code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math import sys def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if number != int(UpperCAmelCase__ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 lowercase__: Optional[Any] = [-1] * (number + 1) lowercase__: Tuple = 0 for i in range(1 , number + 1 ): lowercase__: Union[str, Any] = sys.maxsize lowercase__: Optional[Any] = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1 , root + 1 ): lowercase__: List[Any] = 1 + answers[i - (j**2)] lowercase__: Union[str, Any] = min(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase__: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: int = 0 # Number of processes finished lowercase__: Dict = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__: Any = [0] * no_of_process # List to include calculation results lowercase__: List[Any] = [0] * no_of_process # Sort by arrival time. lowercase__: Union[str, Any] = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE_ )] lowercase__: str = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE_ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__: Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__: List[str] = arrival_time[i] lowercase__: Any = 0 # Index showing the location of the process being performed lowercase__: int = 0 # Saves the current response ratio. lowercase__: Dict = 0 for i in range(0 , SCREAMING_SNAKE_CASE_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__: Optional[int] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__: Union[str, Any] = temp lowercase__: int = i # Calculate the turn around time lowercase__: Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__: List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: int = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE_ ): lowercase__: List[str] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A = 5 __A = ["A", "B", "C", "D", "E"] __A = [1, 2, 3, 4, 5] __A = [1, 2, 3, 4, 5] __A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: Optional[Any] = int(snake_case__ ) lowercase__: int = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=3_0_0 ) -> Optional[int]: # docstyle-ignore return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: Dict = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowercase__: List[str] = F"""{elt:.6f}""" if isinstance(snake_case__ , snake_case__ ) else str(snake_case__ ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = 5 _UpperCAmelCase :Dict = 0.2 def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 300 , ): lowercase__: Dict = total lowercase__: Union[str, Any] = '' if prefix is None else prefix lowercase__: Optional[int] = leave lowercase__: Any = parent lowercase__: List[Any] = width lowercase__: int = None lowercase__: int = None lowercase__: Dict = None def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None ): lowercase__: Optional[int] = value if comment is not None: lowercase__: Any = comment if self.last_value is None: lowercase__: str = time.time() lowercase__: str = value lowercase__: List[str] = None lowercase__: Optional[int] = self.warmup lowercase__: Optional[Any] = 1 self.update_bar(SCREAMING_SNAKE_CASE_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowercase__: List[str] = time.time() lowercase__: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowercase__: Optional[int] = self.elapsed_time / (value - self.start_value) else: lowercase__: List[Any] = None if value >= self.total: lowercase__: Any = self.total lowercase__: Dict = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowercase__: List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE_ ) lowercase__: int = value lowercase__: Tuple = current_time if self.average_time_per_item is None: lowercase__: int = 1 else: lowercase__: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: List[Any] = ' ' * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE_ ) )) + str(SCREAMING_SNAKE_CASE_ ) if self.elapsed_time is None: lowercase__: Optional[int] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: lowercase__: int = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: lowercase__: Any = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def _snake_case ( self ): lowercase__: int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowercase__: Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class UpperCAmelCase (a__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None ): super().__init__(SCREAMING_SNAKE_CASE_ ) lowercase__: str = None if column_names is None else [column_names] lowercase__: Any = None def _snake_case ( self ): lowercase__: Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowercase__: Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self , _UpperCAmelCase ): if self.inner_table is None: lowercase__: List[str] = [list(values.keys() ), list(values.values() )] else: lowercase__: int = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE_ ) lowercase__: List[str] = columns self.inner_table.append([values[c] for c in columns] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=300 ): lowercase__: Any = NotebookProgressBar(SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , parent=self , width=SCREAMING_SNAKE_CASE_ ) return self.child_bar def _snake_case ( self ): lowercase__: Optional[Any] = None self.display() class UpperCAmelCase (a__ ): """simple docstring""" def __init__( self ): lowercase__: List[Any] = None lowercase__: int = None lowercase__: Union[str, Any] = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Dict = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' lowercase__: Optional[int] = 0 lowercase__: Optional[int] = 0 lowercase__: str = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) lowercase__: List[Any] = NotebookTrainingTracker(state.max_steps , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) lowercase__: Optional[Any] = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): if not has_length(SCREAMING_SNAKE_CASE_ ): return if self.prediction_bar is None: if self.training_tracker is not None: lowercase__: Tuple = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE_ ) ) else: lowercase__: Any = NotebookProgressBar(len(SCREAMING_SNAKE_CASE_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): if self.prediction_bar is not None: self.prediction_bar.close() lowercase__: Optional[Any] = None def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowercase__: int = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy lowercase__: List[Any] = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): if self.training_tracker is not None: lowercase__: List[str] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: lowercase__: List[Any] = log['loss'] break if self.first_column == "Epoch": lowercase__: Any = int(state.epoch ) else: lowercase__: Optional[int] = state.global_step lowercase__: List[str] = 'eval' for k in metrics: if k.endswith('''_loss''' ): lowercase__: int = re.sub(r'''\_loss$''' , '''''' , SCREAMING_SNAKE_CASE_ ) lowercase__: Union[str, Any] = metrics.pop('''total_flos''' , SCREAMING_SNAKE_CASE_ ) lowercase__: Any = metrics.pop('''epoch''' , SCREAMING_SNAKE_CASE_ ) lowercase__: int = metrics.pop(F"""{metric_key_prefix}_runtime""" , SCREAMING_SNAKE_CASE_ ) lowercase__: List[Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , SCREAMING_SNAKE_CASE_ ) lowercase__: List[str] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , SCREAMING_SNAKE_CASE_ ) lowercase__: str = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , SCREAMING_SNAKE_CASE_ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": lowercase__: Tuple = v else: lowercase__: List[str] = k.split('''_''' ) lowercase__: Optional[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) lowercase__: Optional[int] = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) self.training_tracker.remove_child() lowercase__: Any = None # Evaluation takes a long time so we should force the next update. lowercase__: Optional[int] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=SCREAMING_SNAKE_CASE_ ) lowercase__: Dict = None
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED __A = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } __A = { "allenai/led-base-16384": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase__: str = bs[:] lowercase__: Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 lowercase__: List[Any] = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: lowercase__: Union[str, Any] = set() lowercase__: Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__: Tuple = char return pairs class UpperCAmelCase (_SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :str = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__: List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__: Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token lowercase__: Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__: List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__: List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__: Any = json.load(_UpperCAmelCase ) lowercase__: Tuple = {v: k for k, v in self.encoder.items()} lowercase__: Any = errors # how to handle errors in decoding lowercase__: int = bytes_to_unicode() lowercase__: List[str] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__: Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__: Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: List[str] = {} lowercase__: List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__: Optional[int] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] lowercase__: Tuple = tuple(_UpperCAmelCase ) lowercase__: int = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: lowercase__: List[Any] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__, lowercase__: Dict = bigram lowercase__: Optional[int] = [] lowercase__: List[Any] = 0 while i < len(_UpperCAmelCase ): try: lowercase__: Optional[Any] = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__: Optional[int] = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__: Any = tuple(_UpperCAmelCase ) lowercase__: Any = new_word if len(_UpperCAmelCase ) == 1: break else: lowercase__: List[Any] = get_pairs(_UpperCAmelCase ) lowercase__: str = ''' '''.join(_UpperCAmelCase ) lowercase__: List[str] = word return word def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): lowercase__: Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = ''''''.join(_UpperCAmelCase ) lowercase__: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: str = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: str = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) lowercase__: str = 0 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__: List[str] = token_index writer.write(''' '''.join(_UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Tuple = [self.cls_token_id] lowercase__: Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Union[str, Any] = [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): lowercase__: str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__: Union[str, Any] = ''' ''' + text return (text, kwargs) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: List[str] = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase__: str = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__: Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__: Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(_UpperCAmelCase ) if needs_to_be_padded: lowercase__: Any = len(_UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__: Tuple = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase__: List[str] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "" ) -> str: lowercase__: Dict = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__: Any = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) lowercase__: List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__: Union[str, Any] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCAmelCase , __UpperCAmelCase ) } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "IMDb_Top_250_Movies.csv" ) -> Any: lowercase__: Any = get_imdb_top_aaa_movies() with open(__UpperCAmelCase , '''w''' , newline='''''' ) as out_file: lowercase__: int = csv.writer(__UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class UpperCAmelCase (_UpperCamelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = 'roberta' def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Optional[int] = vocab_size lowercase__: Tuple = hidden_size lowercase__: int = num_hidden_layers lowercase__: str = num_attention_heads lowercase__: Dict = hidden_act lowercase__: Any = intermediate_size lowercase__: Tuple = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[str] = type_vocab_size lowercase__: Union[str, Any] = initializer_range lowercase__: Any = layer_norm_eps lowercase__: Optional[Any] = position_embedding_type lowercase__: List[str] = use_cache lowercase__: str = classifier_dropout class UpperCAmelCase (_UpperCamelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task == "multiple-choice": lowercase__: Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__: Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> bool: return len(set(__SCREAMING_SNAKE_CASE ) ) == len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __A = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''DPTFeatureExtractor'''] __A = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase :Optional[str] = field( default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _UpperCAmelCase :Optional[str] = field( default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase :bool = field(default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase :Optional[str] = field( default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _UpperCAmelCase :Optional[str] = field( default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) _UpperCAmelCase :int = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase :bool = field( default=_SCREAMING_SNAKE_CASE ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: lowercase__: Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__, lowercase__, lowercase__: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__, lowercase__, lowercase__: int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__: Any = import_module('''tasks''' ) try: lowercase__: Any = getattr(__UpperCAmelCase , model_args.task_type ) lowercase__: List[Any] = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__: Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__: List[str] = dict(enumerate(__UpperCAmelCase ) ) lowercase__: int = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid={label: i for i, label in enumerate(__UpperCAmelCase )} , cache_dir=model_args.cache_dir , ) lowercase__: int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__: Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__: Any = ( TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__: List[Any] = ( TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__UpperCAmelCase , __UpperCAmelCase ) -> Tuple[List[int], List[int]]: lowercase__: int = np.argmax(__UpperCAmelCase , axis=2 ) lowercase__, lowercase__: Union[str, Any] = preds.shape lowercase__: Union[str, Any] = [[] for _ in range(__UpperCAmelCase )] lowercase__: Tuple = [[] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__UpperCAmelCase ) -> Dict: lowercase__, lowercase__: Dict = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__UpperCAmelCase , __UpperCAmelCase ), "precision": precision_score(__UpperCAmelCase , __UpperCAmelCase ), "recall": recall_score(__UpperCAmelCase , __UpperCAmelCase ), "f1": fa_score(__UpperCAmelCase , __UpperCAmelCase ), } # Data collator lowercase__: Optional[int] = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__: Optional[int] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__: Optional[Any] = trainer.evaluate() lowercase__: List[str] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __UpperCAmelCase , __UpperCAmelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__UpperCAmelCase ) # Predict if training_args.do_predict: lowercase__: Dict = TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__, lowercase__, lowercase__: Any = trainer.predict(__UpperCAmelCase ) lowercase__, lowercase__: Optional[Any] = align_predictions(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __UpperCAmelCase , __UpperCAmelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__: Any = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return results def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: main() if __name__ == "__main__": main()
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ) -> Dict: lowercase__: Tuple = [] lowercase__: Dict = 1 while len(__UpperCAmelCase ) < 1e6: constant.append(str(__UpperCAmelCase ) ) i += 1 lowercase__: str = ''''''.join(__UpperCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A : Tuple = parser.parse_args() __A : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: int = nn.functional.normalize(__UpperCAmelCase ) lowercase__: Optional[int] = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = CLIPConfig _UpperCAmelCase :Dict = ["CLIPEncoderLayer"] def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: List[str] = CLIPVisionModel(config.vision_config ) lowercase__: Optional[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) lowercase__: List[str] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) lowercase__: Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) lowercase__: Dict = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) lowercase__: Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = self.vision_model(_UpperCAmelCase )[1] # pooled_output lowercase__: str = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__: List[str] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() lowercase__: List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() lowercase__: str = [] lowercase__: Dict = image_embeds.shape[0] for i in range(_UpperCAmelCase ): lowercase__: str = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowercase__: str = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowercase__: int = special_cos_dist[i][concept_idx] lowercase__: Optional[Any] = self.special_care_embeds_weights[concept_idx].item() lowercase__: Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) lowercase__: Tuple = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowercase__: Any = cos_dist[i][concept_idx] lowercase__: Optional[Any] = self.concept_embeds_weights[concept_idx].item() lowercase__: Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) lowercase__: Optional[int] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.vision_model(_UpperCAmelCase )[1] # pooled_output lowercase__: int = self.visual_projection(_UpperCAmelCase ) lowercase__: Tuple = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) lowercase__: Dict = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowercase__: Tuple = 0.0 lowercase__: Dict = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowercase__: List[str] = torch.any(special_scores > 0 , dim=1 ) lowercase__: Optional[int] = special_care * 0.01 lowercase__: Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowercase__: Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowercase__: List[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowercase__: str = [0] * no_of_processes lowercase__: Dict = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__UpperCAmelCase ): lowercase__: Any = burst_time[i] lowercase__: list[int] = [] lowercase__: Dict = 0 lowercase__: Optional[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase__: Dict = [] lowercase__: Any = -1 for i in range(__UpperCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowercase__: Optional[int] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase__: Tuple = i total_time += burst_time[target_process] completed += 1 lowercase__: Tuple = 0 lowercase__: List[str] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowercase__: List[Any] = [0] * no_of_processes for i in range(__UpperCAmelCase ): lowercase__: str = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __A = 4 __A = [2, 5, 3, 7] __A = [0, 0, 0, 0] __A = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __A = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = "xlm" _UpperCAmelCase :List[Any] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , _UpperCAmelCase=30145 , _UpperCAmelCase=2048 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=True , _UpperCAmelCase=512 , _UpperCAmelCase=2048**-0.5 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=5 , _UpperCAmelCase=True , _UpperCAmelCase="first" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): lowercase__: Optional[Any] = vocab_size lowercase__: Any = emb_dim lowercase__: Optional[int] = n_layers lowercase__: Optional[int] = n_heads lowercase__: Dict = dropout lowercase__: str = attention_dropout lowercase__: Union[str, Any] = gelu_activation lowercase__: Union[str, Any] = sinusoidal_embeddings lowercase__: Union[str, Any] = causal lowercase__: int = asm lowercase__: Tuple = n_langs lowercase__: Tuple = use_lang_emb lowercase__: Union[str, Any] = layer_norm_eps lowercase__: List[str] = bos_index lowercase__: Optional[Any] = eos_index lowercase__: int = pad_index lowercase__: Union[str, Any] = unk_index lowercase__: Union[str, Any] = mask_index lowercase__: Tuple = is_encoder lowercase__: Dict = max_position_embeddings lowercase__: Optional[int] = embed_init_std lowercase__: Tuple = init_std lowercase__: List[Any] = summary_type lowercase__: List[str] = summary_use_proj lowercase__: Optional[int] = summary_activation lowercase__: Any = summary_proj_to_labels lowercase__: Any = summary_first_dropout lowercase__: List[str] = start_n_top lowercase__: Any = end_n_top lowercase__: Optional[Any] = mask_token_id lowercase__: Union[str, Any] = lang_id if "n_words" in kwargs: lowercase__: Tuple = kwargs['''n_words'''] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task == "multiple-choice": lowercase__: int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__: int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: # Initialise PyTorch model lowercase__: Optional[Any] = MobileBertConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: int = MobileBertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint lowercase__: Union[str, Any] = load_tf_weights_in_mobilebert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) __A = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) __A = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) __A = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) __A = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 1_4]), ("2H 5D 3C AS 5S", False, [1_4, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) __A = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) __A = ( ("JH AH TH KH QH", 2_3), ("JH 9H TH KH QH", 2_2), ("JC KH JS JD JH", 2_1), ("KH KC 3S 3H 3D", 2_0), ("8C 9C 5C 3C TC", 1_9), ("JS QS 9H TS KH", 1_8), ("7C 7S KH 2H 7H", 1_7), ("3C KH 5D 5S KH", 1_6), ("QH 8H KD JH 8S", 1_5), ("2D 6D 9D TH 7D", 1_4), ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: lowercase__: Dict = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) lowercase__: Optional[int] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__: int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0 ) -> Dict: return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Tuple = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def SCREAMING_SNAKE_CASE__ ( ) -> Dict: lowercase__: Union[str, Any] = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] lowercase__: Any = poker_hands.copy() shuffle(__UpperCAmelCase ) lowercase__: Union[str, Any] = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def SCREAMING_SNAKE_CASE__ ( ) -> Dict: # Test that five high straights are compared correctly. lowercase__: str = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def SCREAMING_SNAKE_CASE__ ( ) -> Dict: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase__: Any = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__: Union[str, Any] = True lowercase__: Tuple = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def SCREAMING_SNAKE_CASE__ ( ) -> int: # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase__: Tuple = 0 lowercase__: Any = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) lowercase__: List[str] = os.path.join(__UpperCAmelCase , '''poker_hands.txt''' ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: lowercase__: Union[str, Any] = line[:1_4].strip() lowercase__: Optional[int] = line[1_5:].strip() lowercase__: List[Any] = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) lowercase__: List[str] = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _snake_case ( self ): lowercase__: Dict = self.dummy_uncond_unet lowercase__: Optional[int] = ScoreSdeVeScheduler() lowercase__: str = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) sde_ve.to(_UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Union[str, Any] = torch.manual_seed(0 ) lowercase__: Optional[Any] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_UpperCAmelCase ).images lowercase__: List[str] = torch.manual_seed(0 ) lowercase__: List[str] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_UpperCAmelCase , return_dict=_UpperCAmelCase )[ 0 ] lowercase__: Optional[int] = image[0, -3:, -3:, -1] lowercase__: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: str = '''google/ncsnpp-church-256''' lowercase__: Dict = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__: Optional[Any] = ScoreSdeVeScheduler.from_pretrained(_UpperCAmelCase ) lowercase__: Any = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) sde_ve.to(_UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: Union[str, Any] = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_UpperCAmelCase ).images lowercase__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["image_processor", "tokenizer"] _UpperCAmelCase :List[Any] = "BlipImageProcessor" _UpperCAmelCase :Any = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__: Optional[int] = self.tokenizer lowercase__: List[str] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding # add pixel_values lowercase__: Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) if text is not None: lowercase__: Any = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) else: lowercase__: Dict = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self ): lowercase__: Dict = self.tokenizer.model_input_names lowercase__: Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[Any] = XGLMConfig _UpperCAmelCase :List[Any] = {} _UpperCAmelCase :int = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=14 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , ): lowercase__: Any = parent lowercase__: Union[str, Any] = batch_size lowercase__: Optional[int] = seq_length lowercase__: Any = is_training lowercase__: Tuple = use_input_mask lowercase__: Union[str, Any] = use_labels lowercase__: Optional[int] = vocab_size lowercase__: Optional[Any] = d_model lowercase__: int = num_hidden_layers lowercase__: str = num_attention_heads lowercase__: Union[str, Any] = ffn_dim lowercase__: Optional[int] = activation_function lowercase__: Any = activation_dropout lowercase__: Union[str, Any] = attention_dropout lowercase__: Optional[int] = max_position_embeddings lowercase__: Optional[Any] = initializer_range lowercase__: Union[str, Any] = None lowercase__: Any = 0 lowercase__: Any = 2 lowercase__: str = 1 def _snake_case ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _snake_case ( self ): lowercase__: Tuple = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase__: Any = None if self.use_input_mask: lowercase__: int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[Any] = self.get_config() lowercase__: str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _snake_case ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def _snake_case ( self ): lowercase__: List[Any] = self.prepare_config_and_inputs() ( lowercase__ ): Tuple = config_and_inputs lowercase__: Union[str, Any] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _UpperCAmelCase :Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () _UpperCAmelCase :Union[str, Any] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Optional[Any] = False def _snake_case ( self ): lowercase__: Optional[Any] = TFXGLMModelTester(self ) lowercase__: Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() @slow def _snake_case ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Any = TFXGLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _snake_case ( self ): super().test_resize_token_embeddings() @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self , _UpperCAmelCase=True ): lowercase__: Union[str, Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__: Dict = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase__: Optional[Any] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowercase__: List[Any] = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase ) @slow def _snake_case ( self ): lowercase__: Dict = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__: Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowercase__: Dict = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) lowercase__: Union[str, Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowercase__: Tuple = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] ) lowercase__: Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) lowercase__: str = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def _snake_case ( self ): lowercase__: Any = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase__: Optional[Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase__: str = '''left''' # use different length sentences to test batching lowercase__: int = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowercase__: Union[str, Any] = tokenizer(_UpperCAmelCase , return_tensors='''tf''' , padding=_UpperCAmelCase ) lowercase__: List[str] = inputs['''input_ids'''] lowercase__: Tuple = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) lowercase__: Optional[Any] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids lowercase__: List[str] = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) lowercase__: List[Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids lowercase__: List[Any] = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) lowercase__: List[Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__: int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) lowercase__: Dict = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import itertools import os import re __A = re.compile(R"([A-Z]+)([A-Z][a-z])") __A = re.compile(R"([a-z\d])([A-Z])") __A = re.compile(R"(?<!_)_(?!_)") __A = re.compile(R"(_{2,})") __A = R"^\w+(\.\w+)*$" __A = R"<>:/\|?*" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: Optional[int] = _uppercase_uppercase_re.sub(R'''\1_\2''' , __UpperCAmelCase ) lowercase__: int = _lowercase_uppercase_re.sub(R'''\1_\2''' , __UpperCAmelCase ) return name.lower() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: lowercase__: List[str] = _single_underscore_re.split(__UpperCAmelCase ) lowercase__: Tuple = [_multiple_underscores_re.split(__UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__UpperCAmelCase ) if n != '''''' ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: if os.path.basename(__UpperCAmelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: if os.path.basename(__UpperCAmelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , __UpperCAmelCase ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(__UpperCAmelCase )}-{split}""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[int]: lowercase__: List[str] = filename_prefix_for_split(__UpperCAmelCase , __UpperCAmelCase ) if filetype_suffix: prefix += F""".{filetype_suffix}""" lowercase__: int = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) return F"""{filepath}*""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: lowercase__: Optional[int] = filename_prefix_for_split(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Dict = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if shard_lengths: lowercase__: str = len(__UpperCAmelCase ) lowercase__: Optional[int] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(__UpperCAmelCase )] if filetype_suffix: lowercase__: Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: lowercase__: Tuple = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "markuplm" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=256 , _UpperCAmelCase=1024 , _UpperCAmelCase=216 , _UpperCAmelCase=1001 , _UpperCAmelCase=32 , _UpperCAmelCase=50 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: List[str] = vocab_size lowercase__: Any = hidden_size lowercase__: int = num_hidden_layers lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[int] = hidden_act lowercase__: Dict = intermediate_size lowercase__: Dict = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = layer_norm_eps lowercase__: List[str] = position_embedding_type lowercase__: Dict = use_cache lowercase__: int = classifier_dropout # additional properties lowercase__: str = max_depth lowercase__: Optional[Any] = max_xpath_tag_unit_embeddings lowercase__: List[Any] = max_xpath_subs_unit_embeddings lowercase__: List[str] = tag_pad_id lowercase__: Union[str, Any] = subs_pad_id lowercase__: Optional[int] = xpath_unit_hidden_size
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = None _UpperCAmelCase :Optional[int] = BloomTokenizerFast _UpperCAmelCase :List[Any] = BloomTokenizerFast _UpperCAmelCase :Any = True _UpperCAmelCase :str = False _UpperCAmelCase :List[Any] = "tokenizer_file" _UpperCAmelCase :Any = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _snake_case ( self ): super().setUp() lowercase__: Dict = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.get_rust_tokenizer() lowercase__: Dict = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase__: Union[str, Any] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase__: List[Any] = tokenizer.batch_encode_plus(_UpperCAmelCase )['''input_ids'''] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__: int = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__: Dict = '''This is a simple input''' lowercase__: int = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__: int = ('''This is a simple input''', '''This is a pair''') lowercase__: Optional[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase__: Optional[int] = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='''max_length''' , ) def _snake_case ( self ): lowercase__: Tuple = self.get_rust_tokenizer() lowercase__: int = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=_UpperCAmelCase ) lowercase__: str = next(iter(_UpperCAmelCase ) )['''premise'''] # pick up one data lowercase__: Any = list(sample_data.values() ) lowercase__: Union[str, Any] = list(map(tokenizer.encode , _UpperCAmelCase ) ) lowercase__: Union[str, Any] = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __A = get_logger(__name__) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase = None ): lowercase__: Optional[Any] = ( os.path.join(_UpperCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase__: Dict = Extractor def _snake_case ( self , _UpperCAmelCase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase__: List[str] = os.path.abspath(_UpperCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCAmelCase ) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): return force_extract or ( not os.path.isfile(_UpperCAmelCase ) and not (os.path.isdir(_UpperCAmelCase ) and os.listdir(_UpperCAmelCase )) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = False ): lowercase__: Tuple = self.extractor.infer_extractor_format(_UpperCAmelCase ) if not extractor_format: return input_path lowercase__: int = self._get_output_path(_UpperCAmelCase ) if self._do_extract(_UpperCAmelCase , _UpperCAmelCase ): self.extractor.extract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return output_path class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @classmethod @abstractmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): ... @staticmethod @abstractmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): ... class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[bytes] = [] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with open(_UpperCAmelCase , '''rb''' ) as f: return f.read(_UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = b"" ): if not magic_number: lowercase__: Dict = max(len(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: lowercase__: Optional[int] = cls.read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) except OSError: return False return any(magic_number.startswith(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): return tarfile.is_tarfile(_UpperCAmelCase ) @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def resolved(_UpperCAmelCase ) -> str: return os.path.realpath(os.path.abspath(_UpperCAmelCase ) ) def badpath(_UpperCAmelCase , _UpperCAmelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ).startswith(_UpperCAmelCase ) def badlink(_UpperCAmelCase , _UpperCAmelCase ) -> bool: # Links are interpreted relative to the directory containing the link lowercase__: Tuple = resolved(os.path.join(_UpperCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCAmelCase ) lowercase__: int = resolved(_UpperCAmelCase ) for finfo in members: if badpath(finfo.name , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: str = tarfile.open(_UpperCAmelCase ) tar_file.extractall(_UpperCAmelCase , members=TarExtractor.safemembers(_UpperCAmelCase , _UpperCAmelCase ) ) tar_file.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [B"\x1F\x8B"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with gzip.open(_UpperCAmelCase , '''rb''' ) as gzip_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = [ B"PK\x03\x04", B"PK\x05\x06", # empty archive B"PK\x07\x08", # spanned archive ] @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = b"" ): if super().is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCAmelCase , '''rb''' ) as fp: lowercase__: Union[str, Any] = _EndRecData(_UpperCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase__: int = fp.read(_UpperCAmelCase ) # CD is where we expect it to be if len(_UpperCAmelCase ) == sizeCentralDir: lowercase__: str = struct.unpack(_UpperCAmelCase , _UpperCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with zipfile.ZipFile(_UpperCAmelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCAmelCase ) zip_file.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = [B"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with lzma.open(_UpperCAmelCase ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = [B"Rar!\x1a\x07\x00", B"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: List[Any] = rarfile.RarFile(_UpperCAmelCase ) rf.extractall(_UpperCAmelCase ) rf.close() class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = [B"\x28\xb5\x2F\xFD"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd lowercase__: Tuple = zstd.ZstdDecompressor() with open(_UpperCAmelCase , '''rb''' ) as ifh, open(_UpperCAmelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = [B"\x42\x5A\x68"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with bza.open(_UpperCAmelCase , '''rb''' ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = [B"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with pyazr.SevenZipFile(_UpperCAmelCase , '''r''' ) as archive: archive.extractall(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = [B"\x04\x22\x4D\x18"] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCAmelCase , '''rb''' ) as compressed_file: with open(_UpperCAmelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls ): return max( len(_UpperCAmelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCAmelCase , _UpperCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): try: return MagicNumberBaseExtractor.read_magic_number(_UpperCAmelCase , magic_number_length=_UpperCAmelCase ) except OSError: return b"" @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase = False ): warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCAmelCase , ) lowercase__: List[str] = cls.infer_extractor_format(_UpperCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # <Added version="2.4.0"/> lowercase__: int = cls._get_magic_number_max_length() lowercase__: List[Any] = cls._read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return extractor_format @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = "deprecated" , ): os.makedirs(os.path.dirname(_UpperCAmelCase ) , exist_ok=_UpperCAmelCase ) # Prevent parallel extractions lowercase__: Optional[int] = str(Path(_UpperCAmelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCAmelCase ): shutil.rmtree(_UpperCAmelCase , ignore_errors=_UpperCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCAmelCase , ) lowercase__: int = extractor if extractor != '''deprecated''' else extractor_format else: lowercase__: Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(_UpperCAmelCase , _UpperCAmelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCAmelCase ): return extractor.extract(_UpperCAmelCase , _UpperCAmelCase )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> int: lowercase__: Optional[Any] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__: Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: lowercase__: Union[str, Any] = '''''' else: lowercase__: str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__: Optional[int] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__: List[str] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: int = in_proj_weight[ : config.hidden_size, : ] lowercase__: Union[str, Any] = in_proj_bias[: config.hidden_size] lowercase__: Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__: int = in_proj_weight[ -config.hidden_size :, : ] lowercase__: Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: lowercase__: Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: Tuple = dct.pop(__UpperCAmelCase ) lowercase__: Union[str, Any] = val def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: lowercase__: List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Tuple = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: lowercase__: int = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__UpperCAmelCase , ) lowercase__: List[Any] = ViTHybridConfig(backbone_config=__UpperCAmelCase , image_size=3_8_4 , num_labels=1_0_0_0 ) lowercase__: Optional[int] = False # load original model from timm lowercase__: Optional[Any] = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__: str = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) lowercase__: Optional[Any] = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[Any] = '''huggingface/label-files''' lowercase__: Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__: Any = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: Optional[int] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: Any = idalabel lowercase__: Tuple = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__: List[Any] = ViTHybridModel(__UpperCAmelCase ).eval() else: lowercase__: Optional[int] = ViTHybridForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # create image processor lowercase__: List[str] = create_transform(**resolve_data_config({} , model=__UpperCAmelCase ) ) lowercase__: Tuple = transform.transforms lowercase__: Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase__: Tuple = ViTHybridImageProcessor( do_resize=__UpperCAmelCase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__UpperCAmelCase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__: str = prepare_img() lowercase__: List[Any] = transform(__UpperCAmelCase ).unsqueeze(0 ) lowercase__: Optional[Any] = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) # verify logits with torch.no_grad(): lowercase__: Any = model(__UpperCAmelCase ) lowercase__: Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: lowercase__: Tuple = timm_model.forward_features(__UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: lowercase__: Optional[Any] = timm_model(__UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __A = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: List[str] = np.full((len(__UpperCAmelCase ), sequence_length, 2) , __UpperCAmelCase ) else: lowercase__: Optional[int] = np.full((len(__UpperCAmelCase ), sequence_length) , __UpperCAmelCase ) for i, tensor in enumerate(__UpperCAmelCase ): if padding_side == "right": if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Any = tensor[:sequence_length] else: lowercase__: List[str] = tensor[:sequence_length] else: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Any = tensor[:sequence_length] else: lowercase__: Optional[int] = tensor[:sequence_length] return out_tensor.tolist() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = ord(__UpperCAmelCase ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True lowercase__: Union[str, Any] = unicodedata.category(__UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :PreTrainedTokenizerBase _UpperCAmelCase :Union[bool, str, PaddingStrategy] = True _UpperCAmelCase :Optional[int] = None _UpperCAmelCase :Optional[int] = None _UpperCAmelCase :int = -100 _UpperCAmelCase :str = "pt" def _snake_case ( self , _UpperCAmelCase ): import torch lowercase__: str = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__: Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__: Tuple = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__: Optional[Any] = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__: Optional[Any] = self.tokenizer.padding_side if padding_side == "right": lowercase__: str = [ list(_UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_UpperCAmelCase )) for label in labels ] else: lowercase__: int = [ [self.label_pad_token_id] * (sequence_length - len(_UpperCAmelCase )) + list(_UpperCAmelCase ) for label in labels ] lowercase__: Tuple = [feature['''ner_tags'''] for feature in features] lowercase__: Dict = padding_tensor(_UpperCAmelCase , -1 , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = [feature['''original_entity_spans'''] for feature in features] lowercase__: Optional[Any] = padding_tensor(_UpperCAmelCase , (-1, -1) , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = {k: torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = MgpstrTokenizer _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :Tuple = {} _UpperCAmelCase :Dict = False def _snake_case ( self ): super().setUp() # fmt: off lowercase__: Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__: str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) def _snake_case ( self , **_UpperCAmelCase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = '''tester''' lowercase__: Any = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__: Any = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowercase__: List[Any] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowercase__: Tuple = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) lowercase__: List[str] = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def _snake_case ( self ): lowercase__: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowercase__: int = self.get_input_output_texts(_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) lowercase__: List[str] = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _UpperCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def _snake_case ( self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def _snake_case ( self ): pass
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = BlenderbotConfig _UpperCAmelCase :Dict = {} _UpperCAmelCase :Tuple = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): lowercase__: Optional[Any] = parent lowercase__: Any = batch_size lowercase__: Optional[Any] = seq_length lowercase__: Optional[int] = is_training lowercase__: Optional[Any] = use_labels lowercase__: List[Any] = vocab_size lowercase__: Tuple = hidden_size lowercase__: str = num_hidden_layers lowercase__: str = num_attention_heads lowercase__: Dict = intermediate_size lowercase__: Dict = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: str = eos_token_id lowercase__: List[str] = pad_token_id lowercase__: List[Any] = bos_token_id def _snake_case ( self ): lowercase__: Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__: Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__: List[str] = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = TFBlenderbotModel(config=_UpperCAmelCase ).get_decoder() lowercase__: Dict = inputs_dict['''input_ids'''] lowercase__: List[Any] = input_ids[:1, :] lowercase__: int = inputs_dict['''attention_mask'''][:1, :] lowercase__: Union[str, Any] = inputs_dict['''head_mask'''] lowercase__: List[Any] = 1 # first forward pass lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__: Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__: Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__: Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase__: Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase__: str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase__: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase__: List[Any] = output_from_no_past[:, -3:, random_slice_idx] lowercase__: int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[str]: if attention_mask is None: lowercase__: Union[str, Any] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__: int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__: Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _UpperCAmelCase :Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase :Optional[Any] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase :List[str] = True _UpperCAmelCase :Dict = False _UpperCAmelCase :Optional[Any] = False def _snake_case ( self ): lowercase__: Optional[Any] = TFBlenderbotModelTester(self ) lowercase__: Any = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = ["My friends are cool but they eat too many carbs."] _UpperCAmelCase :str = "facebook/blenderbot-400M-distill" @cached_property def _snake_case ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): lowercase__: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case ( self ): lowercase__: List[str] = self.tokenizer(self.src_text , return_tensors='''tf''' ) lowercase__: Union[str, Any] = self.model.generate( model_inputs.input_ids , ) lowercase__: Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase = 0 ): lowercase__: Union[str, Any] = key def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__: Union[str, Any] = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__: Any = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: str = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase__: Tuple = bs[:] lowercase__: Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase__: Dict = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: Dict = set() lowercase__: Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__: Tuple = char return pairs class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = VOCAB_FILES_NAMES _UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__: str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__: Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token lowercase__: Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__: str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__: Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__: Any = json.load(_UpperCAmelCase ) lowercase__: Union[str, Any] = {v: k for k, v in self.encoder.items()} lowercase__: List[str] = errors # how to handle errors in decoding lowercase__: Optional[int] = bytes_to_unicode() lowercase__: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__: List[Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__: Dict = [tuple(merge.split() ) for merge in bpe_merges] lowercase__: List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Union[str, Any] = {} lowercase__: List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__: Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] lowercase__: Any = tuple(_UpperCAmelCase ) lowercase__: Optional[int] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: lowercase__: str = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__: str = bigram lowercase__: str = [] lowercase__: Optional[Any] = 0 while i < len(_UpperCAmelCase ): try: lowercase__: Any = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__: Tuple = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__: int = tuple(_UpperCAmelCase ) lowercase__: List[Any] = new_word if len(_UpperCAmelCase ) == 1: break else: lowercase__: Tuple = get_pairs(_UpperCAmelCase ) lowercase__: str = ''' '''.join(_UpperCAmelCase ) lowercase__: Dict = word return word def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): lowercase__: Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = ''''''.join(_UpperCAmelCase ) lowercase__: int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: str = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: List[str] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) lowercase__: str = 0 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__: str = token_index writer.write(''' '''.join(_UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = [self.sep_token_id] lowercase__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): lowercase__: Optional[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__: Any = ''' ''' + text return (text, kwargs) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_UpperCAmelCase ) lowercase__: Optional[int] = ''' '''.join(_UpperCAmelCase ) lowercase__: str = self.encode(_UpperCAmelCase ) if len(_UpperCAmelCase ) > self.model_max_length: lowercase__: Dict = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[PIL.Image.Image, np.ndarray] class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() self.register_modules( prior=_UpperCAmelCase , image_encoder=_UpperCAmelCase , image_processor=_UpperCAmelCase , scheduler=_UpperCAmelCase , renderer=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if latents is None: lowercase__: Optional[Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase__: Optional[Any] = latents.to(_UpperCAmelCase ) lowercase__: Dict = latents * scheduler.init_noise_sigma return latents def _snake_case ( self , _UpperCAmelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__: str = torch.device(F"""cuda:{gpu_id}""" ) lowercase__: List[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) @property def _snake_case ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , torch.Tensor ): lowercase__: List[Any] = torch.cat(_UpperCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCAmelCase , axis=0 ) if not isinstance(_UpperCAmelCase , torch.Tensor ): lowercase__: Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__: str = image.to(dtype=self.image_encoder.dtype , device=_UpperCAmelCase ) lowercase__: str = self.image_encoder(_UpperCAmelCase )['''last_hidden_state'''] lowercase__: Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__: Any = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: lowercase__: str = torch.zeros_like(_UpperCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__: Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 25 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 4.0 , _UpperCAmelCase = 64 , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , ): if isinstance(_UpperCAmelCase , PIL.Image.Image ): lowercase__: str = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): lowercase__: int = image.shape[0] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__: int = len(_UpperCAmelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCAmelCase )}""" ) lowercase__: Optional[Any] = self._execution_device lowercase__: Dict = batch_size * num_images_per_prompt lowercase__: str = guidance_scale > 1.0 lowercase__: List[Any] = self._encode_image(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # prior self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) lowercase__: Union[str, Any] = self.scheduler.timesteps lowercase__: List[Any] = self.prior.config.num_embeddings lowercase__: List[str] = self.prior.config.embedding_dim lowercase__: int = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__: List[Any] = latents.reshape(latents.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__: str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__: Optional[int] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.prior( _UpperCAmelCase , timestep=_UpperCAmelCase , proj_embedding=_UpperCAmelCase , ).predicted_image_embedding # remove the variance lowercase__: Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__: Optional[int] = noise_pred.chunk(2 ) lowercase__: Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__: Optional[int] = self.scheduler.step( _UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCAmelCase ) lowercase__: Any = [] for i, latent in enumerate(_UpperCAmelCase ): print() lowercase__: Any = self.renderer.decode( latent[None, :] , _UpperCAmelCase , size=_UpperCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_UpperCAmelCase ) lowercase__: Tuple = torch.stack(_UpperCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowercase__: Tuple = images.cpu().numpy() if output_type == "pil": lowercase__: List[Any] = [self.numpy_to_pil(_UpperCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCAmelCase )
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "" ) -> dict[str, float]: lowercase__: List[str] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__: int = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) lowercase__: List[str] = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__: Optional[int] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCAmelCase , __UpperCAmelCase ) } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__: Optional[int] = get_imdb_top_aaa_movies() with open(__UpperCAmelCase , '''w''' , newline='''''' ) as out_file: lowercase__: str = csv.writer(__UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__ = '''ylacombe/bark-small''' lowercase__ = tempfile.mkdtemp() lowercase__ = '''en_speaker_1''' lowercase__ = '''This is a test string''' lowercase__ = '''speaker_embeddings_path.json''' lowercase__ = '''speaker_embeddings''' def _snake_case ( self , **_UpperCAmelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def _snake_case ( self ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _snake_case ( self ): lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _snake_case ( self ): lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { '''semantic_prompt''': np.ones(_UpperCAmelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def _snake_case ( self ): lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=99 , _UpperCAmelCase=13 , _UpperCAmelCase=16 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=30 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=None , ): lowercase__: List[Any] = parent lowercase__: Union[str, Any] = batch_size lowercase__: Any = decoder_seq_length # For common tests lowercase__: Tuple = self.decoder_seq_length lowercase__: Dict = is_training lowercase__: List[str] = use_attention_mask lowercase__: Optional[Any] = use_labels lowercase__: Dict = vocab_size lowercase__: Tuple = d_model lowercase__: Tuple = d_model lowercase__: List[str] = decoder_layers lowercase__: str = decoder_layers lowercase__: List[str] = decoder_ffn_dim lowercase__: Tuple = decoder_attention_heads lowercase__: str = decoder_attention_heads lowercase__: Optional[Any] = eos_token_id lowercase__: int = bos_token_id lowercase__: Optional[int] = pad_token_id lowercase__: Optional[int] = decoder_start_token_id lowercase__: int = use_cache lowercase__: Dict = max_position_embeddings lowercase__: Tuple = None lowercase__: Any = decoder_seq_length lowercase__: int = 2 lowercase__: Dict = 1 def _snake_case ( self ): lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__: Union[str, Any] = None if self.use_attention_mask: lowercase__: str = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__: Any = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__: List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): lowercase__: Optional[int] = True lowercase__: List[Any] = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() lowercase__: List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__: List[str] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__: Union[str, Any] = model(_UpperCAmelCase ) lowercase__: Optional[int] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) lowercase__: List[Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__: Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__: Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__: int = model(_UpperCAmelCase )['''last_hidden_state'''] lowercase__: List[str] = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice lowercase__: Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__: List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__: List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() lowercase__: int = config_and_inputs lowercase__: Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _UpperCAmelCase :Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () _UpperCAmelCase :int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _UpperCAmelCase :int = True _UpperCAmelCase :Any = False def _snake_case ( self ): lowercase__: List[str] = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) lowercase__: Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self ): pass def _snake_case ( self ): pass def _snake_case ( self ): pass def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def _snake_case ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case ( self ): pass
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" __A = 6_5_5_2_1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Optional[Any] = 1 lowercase__: Dict = 0 for plain_chr in plain_text: lowercase__: Optional[int] = (a + ord(__UpperCAmelCase )) % MOD_ADLER lowercase__: Dict = (b + a) % MOD_ADLER return (b << 1_6) | a
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: list[list[int]] = [[0 for _ in range(__UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__: List[Any] = 1 for n in range(m + 1 ): for k in range(1 , __UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __A = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
import sys __A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = N ) -> int: lowercase__: Any = -sys.maxsize - 1 for i in range(len(__UpperCAmelCase ) - 1_2 ): lowercase__: Optional[int] = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: lowercase__: List[Any] = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: Tuple = module lowercase__: List[str] = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) lowercase__: Optional[int] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _snake_case ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = "bigscience/bloom-1b7" # Constant values _UpperCAmelCase :Tuple = 2.109_6595_5269_2574 _UpperCAmelCase :Tuple = "Hello my name is" _UpperCAmelCase :Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _UpperCAmelCase :int = 10 def _snake_case ( self ): # Models and tokenizer lowercase__: List[Any] = AutoTokenizer.from_pretrained(self.model_name ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self ): super().setUp() # Models and tokenizer lowercase__: Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase__: List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) def _snake_case ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: List[str] = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , '''quantization_config''' ) ) lowercase__: Union[str, Any] = config.to_dict() lowercase__: Union[str, Any] = config.to_diff_dict() lowercase__: Dict = config.to_json_string() def _snake_case ( self ): from bitsandbytes.nn import Paramsabit lowercase__: Optional[int] = self.model_fpaa.get_memory_footprint() lowercase__: int = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase__: List[str] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _snake_case ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _snake_case ( self ): lowercase__: Tuple = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase__: List[Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def _snake_case ( self ): lowercase__: str = BitsAndBytesConfig() lowercase__: str = True lowercase__: List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='''auto''' ) lowercase__: Tuple = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase__: Any = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def _snake_case ( self ): with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): lowercase__: str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def _snake_case ( self ): with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase__: str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase__: str = self.model_fpaa.to(torch.floataa ) lowercase__: int = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase__: List[Any] = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowercase__: Tuple = self.model_fpaa.half() # Check this does not throw an error lowercase__: Any = self.model_fpaa.float() def _snake_case ( self ): lowercase__: int = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ): lowercase__: List[Any] = '''t5-small''' lowercase__: List[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowercase__: List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowercase__: Any = '''Translate in German: Hello, my dog is cute''' def _snake_case ( self ): gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): from transformers import TaForConditionalGeneration lowercase__: List[str] = TaForConditionalGeneration._keep_in_fpaa_modules lowercase__: Union[str, Any] = None # test with `t5-small` lowercase__: Dict = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) lowercase__: Any = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase__: str = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__: int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) lowercase__: Any = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase__: str = model.generate(**_UpperCAmelCase ) lowercase__: List[str] = modules def _snake_case ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase__: int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase__: str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase__: str = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__: Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) lowercase__: Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase__: List[Any] = model.generate(**_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self ): super().setUp() # model_name lowercase__: Optional[Any] = '''bigscience/bloom-560m''' lowercase__: int = '''t5-small''' # Different types of model lowercase__: str = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) # Sequence classification model lowercase__: int = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) # CausalLM model lowercase__: int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) # Seq2seq model lowercase__: List[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='''auto''' ) def _snake_case ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self ): super().setUp() def _snake_case ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: List[str] = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase__: Optional[int] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self ): super().setUp() def _snake_case ( self ): lowercase__: Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase__: str = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowercase__: str = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Tuple = '''facebook/opt-350m''' super().setUp() def _snake_case ( self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowercase__: Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase__: Optional[int] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase__: int = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): lowercase__: int = LoRALayer(module.q_proj , rank=16 ) lowercase__: List[str] = LoRALayer(module.k_proj , rank=16 ) lowercase__: Optional[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase__: int = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase__: List[str] = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "gpt2-xl" _UpperCAmelCase :Dict = 3.3191_8548_5415_2187
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __A = logging.get_logger(__name__) __A = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Union[str, Any] = max_length lowercase__: str = max_position_embeddings @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Any = input_ids.shape[-1] lowercase__: str = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , _UpperCAmelCase , ) lowercase__: Optional[Any] = start_length lowercase__: Union[str, Any] = max_new_tokens lowercase__: int = start_length + max_new_tokens @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return input_ids.shape[-1] >= self.max_length class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: int = max_time lowercase__: int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return any(criteria(_UpperCAmelCase , _UpperCAmelCase ) for criteria in self ) @property def _snake_case ( self ): for stopping_criterium in self: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> StoppingCriteriaList: lowercase__: List[str] = stopping_criteria.max_length lowercase__: Optional[int] = deepcopy(__UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__UpperCAmelCase ) ) return new_stopping_criteria
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> bool: return len(set(__UpperCAmelCase ) ) == len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = IFInpaintingPipeline _UpperCAmelCase :List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _UpperCAmelCase :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase :Any = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ): return self._get_dummy_components() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: Dict = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" import os import sys import transformers __A = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Tuple = '''ZinengTang/tvlt-base''' lowercase__: Any = tempfile.mkdtemp() def _snake_case ( self , **_UpperCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def _snake_case ( self ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): lowercase__: str = self.get_image_processor() lowercase__: Dict = self.get_feature_extractor() lowercase__: Optional[int] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__: str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.get_image_processor() lowercase__: Optional[int] = self.get_feature_extractor() lowercase__: Dict = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) lowercase__: Tuple = np.ones([12000] ) lowercase__: List[str] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ) lowercase__: Optional[Any] = processor(audio=_UpperCAmelCase , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): lowercase__: int = self.get_image_processor() lowercase__: Optional[Any] = self.get_feature_extractor() lowercase__: Union[str, Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) lowercase__: Any = np.ones([3, 224, 224] ) lowercase__: Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='''np''' ) lowercase__: Any = processor(images=_UpperCAmelCase , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): lowercase__: Dict = self.get_image_processor() lowercase__: Optional[int] = self.get_feature_extractor() lowercase__: Tuple = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) lowercase__: Dict = np.ones([12000] ) lowercase__: Dict = np.ones([3, 224, 224] ) lowercase__: Optional[Any] = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _snake_case ( self ): lowercase__: Union[str, Any] = self.get_image_processor() lowercase__: str = self.get_feature_extractor() lowercase__: Any = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __A : int = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str _UpperCAmelCase :str _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[int] _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[Union[int, float]] = None _UpperCAmelCase :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[InputFeatures] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ): lowercase__: Any = hans_processors[task]() lowercase__: int = os.path.join( _UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) lowercase__: Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__: Any = label_list[2], label_list[1] lowercase__: Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__: Optional[int] = cached_features_file + '''.lock''' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowercase__: Optional[Any] = torch.load(_UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowercase__: int = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(_UpperCAmelCase ) ) lowercase__: Tuple = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i] def _snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[InputFeatures] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ): lowercase__: Tuple = hans_processors[task]() lowercase__: Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__: Union[str, Any] = label_list[2], label_list[1] lowercase__: Dict = label_list lowercase__: Union[str, Any] = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) lowercase__: Any = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase__: Optional[Any] = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , _UpperCAmelCase ): return self.features[i] def _snake_case ( self ): return self.label_list class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def _snake_case ( self , _UpperCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def _snake_case ( self ): return ["contradiction", "entailment", "neutral"] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue lowercase__: int = '''%s-%s''' % (set_type, line[0]) lowercase__: Optional[int] = line[5] lowercase__: Optional[Any] = line[6] lowercase__: Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowercase__: List[str] = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: lowercase__: Tuple = {label: i for i, label in enumerate(__UpperCAmelCase )} lowercase__: Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(__UpperCAmelCase ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowercase__: Optional[int] = tokenizer( example.text_a , example.text_b , add_special_tokens=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , truncation=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , ) lowercase__: Dict = label_map[example.label] if example.label in label_map else 0 lowercase__: Optional[int] = int(example.pairID ) features.append(InputFeatures(**__UpperCAmelCase , label=__UpperCAmelCase , pairID=__UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features __A : Tuple = { "hans": 3, } __A : Any = { "hans": HansProcessor, }
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self ): lowercase__: int = '''''' lowercase__: int = '''''' lowercase__: str = [] lowercase__: str = 0 lowercase__: Dict = 256 lowercase__: Tuple = 0 lowercase__: Optional[Any] = 0 lowercase__: Tuple = 0 lowercase__: Union[str, Any] = 0 def _snake_case ( self , _UpperCAmelCase ): lowercase__: int = cva.imread(_UpperCAmelCase , 0 ) lowercase__: Tuple = copy.deepcopy(self.img ) lowercase__: Union[str, Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) lowercase__: Optional[Any] = np.sum(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowercase__: int = x[i] / self.k self.sk += prk lowercase__: Any = (self.L - 1) * self.sk if self.rem != 0: lowercase__: List[str] = int(last % last ) lowercase__: Union[str, Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_UpperCAmelCase ) lowercase__: str = int(np.ma.count(self.img ) / self.img[1].size ) lowercase__: List[str] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase__: List[str] = self.img[j][i] if num != self.last_list[num]: lowercase__: str = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _snake_case ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _snake_case ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __A = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __A = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" class UpperCAmelCase : # Public class to implement a graph """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = row lowercase__: Optional[Any] = col lowercase__: List[Any] = graph def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Checking all 8 elements surrounding nth element lowercase__: List[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__: Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__: Union[str, Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ) def _snake_case ( self ): # And finally, count all islands. lowercase__: Optional[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__: Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += 1 return count
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 8 ) -> str: lowercase__: List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCAmelCase ) lowercase__: int = i // 3 lowercase__: List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase__: Tuple = ( chars_incl + random(__UpperCAmelCase , quotient + remainder ) + random(__UpperCAmelCase , __UpperCAmelCase ) + random(__UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: Any = list(__UpperCAmelCase ) shuffle(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "".join(secrets.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 8 ) -> bool: if len(__UpperCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False lowercase__: int = any(char in ascii_uppercase for char in password ) lowercase__: Dict = any(char in ascii_lowercase for char in password ) lowercase__: Any = any(char in digits for char in password ) lowercase__: Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: Dict = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase__: Optional[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(__UpperCAmelCase ) ) print( '''Alternative Password generated:''' , alternative_password_generator(__UpperCAmelCase , __UpperCAmelCase ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = (DPMSolverSinglestepScheduler,) _UpperCAmelCase :List[str] = (("num_inference_steps", 25),) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**_UpperCAmelCase ) return config def _snake_case ( self , _UpperCAmelCase=0 , **_UpperCAmelCase ): lowercase__: int = dict(self.forward_default_kwargs ) lowercase__: Optional[Any] = kwargs.pop('''num_inference_steps''' , _UpperCAmelCase ) lowercase__: Any = self.dummy_sample lowercase__: Optional[Any] = 0.1 * sample lowercase__: List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__: List[Any] = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__: Union[str, Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__: List[Any] = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__: List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__: Dict = sample, sample for t in range(_UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowercase__: List[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__: str = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self ): pass def _snake_case ( self , _UpperCAmelCase=0 , **_UpperCAmelCase ): lowercase__: Union[str, Any] = dict(self.forward_default_kwargs ) lowercase__: List[Any] = kwargs.pop('''num_inference_steps''' , _UpperCAmelCase ) lowercase__: List[str] = self.dummy_sample lowercase__: str = 0.1 * sample lowercase__: Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__: int = self.get_scheduler_config() lowercase__: Dict = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__: Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__: Tuple = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__: Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__: List[str] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample lowercase__: str = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self , _UpperCAmelCase=None , **_UpperCAmelCase ): if scheduler is None: lowercase__: List[Any] = self.scheduler_classes[0] lowercase__: int = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__: Dict = scheduler_class(**_UpperCAmelCase ) lowercase__: Union[str, Any] = self.scheduler_classes[0] lowercase__: Optional[Any] = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__: Union[str, Any] = scheduler_class(**_UpperCAmelCase ) lowercase__: Tuple = 10 lowercase__: Any = self.dummy_model() lowercase__: str = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__: List[str] = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[str] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def _snake_case ( self ): lowercase__: Tuple = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__: Any = 50 lowercase__: Dict = self.dummy_model() lowercase__: Any = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase__: str = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample lowercase__: List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def _snake_case ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _snake_case ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase__: Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase__: Union[str, Any] = self.full_loop(scheduler=_UpperCAmelCase ) lowercase__: Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 lowercase__: List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase__: str = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__: Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__: List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__: Union[str, Any] = self.full_loop(scheduler=_UpperCAmelCase ) lowercase__: Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def _snake_case ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , algorithm_type='''dpmsolver++''' , solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _snake_case ( self ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) lowercase__: int = self.full_loop( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) assert not torch.isnan(_UpperCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ): self.check_over_configs(lower_order_final=_UpperCAmelCase ) self.check_over_configs(lower_order_final=_UpperCAmelCase ) def _snake_case ( self ): self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ): self.check_over_configs(variance_type=_UpperCAmelCase ) self.check_over_configs(variance_type='''learned_range''' ) def _snake_case ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=0 ) def _snake_case ( self ): lowercase__: Optional[int] = self.full_loop() lowercase__: Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def _snake_case ( self ): lowercase__: Union[str, Any] = self.full_loop(use_karras_sigmas=_UpperCAmelCase ) lowercase__: List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def _snake_case ( self ): lowercase__: Tuple = self.full_loop(prediction_type='''v_prediction''' ) lowercase__: Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def _snake_case ( self ): lowercase__: List[str] = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_UpperCAmelCase ) lowercase__: Any = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def _snake_case ( self ): lowercase__: Union[str, Any] = self.scheduler_classes[0] lowercase__: Optional[int] = self.get_scheduler_config(thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0 ) lowercase__: Dict = scheduler_class(**_UpperCAmelCase ) lowercase__: Any = 10 lowercase__: str = self.dummy_model() lowercase__: Any = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__: Any = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import string def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: lowercase__: Optional[int] = '''''' for i in sequence: lowercase__: Optional[Any] = ord(__UpperCAmelCase ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: lowercase__: Tuple = string.ascii_letters lowercase__: Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__UpperCAmelCase )] if c in letters else c for c in sequence ) def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) lowercase__: Any = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=__UpperCAmelCase )} seconds""" ) print(F"""> atbash(): {timeit('atbash(printable)' , setup=__UpperCAmelCase )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import requests __A = "" # <-- Put your OpenWeatherMap appid here! __A = "https://api.openweathermap.org/data/2.5/" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "Chicago" , __UpperCAmelCase = APPID ) -> dict: return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "Kolkata, India" , __UpperCAmelCase = APPID ) -> dict: return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_5.6_8 , __UpperCAmelCase = 1_2.5_7 , __UpperCAmelCase = APPID ) -> dict: return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __A = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import collections import os import re from pathlib import Path __A = "src/transformers" # Matches is_xxx_available() __A = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __A = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __A = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __A = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __A = re.compile(R"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __A = re.compile(R"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __A = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __A = re.compile(R"^\s*try:") # Catches a line with else: __A = re.compile(R"^\s*else:") def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: if _re_test_backend.search(__UpperCAmelCase ) is None: return None lowercase__: int = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase__: str = f.readlines() lowercase__: List[Any] = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure lowercase__: Optional[Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase__: str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): lowercase__: Any = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] lowercase__: List[str] = re.findall(R'''\[([^\]]+)\]''' , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase__: str = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: lowercase__: Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase__: Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__: Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__: Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__: int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase__: int = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: lowercase__: Dict = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) lowercase__: Tuple = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: lowercase__: Optional[Any] = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) lowercase__: Any = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 lowercase__: Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__: List[str] = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase__: List[str] = lines[line_index] lowercase__: int = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__: Any = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__: int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__: str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__: Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase__: List[Any] = lines[line_index] lowercase__: Optional[Any] = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowercase__: Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: def find_duplicates(__UpperCAmelCase ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__: int = [] for key in import_dict_objects.keys(): lowercase__: Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase__: Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__: List[str] = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE__ ( ) -> Dict: lowercase__: Optional[int] = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: lowercase__: List[str] = os.path.join(__UpperCAmelCase , '''__init__.py''' ) lowercase__: str = parse_init(__UpperCAmelCase ) if objects is not None: lowercase__: List[str] = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowercase__: int = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: lowercase__: Any = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase__: Optional[Any] = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) lowercase__: Dict = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue lowercase__: str = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) lowercase__: Dict = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules __A = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowercase__: Optional[int] = direct_transformers_import(__UpperCAmelCase ) lowercase__: str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__UpperCAmelCase , '''__init__.py''' ) , '''r''' ) as f: lowercase__: str = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , __UpperCAmelCase ) ) ) lowercase__: Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__UpperCAmelCase ) > 0: lowercase__: Dict = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = ShapEImgaImgPipeline _UpperCAmelCase :Union[str, Any] = ["image"] _UpperCAmelCase :Dict = ["image"] _UpperCAmelCase :Any = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCAmelCase :Dict = False @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return self.time_input_dim * 4 @property def _snake_case ( self ): return 8 @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__: Dict = CLIPVisionModel(_UpperCAmelCase ) return model @property def _snake_case ( self ): lowercase__: List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: List[str] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__: str = PriorTransformer(**_UpperCAmelCase ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Dict = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__: str = ShapERenderer(**_UpperCAmelCase ) return model def _snake_case ( self ): lowercase__: int = self.dummy_prior lowercase__: Optional[int] = self.dummy_image_encoder lowercase__: List[Any] = self.dummy_image_processor lowercase__: Union[str, Any] = self.dummy_renderer lowercase__: Tuple = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowercase__: Dict = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: str = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: Optional[int] = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _snake_case ( self ): lowercase__: str = '''cpu''' lowercase__: Optional[Any] = self.get_dummy_components() lowercase__: Dict = self.pipeline_class(**_UpperCAmelCase ) lowercase__: Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__: Tuple = output.images[0] lowercase__: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__: Tuple = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): lowercase__: List[str] = torch_device == '''cpu''' lowercase__: str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def _snake_case ( self ): lowercase__: List[str] = self.get_dummy_components() lowercase__: Any = self.pipeline_class(**_UpperCAmelCase ) lowercase__: Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Union[str, Any] = 1 lowercase__: List[str] = 2 lowercase__: Any = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowercase__: Dict = batch_size * [inputs[key]] lowercase__: List[str] = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__: int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__: List[str] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase__: Optional[Any] = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __A = os.path.join("tests", "models", "bert", "test_modeling_bert.py") __A = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__ = get_test_to_tester_mapping(_UpperCAmelCase ) lowercase__ = get_test_to_tester_mapping(_UpperCAmelCase ) lowercase__ = {'''BertModelTest''': '''BertModelTester'''} lowercase__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__ = get_model_to_test_mapping(_UpperCAmelCase ) lowercase__ = get_model_to_test_mapping(_UpperCAmelCase ) lowercase__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } lowercase__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__ = get_model_to_tester_mapping(_UpperCAmelCase ) lowercase__ = get_model_to_tester_mapping(_UpperCAmelCase ) lowercase__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } lowercase__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __A = logging.get_logger(__name__) __A = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = "bart" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=4096 , _UpperCAmelCase=16 , _UpperCAmelCase=12 , _UpperCAmelCase=4096 , _UpperCAmelCase=16 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1024 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.0 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=3 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): lowercase__: List[Any] = vocab_size lowercase__: int = max_position_embeddings lowercase__: Dict = d_model lowercase__: str = encoder_ffn_dim lowercase__: List[Any] = encoder_layers lowercase__: Union[str, Any] = encoder_attention_heads lowercase__: Dict = decoder_ffn_dim lowercase__: Union[str, Any] = decoder_layers lowercase__: Optional[int] = decoder_attention_heads lowercase__: Optional[int] = dropout lowercase__: Tuple = attention_dropout lowercase__: Optional[int] = activation_dropout lowercase__: List[str] = activation_function lowercase__: Optional[int] = init_std lowercase__: Tuple = encoder_layerdrop lowercase__: Dict = decoder_layerdrop lowercase__: Union[str, Any] = classifier_dropout lowercase__: Optional[int] = use_cache lowercase__: str = encoder_layers lowercase__: int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _UpperCAmelCase ): lowercase__: Any = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task in ["default", "seq2seq-lm"]: lowercase__: str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__: Optional[Any] = {0: '''batch'''} lowercase__: str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase__: List[str] = {0: '''batch''', 1: '''decoder_sequence'''} lowercase__: List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__: Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__: Dict = self.num_layers for i in range(_UpperCAmelCase ): lowercase__: List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__: Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase__: List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _snake_case ( self ): if self.task in ["default", "seq2seq-lm"]: lowercase__: Optional[int] = super().outputs else: lowercase__: Dict = super(_UpperCAmelCase , self ).outputs if self.use_past: lowercase__: Tuple = self.num_layers for i in range(_UpperCAmelCase ): lowercase__: Any = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__: List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Generate decoder inputs lowercase__: List[str] = seq_length if not self.use_past else 1 lowercase__: int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase__: Optional[int] = dict(**_UpperCAmelCase , **_UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__: Optional[int] = common_inputs['''input_ids'''].shape lowercase__: int = common_inputs['''decoder_input_ids'''].shape[1] lowercase__: Optional[int] = self.num_attention_heads lowercase__: int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__: Optional[int] = decoder_seq_length + 3 lowercase__: Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__: str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase )] , dim=1 ) lowercase__: Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__: Optional[Any] = self.num_layers lowercase__: List[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = max(_UpperCAmelCase , _UpperCAmelCase ) - min_num_layers lowercase__: Any = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), ) ) # TODO: test this. lowercase__: int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_UpperCAmelCase , _UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) ) return common_inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__: Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: List[str] = seqlen + 2 lowercase__: str = self.num_layers lowercase__: str = self.num_attention_heads lowercase__: Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__: Union[str, Any] = common_inputs['''attention_mask'''].dtype lowercase__: int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(_UpperCAmelCase ) ] return common_inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__: Dict = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__: Union[str, Any] = tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) lowercase__: Union[str, Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase__: List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__: Tuple = dict(tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) return common_inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: lowercase__: List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) elif self.task == "causal-lm": lowercase__: Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) else: lowercase__: Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) return common_inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowercase__: List[Any] = super()._flatten_past_key_values_(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: lowercase__: Any = super(_UpperCAmelCase , self )._flatten_past_key_values_( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __A = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase :Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase :Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase :Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = ZeroShotClassificationPipeline( model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) # No kwarg lowercase__: int = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) lowercase__: Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) lowercase__: List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( _UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__: Optional[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( _UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__: Tuple = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__: Union[str, Any] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCAmelCase , [ {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(1 ) ] , ) lowercase__: Any = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCAmelCase , [ {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_UpperCAmelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(_UpperCAmelCase ): classifier(_UpperCAmelCase , candidate_labels='''politics''' ) with self.assertRaises(_UpperCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(_UpperCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_UpperCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_UpperCAmelCase , ) self.run_entailment_id(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = zero_shot_classifier.model.config lowercase__: Optional[Any] = config.labelaid lowercase__: Dict = zero_shot_classifier.entailment_id lowercase__: Optional[int] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__: Union[str, Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__: Union[str, Any] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__: Optional[int] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__: List[str] = original_labelaid self.assertEqual(_UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self ): lowercase__: Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def _snake_case ( self ): lowercase__: Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def _snake_case ( self ): lowercase__: List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def _snake_case ( self ): lowercase__: List[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase__: Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) lowercase__: Optional[int] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _snake_case ( self ): lowercase__: Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) lowercase__: Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> int: require_version(deps[pkg] , __UpperCAmelCase )
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from sklearn.metrics import mean_squared_error import datasets __A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __A = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __A = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def _snake_case ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="uniform_average" , _UpperCAmelCase=True ): lowercase__: Tuple = mean_squared_error( _UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase , multioutput=_UpperCAmelCase , squared=_UpperCAmelCase ) return {"mse": mse}
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import heapq import sys import numpy as np __A = tuple[int, int] class UpperCAmelCase : """simple docstring""" def __init__( self ): lowercase__: Dict = [] lowercase__: List[str] = set() def _snake_case ( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self ): return len(self.elements ) == 0 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCAmelCase ) else: # update # print("update", item) lowercase__: Tuple = [] (lowercase__): Dict = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (lowercase__): Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self , _UpperCAmelCase ): if item in self.set: self.set.remove(_UpperCAmelCase ) lowercase__: List[Any] = [] (lowercase__): Dict = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (lowercase__): Optional[int] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self ): return self.elements[0][1] def _snake_case ( self ): (lowercase__): Any = heapq.heappop(self.elements ) self.set.remove(_UpperCAmelCase ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: # euclidean distance lowercase__: Dict = np.array(__UpperCAmelCase ) lowercase__: List[Any] = np.array(__UpperCAmelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: # integer division by time variable return consistent_heuristic(__UpperCAmelCase , __UpperCAmelCase ) // t def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Optional[int] = g_function[start] + Wa * heuristics[i](__UpperCAmelCase , __UpperCAmelCase ) return ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: Tuple = np.chararray((n, n) ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): lowercase__: Dict = '''*''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (j, (n - 1) - i) in blocks: lowercase__: Dict = '''#''' lowercase__: Any = '''-''' lowercase__: Optional[Any] = back_pointer[goal] while x != start: (lowercase__): Optional[int] = x # print(x) lowercase__: Optional[Any] = '''-''' lowercase__: List[str] = back_pointer[x] lowercase__: List[Any] = '''-''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowercase__: List[str] = back_pointer[goal] while x != start: print(__UpperCAmelCase , end=''' ''' ) lowercase__: int = back_pointer[x] print(__UpperCAmelCase ) sys.exit() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: for itera in range(__UpperCAmelCase ): open_list[itera].remove_element(__UpperCAmelCase ) # print("s", s) # print("j", j) (lowercase__): Optional[Any] = s lowercase__: Any = (x - 1, y) lowercase__: int = (x + 1, y) lowercase__: Union[str, Any] = (x, y + 1) lowercase__: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCAmelCase ) lowercase__: List[str] = -1 lowercase__: Any = float('''inf''' ) if valid(__UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowercase__: int = g_function[s] + 1 lowercase__: Union[str, Any] = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCAmelCase , key(__UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __UpperCAmelCase ): if key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) <= Wa * key( __UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase ): open_list[j].put( __UpperCAmelCase , key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: Optional[Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __A = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] __A = make_common_ground() __A = blocks_blk # hyper parameters __A = 1 __A = 1 __A = 2_0 __A = 3 # one consistent and two other inconsistent # start and end destination __A = (0, 0) __A = (n - 1, n - 1) __A = 1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__: Any = {start: 0, goal: float('''inf''' )} lowercase__: int = {start: -1, goal: -1} lowercase__: Dict = [] lowercase__: Dict = set() for i in range(__UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCAmelCase , key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) lowercase__: list[int] = [] lowercase__: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowercase__: Optional[Any] = open_list[i].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) close_list_inad.append(__UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowercase__: Optional[Any] = open_list[0].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase , 0 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) close_list_anchor.append(__UpperCAmelCase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__UpperCAmelCase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = "megatron-bert" def __init__( self , _UpperCAmelCase=29056 , _UpperCAmelCase=1024 , _UpperCAmelCase=24 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: List[str] = vocab_size lowercase__: Dict = hidden_size lowercase__: Any = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Optional[int] = hidden_act lowercase__: List[str] = intermediate_size lowercase__: Optional[int] = hidden_dropout_prob lowercase__: List[Any] = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: List[str] = type_vocab_size lowercase__: List[Any] = initializer_range lowercase__: int = layer_norm_eps lowercase__: Union[str, Any] = position_embedding_type lowercase__: str = use_cache
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = DDIMPipeline _UpperCAmelCase :Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCAmelCase :Any = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCAmelCase :List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase :List[str] = False def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__: Union[str, Any] = DDIMScheduler() lowercase__: Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: Optional[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: List[str] = '''cpu''' lowercase__: Optional[int] = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Tuple = pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Union[str, Any] = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) lowercase__: Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1e-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Optional[Any] = '''google/ddpm-cifar10-32''' lowercase__: Optional[Any] = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__: str = DDIMScheduler() lowercase__: int = DDIMPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) ddim.to(_UpperCAmelCase ) ddim.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[Any] = torch.manual_seed(0 ) lowercase__: int = ddim(generator=_UpperCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: str = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Union[str, Any] = '''google/ddpm-ema-bedroom-256''' lowercase__: Tuple = UNetaDModel.from_pretrained(_UpperCAmelCase ) lowercase__: Tuple = DDIMScheduler.from_pretrained(_UpperCAmelCase ) lowercase__: Tuple = DDIMPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) ddpm.to(_UpperCAmelCase ) ddpm.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: List[Any] = torch.manual_seed(0 ) lowercase__: int = ddpm(generator=_UpperCAmelCase , output_type='''numpy''' ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: Union[str, Any] = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" __A = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __A = [{"type": "code", "content": INSTALL_CONTENT}] __A = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: for attribute in key.split('''.''' ): lowercase__: Optional[int] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowercase__: Union[str, Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowercase__: int = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__: Tuple = value elif weight_type == "weight_g": lowercase__: Any = value elif weight_type == "weight_v": lowercase__: Dict = value elif weight_type == "bias": lowercase__: List[Any] = value else: lowercase__: Tuple = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__: List[Any] = [] lowercase__: Optional[int] = fairseq_model.state_dict() lowercase__: List[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__: Dict = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__: str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__: Optional[int] = True if "*" in mapped_key: lowercase__: Optional[int] = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] lowercase__: str = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: lowercase__: int = '''weight_g''' elif "weight_v" in name: lowercase__: str = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: lowercase__: Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__: Tuple = '''weight''' else: lowercase__: List[str] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: List[Any] = full_name.split('''conv_layers.''' )[-1] lowercase__: Optional[int] = name.split('''.''' ) lowercase__: str = int(items[0] ) lowercase__: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__: str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__: str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__: Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__: str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: # load the pre-trained checkpoints lowercase__: Any = torch.load(__UpperCAmelCase ) lowercase__: List[Any] = WavLMConfigOrig(checkpoint['''cfg'''] ) lowercase__: Any = WavLMOrig(__UpperCAmelCase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: lowercase__: Dict = WavLMConfig.from_pretrained(__UpperCAmelCase ) else: lowercase__: List[Any] = WavLMConfig() lowercase__: str = WavLMModel(__UpperCAmelCase ) recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase ) hf_wavlm.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "realm" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=128 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=8 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=256 , _UpperCAmelCase=10 , _UpperCAmelCase=1e-3 , _UpperCAmelCase=5 , _UpperCAmelCase=320 , _UpperCAmelCase=13353718 , _UpperCAmelCase=5000 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # Common config lowercase__: int = vocab_size lowercase__: Tuple = max_position_embeddings lowercase__: Optional[int] = hidden_size lowercase__: str = retriever_proj_size lowercase__: Dict = num_hidden_layers lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[Any] = num_candidates lowercase__: Dict = intermediate_size lowercase__: Optional[int] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Any = initializer_range lowercase__: str = type_vocab_size lowercase__: str = layer_norm_eps # Reader config lowercase__: Tuple = span_hidden_size lowercase__: Optional[Any] = max_span_width lowercase__: Tuple = reader_layer_norm_eps lowercase__: Tuple = reader_beam_size lowercase__: Optional[int] = reader_seq_len # Retrieval config lowercase__: int = num_block_records lowercase__: Any = searcher_beam_size
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 1_6 __A = 3_2 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 1_6 , __UpperCAmelCase = "bert-base-cased" ) -> Tuple: lowercase__: Optional[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowercase__: int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__: int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__: Dict = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__: List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase__: List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) lowercase__: Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: model.eval() lowercase__: Dict = 0 for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__: int = model(**__UpperCAmelCase ) lowercase__: Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__: List[Any] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCAmelCase ) - 1: lowercase__: int = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__: Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCAmelCase , references=__UpperCAmelCase , ) lowercase__: Dict = metric.compute() return eval_metric["accuracy"] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: # Initialize accelerator lowercase__: Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__: Tuple = config['''lr'''] lowercase__: Tuple = int(config['''num_epochs'''] ) lowercase__: Union[str, Any] = int(config['''seed'''] ) lowercase__: Optional[Any] = int(config['''batch_size'''] ) lowercase__: Dict = args.model_name_or_path set_seed(__UpperCAmelCase ) lowercase__: Optional[Any] = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__: List[str] = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) # Instantiate optimizer lowercase__: Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__: str = optimizer_cls(params=model.parameters() , lr=__UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__: Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase__: List[Any] = 1 lowercase__: Tuple = (len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__: List[str] = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=0 , num_training_steps=__UpperCAmelCase , ) else: lowercase__: int = DummyScheduler(__UpperCAmelCase , total_num_steps=__UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__: List[str] = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__: Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__: int = 0 lowercase__: Tuple = evaluate.load('''glue''' , '''mrpc''' ) lowercase__: Tuple = num_epochs if args.partial_train_epoch is not None: lowercase__: str = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowercase__: int = args.resume_from_checkpoint.split('''epoch_''' )[1] lowercase__: Dict = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowercase__: List[str] = int(__UpperCAmelCase ) + 1 lowercase__: str = evaluation_loop(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.print('''resumed checkpoint performance:''' , __UpperCAmelCase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , '''r''' ) as f: lowercase__: Tuple = json.load(__UpperCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowercase__: Optional[int] = {} for epoch in range(__UpperCAmelCase , __UpperCAmelCase ): model.train() for step, batch in enumerate(__UpperCAmelCase ): lowercase__: int = model(**__UpperCAmelCase ) lowercase__: Any = outputs.loss lowercase__: str = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowercase__: Any = F"""epoch_{epoch}""" lowercase__: int = os.path.join(args.output_dir , __UpperCAmelCase ) accelerator.save_state(__UpperCAmelCase ) lowercase__: List[Any] = evaluation_loop(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = accuracy lowercase__: Dict = lr_scheduler.get_lr()[0] lowercase__: List[Any] = optimizer.param_groups[0]['''lr'''] lowercase__: Tuple = epoch lowercase__: Union[str, Any] = overall_step accelerator.print(F"""epoch {epoch}:""" , __UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: Any = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=__UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCAmelCase , default=2 , help='''Number of train epochs.''' , ) lowercase__: Tuple = parser.parse_args() lowercase__: Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = LayoutLMTokenizer _UpperCAmelCase :int = LayoutLMTokenizerFast _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :List[str] = True def _snake_case ( self ): super().setUp() lowercase__: Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_UpperCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = '''UNwant\u00E9d,running''' lowercase__: Optional[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self ): lowercase__: Dict = self.tokenizer_class(self.vocab_file ) lowercase__: Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): pass
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( lowercase__ ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if tokenize_kwargs is None: lowercase__: Any = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) lowercase__: int = truncation lowercase__: Optional[int] = tokenize_kwargs lowercase__: int = {} if return_tensors is not None: lowercase__: Dict = return_tensors return preprocess_params, {}, postprocess_params def _snake_case ( self , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: List[str] = self.framework lowercase__: str = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) return model_inputs def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = self.model(**_UpperCAmelCase ) return model_outputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" import re import subprocess import sys __A = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __A = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() __A = "|".join(sys.argv[1:]) __A = re.compile(Rf'''^({joined_dirs}).*?\.py$''') __A = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Tuple = state_dict.pop(__UpperCAmelCase ) lowercase__: Any = val def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: lowercase__: List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__: Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__: List[Any] = value else: lowercase__: List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: lowercase__: Any = '''''' if is_panoptic: lowercase__: Union[str, Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__: Dict = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__: Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: List[Any] = in_proj_weight[:2_5_6, :] lowercase__: List[str] = in_proj_bias[:2_5_6] lowercase__: Dict = in_proj_weight[2_5_6:5_1_2, :] lowercase__: Union[str, Any] = in_proj_bias[2_5_6:5_1_2] lowercase__: Dict = in_proj_weight[-2_5_6:, :] lowercase__: List[Any] = in_proj_bias[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: lowercase__: Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Optional[int] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__: str = '''resnet101''' if "dc5" in model_name: lowercase__: Dict = True lowercase__: Dict = '''panoptic''' in model_name if is_panoptic: lowercase__: Optional[int] = 2_5_0 else: lowercase__: int = 9_1 lowercase__: Union[str, Any] = '''huggingface/label-files''' lowercase__: int = '''coco-detection-id2label.json''' lowercase__: str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: Any = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: List[str] = idalabel lowercase__: Optional[int] = {v: k for k, v in idalabel.items()} # load image processor lowercase__: str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase__: Any = ConditionalDetrImageProcessor(format=__UpperCAmelCase ) # prepare image lowercase__: List[Any] = prepare_img() lowercase__: Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub lowercase__: Dict = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() lowercase__: Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__: int = '''conditional_detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[Any] = rename_backbone_keys(__UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__: Dict = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Optional[int] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase__: Any = state_dict.pop(__UpperCAmelCase ) lowercase__: List[Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Dict = val # finally, create HuggingFace model and load state dict lowercase__: List[str] = ConditionalDetrForSegmentation(__UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=__UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion lowercase__: str = conditional_detr(__UpperCAmelCase ) lowercase__: Tuple = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure)
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import datasets __A = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): return {"accuracy": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )}
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Any = MBartConfig _UpperCAmelCase :str = {} _UpperCAmelCase :Optional[Any] = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): lowercase__: Any = parent lowercase__: Union[str, Any] = batch_size lowercase__: Dict = seq_length lowercase__: List[Any] = is_training lowercase__: Optional[Any] = use_labels lowercase__: List[str] = vocab_size lowercase__: int = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Tuple = hidden_dropout_prob lowercase__: str = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: Union[str, Any] = eos_token_id lowercase__: Optional[Any] = pad_token_id lowercase__: Union[str, Any] = bos_token_id def _snake_case ( self ): lowercase__: str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__: int = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__: Dict = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = TFMBartModel(config=_UpperCAmelCase ).get_decoder() lowercase__: List[Any] = inputs_dict['''input_ids'''] lowercase__: Dict = input_ids[:1, :] lowercase__: Optional[Any] = inputs_dict['''attention_mask'''][:1, :] lowercase__: Dict = inputs_dict['''head_mask'''] lowercase__: Tuple = 1 # first forward pass lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowercase__: Dict = outputs.to_tuple() lowercase__: Any = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[Any]: if attention_mask is None: lowercase__: List[str] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__: Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__: Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__: List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _UpperCAmelCase :str = (TFMBartForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase :Any = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :str = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _snake_case ( self ): lowercase__: Dict = TFMBartModelTester(self ) lowercase__: List[Any] = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Any = [ " UN Chief Says There Is No Military Solution in Syria", ] _UpperCAmelCase :Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] _UpperCAmelCase :List[str] = "facebook/mbart-large-en-ro" @cached_property def _snake_case ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): lowercase__: int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: Union[str, Any] = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='''tf''' ) lowercase__: Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase__: List[str] = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _snake_case ( self ): self._assert_generated_batch_equal_expected()
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray class UpperCAmelCase (nn.Module ): """simple docstring""" _UpperCAmelCase :int _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) _UpperCAmelCase :jnp.dtype = jnp.floataa def _snake_case ( self ): lowercase__: List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__: Dict = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase__: Dict = self.block_out_channels[i] lowercase__: Tuple = self.block_out_channels[i + 1] lowercase__: Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__: Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__: Optional[Any] = blocks lowercase__: Tuple = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase ): lowercase__: List[str] = self.conv_in(_UpperCAmelCase ) lowercase__: Any = nn.silu(_UpperCAmelCase ) for block in self.blocks: lowercase__: int = block(_UpperCAmelCase ) lowercase__: str = nn.silu(_UpperCAmelCase ) lowercase__: int = self.conv_out(_UpperCAmelCase ) return embedding @flax_register_to_config class UpperCAmelCase (nn.Module ,_UpperCAmelCase ,_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = 32 _UpperCAmelCase :int = 4 _UpperCAmelCase :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase :Union[bool, Tuple[bool]] = False _UpperCAmelCase :Tuple[int] = (320, 640, 1280, 1280) _UpperCAmelCase :int = 2 _UpperCAmelCase :Union[int, Tuple[int]] = 8 _UpperCAmelCase :Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase :int = 1280 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :bool = False _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True _UpperCAmelCase :int = 0 _UpperCAmelCase :str = "rgb" _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) def _snake_case ( self , _UpperCAmelCase ): # init input tensors lowercase__: Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowercase__: List[str] = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowercase__: str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase__: Optional[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase__: int = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__: Any = jax.random.split(_UpperCAmelCase ) lowercase__: str = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def _snake_case ( self ): lowercase__: int = self.block_out_channels lowercase__: str = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase__: int = self.num_attention_heads or self.attention_head_dim # input lowercase__: Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase__: str = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase__: int = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) lowercase__: Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase__: int = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = (num_attention_heads,) * len(self.down_block_types ) # down lowercase__: str = [] lowercase__: Optional[int] = [] lowercase__: Tuple = block_out_channels[0] lowercase__: Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowercase__: Optional[int] = output_channel lowercase__: Any = block_out_channels[i] lowercase__: Optional[Any] = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase__: List[str] = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase__: str = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) for _ in range(self.layers_per_block ): lowercase__: Optional[int] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) if not is_final_block: lowercase__: Optional[int] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) lowercase__: str = down_blocks lowercase__: Dict = controlnet_down_blocks # mid lowercase__: Optional[Any] = block_out_channels[-1] lowercase__: Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase__: Any = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ): lowercase__: Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase__: int = jnp.flip(_UpperCAmelCase , axis=1 ) # 1. time if not isinstance(_UpperCAmelCase , jnp.ndarray ): lowercase__: str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase__: Optional[int] = timesteps.astype(dtype=jnp.floataa ) lowercase__: List[str] = jnp.expand_dims(_UpperCAmelCase , 0 ) lowercase__: List[str] = self.time_proj(_UpperCAmelCase ) lowercase__: List[Any] = self.time_embedding(_UpperCAmelCase ) # 2. pre-process lowercase__: int = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__: int = self.conv_in(_UpperCAmelCase ) lowercase__: Any = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__: Dict = self.controlnet_cond_embedding(_UpperCAmelCase ) sample += controlnet_cond # 3. down lowercase__: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: lowercase__: List[Any] = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase__: int = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) # 5. contronet blocks lowercase__: List[Any] = () for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ): lowercase__: Tuple = controlnet_block(_UpperCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase__: Tuple = controlnet_down_block_res_samples lowercase__: Optional[int] = self.controlnet_mid_block(_UpperCAmelCase ) # 6. scaling lowercase__: List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "vit_mae" def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=16 , _UpperCAmelCase=512 , _UpperCAmelCase=8 , _UpperCAmelCase=2048 , _UpperCAmelCase=0.75 , _UpperCAmelCase=False , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: str = hidden_size lowercase__: int = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: List[str] = intermediate_size lowercase__: str = hidden_act lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Optional[int] = attention_probs_dropout_prob lowercase__: Tuple = initializer_range lowercase__: Tuple = layer_norm_eps lowercase__: int = image_size lowercase__: Optional[Any] = patch_size lowercase__: Dict = num_channels lowercase__: Tuple = qkv_bias lowercase__: List[str] = decoder_num_attention_heads lowercase__: List[Any] = decoder_hidden_size lowercase__: Dict = decoder_num_hidden_layers lowercase__: Dict = decoder_intermediate_size lowercase__: Optional[Any] = mask_ratio lowercase__: Optional[int] = norm_pix_loss
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: while second != 0: lowercase__: List[Any] = first & second first ^= second lowercase__: List[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter the first number: ").strip()) __A = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> int: return sum(e for e in range(3 , __UpperCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import math class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase=0 ): # a graph with Node 0,1,...,N-1 lowercase__: List[str] = n lowercase__: int = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # adjacency matrix for weight lowercase__: List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = w def _snake_case ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase__: Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.dp[u][v] if __name__ == "__main__": __A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "philschmid/bart-large-cnn-samsum" _UpperCAmelCase :Dict = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) _UpperCAmelCase :Union[str, Any] = "summarizer" _UpperCAmelCase :Union[str, Any] = AutoTokenizer _UpperCAmelCase :Optional[int] = AutoModelForSeqaSeqLM _UpperCAmelCase :Union[str, Any] = ["text"] _UpperCAmelCase :Tuple = ["text"] def _snake_case ( self , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' , truncation=_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return self.model.generate(**_UpperCAmelCase )[0] def _snake_case ( self , _UpperCAmelCase ): return self.pre_processor.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] lowercase__: Any = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__: Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__: Tuple = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__: Any = [3, 3, 3, 3] lowercase__: Any = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__: Optional[int] = [4, 4, 4, 4] lowercase__: Dict = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__: Tuple = [3, 3, 3, 3] if "lrf" in model_name: lowercase__: Dict = [3, 3, 3, 3] else: lowercase__: List[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__: Any = 9_6 elif "small" in model_name: lowercase__: Optional[int] = 9_6 elif "base" in model_name: lowercase__: Optional[Any] = 1_2_8 elif "large" in model_name: lowercase__: List[str] = 1_9_2 elif "xlarge" in model_name: lowercase__: str = 2_5_6 elif "huge" in model_name: lowercase__: Dict = 3_5_2 # set label information lowercase__: Tuple = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__: Any = '''imagenet-22k-id2label.json''' else: lowercase__: Dict = '''imagenet-1k-id2label.json''' lowercase__: Dict = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: int = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__: Any = FocalNetConfig( embed_dim=__UpperCAmelCase , depths=__UpperCAmelCase , focal_levels=__UpperCAmelCase , focal_windows=__UpperCAmelCase , use_conv_embed=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase , use_post_layernorm=__UpperCAmelCase , use_layerscale=__UpperCAmelCase , ) return config def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: if "patch_embed.proj" in name: lowercase__: Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__: Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__: Union[str, Any] = '''encoder.''' + name if "encoder.layers" in name: lowercase__: List[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__: List[str] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__: Dict = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__: Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__: Any = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__: Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__: Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__: str = '''layernorm.bias''' if "head" in name: lowercase__: Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__: int = '''focalnet.''' + name return name def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: # fmt: off lowercase__: Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__: Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __UpperCAmelCase ) lowercase__: Tuple = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__: Optional[Any] = state_dict.pop(__UpperCAmelCase ) lowercase__: str = val lowercase__: Optional[int] = get_focalnet_config(__UpperCAmelCase ) lowercase__: Union[str, Any] = FocalNetForImageClassification(__UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(__UpperCAmelCase ) # verify conversion lowercase__: Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Optional[Any] = BitImageProcessor( do_resize=__UpperCAmelCase , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCAmelCase , crop_size=2_2_4 , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , ) lowercase__: List[str] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) lowercase__: Optional[int] = processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Optional[int] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__: str = image_transforms(__UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __UpperCAmelCase , atol=1e-4 ) lowercase__: str = model(**__UpperCAmelCase ) lowercase__: Union[str, Any] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__: Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__: Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__: List[Any] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__: List[Any] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__: Union[str, Any] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__: Any = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0