_embeds}
snake_case = self.unet(
sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0]
if do_classifier_free_guidance:
snake_case , snake_case = noise_pred.split(latents.shape[1] , dim=1 )
snake_case , snake_case = noise_pred.chunk(2 )
snake_case , snake_case = variance_pred.chunk(2 )
snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
snake_case , snake_case = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
snake_case = self.scheduler.step(
__snake_case , __snake_case , __snake_case , generator=__snake_case , )[0]
# post-processing
snake_case = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
snake_case = image * 0.5 + 0.5
snake_case = image.clamp(0 , 1 )
snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case = self.numpy_to_pil(__snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__snake_case )
| 3 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = "WhisperFeatureExtractor"
snake_case_ = "WhisperTokenizer"
def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]:
super().__init__(__snake_case , __snake_case )
snake_case = self.feature_extractor
snake_case = False
def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case )
def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
snake_case = kwargs.pop("""audio""" , __snake_case )
snake_case = kwargs.pop("""sampling_rate""" , __snake_case )
snake_case = kwargs.pop("""text""" , __snake_case )
if len(__snake_case ) > 0:
snake_case = args[0]
snake_case = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
snake_case = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case = encodings["""input_ids"""]
return inputs
def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any:
return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
| 3 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.