code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Tuple = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__: List[str] = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) lowercase__: Any = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) lowercase__: Dict = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) lowercase__: Optional[Any] = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) lowercase__: Dict = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) lowercase__: Union[str, Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) lowercase__: Tuple = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) lowercase__: Dict = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) lowercase__: str = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) lowercase__: Optional[Any] = key.replace('''image_encoder.module''' , '''flava.image_model''' ) lowercase__: Optional[Any] = key.replace('''text_encoder.module''' , '''flava.text_model''' ) lowercase__: Union[str, Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) lowercase__: int = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) lowercase__: Union[str, Any] = key.replace('''text_projection''' , '''flava.text_projection''' ) lowercase__: Union[str, Any] = key.replace('''image_projection''' , '''flava.image_projection''' ) lowercase__: List[Any] = value.float() for key, value in codebook_state_dict.items(): lowercase__: List[Any] = value return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: if config_path is not None: lowercase__: Any = FlavaConfig.from_pretrained(__UpperCAmelCase ) else: lowercase__: Any = FlavaConfig() lowercase__: str = FlavaForPreTraining(__UpperCAmelCase ).eval() lowercase__: int = convert_dalle_checkpoint(__UpperCAmelCase , __UpperCAmelCase , save_checkpoint=__UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): lowercase__: Optional[int] = torch.load(__UpperCAmelCase , map_location='''cpu''' ) else: lowercase__: int = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' ) lowercase__: Tuple = upgrade_state_dict(__UpperCAmelCase , __UpperCAmelCase ) hf_model.load_state_dict(__UpperCAmelCase ) lowercase__: List[Any] = hf_model.state_dict() lowercase__: List[str] = count_parameters(__UpperCAmelCase ) lowercase__: Optional[int] = count_parameters(__UpperCAmelCase ) + count_parameters(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase ): lowercase__: List[str] = data lowercase__: int = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def _snake_case ( self ): lowercase__: List[Any] = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) lowercase__: List[Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _snake_case ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = list(struct.unpack('''>16L''' , _UpperCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): lowercase__: List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _snake_case ( self ): lowercase__: int = self.padding() lowercase__: List[Any] = self.split_blocks() for block in self.blocks: lowercase__: str = self.expand_block(_UpperCAmelCase ) lowercase__: int = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowercase__: int = (b & c) | ((~b) & d) lowercase__: int = 0X5A82_7999 elif 20 <= i < 40: lowercase__: int = b ^ c ^ d lowercase__: List[str] = 0X6ED9_EBA1 elif 40 <= i < 60: lowercase__: Tuple = (b & c) | (b & d) | (c & d) lowercase__: Dict = 0X8F1B_BCDC elif 60 <= i < 80: lowercase__: Tuple = b ^ c ^ d lowercase__: Optional[Any] = 0XCA62_C1D6 lowercase__: Any = ( self.rotate(_UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(_UpperCAmelCase , 30 ), c, d, ) lowercase__: Tuple = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: lowercase__: List[Any] = b'''Test String''' assert SHAaHash(__UpperCAmelCase ).final_hash() == hashlib.shaa(__UpperCAmelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: lowercase__: List[Any] = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) lowercase__: Dict = parser.parse_args() lowercase__: List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: lowercase__: Union[str, Any] = f.read() else: lowercase__: int = bytes(__UpperCAmelCase , '''utf-8''' ) print(SHAaHash(__UpperCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: # noqa: E741 lowercase__: Dict = len(__UpperCAmelCase ) lowercase__: int = 0 lowercase__: str = [0] * n lowercase__: Tuple = [False] * n lowercase__: List[Any] = [False] * n def dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if parent == root: out_edge_count += 1 lowercase__: Any = True lowercase__: Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase__: Optional[Any] = dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase__: List[str] = True # AP found via cycle if at == low[to]: lowercase__: List[Any] = True else: lowercase__: Optional[int] = min(low[at] , __UpperCAmelCase ) return out_edge_count for i in range(__UpperCAmelCase ): if not visited[i]: lowercase__: Any = 0 lowercase__: str = dfs(__UpperCAmelCase , __UpperCAmelCase , -1 , __UpperCAmelCase ) lowercase__: str = out_edge_count > 1 for x in range(len(__UpperCAmelCase ) ): if is_art[x] is True: print(__UpperCAmelCase ) # Adjacency list of graph __A = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = "lxmert" _UpperCAmelCase :List[str] = {} def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Any = num_attention_heads lowercase__: Tuple = hidden_act lowercase__: Any = intermediate_size lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: int = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: Tuple = initializer_range lowercase__: str = layer_norm_eps lowercase__: Tuple = num_qa_labels lowercase__: Dict = num_object_labels lowercase__: Any = num_attr_labels lowercase__: Any = l_layers lowercase__: Union[str, Any] = x_layers lowercase__: Optional[Any] = r_layers lowercase__: List[Any] = visual_feat_dim lowercase__: str = visual_pos_dim lowercase__: Dict = visual_loss_normalizer lowercase__: str = task_matched lowercase__: Optional[int] = task_mask_lm lowercase__: Tuple = task_obj_predict lowercase__: Any = task_qa lowercase__: int = visual_obj_loss lowercase__: Tuple = visual_attr_loss lowercase__: Tuple = visual_feat_loss lowercase__: Any = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**_UpperCAmelCase )
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) __A = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) __A = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __A = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) __A = tf.keras.preprocessing.image.img_to_array(test_image) __A = np.expand_dims(test_image, axis=0) __A = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A = "Normal" if result[0][0] == 1: __A = "Abnormality detected"
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A = "http://www.mocksite.com/file1.txt" __A = "\"text\": [\"foo\", \"foo\"]" __A = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :List[Any] = 200 _UpperCAmelCase :str = {"Content-Length": "100"} _UpperCAmelCase :Optional[Any] = {} def _snake_case ( self , **_UpperCAmelCase ): return [bytes(_UpperCAmelCase , '''utf-8''' )] def SCREAMING_SNAKE_CASE__ ( *__UpperCAmelCase , **__UpperCAmelCase ) -> int: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: import requests monkeypatch.setattr(__UpperCAmelCase , '''request''' , __UpperCAmelCase ) lowercase__: Union[str, Any] = URL if issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Union[str, Any] = url elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: List[str] = [url] elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Tuple = {'''train''': url} lowercase__: Union[str, Any] = '''dummy''' lowercase__: List[Any] = '''downloads''' lowercase__: Tuple = tmp_path lowercase__: Any = DownloadConfig( cache_dir=os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , use_etag=__UpperCAmelCase , ) lowercase__: Any = DownloadManager(dataset_name=__UpperCAmelCase , download_config=__UpperCAmelCase ) lowercase__: str = dl_manager.download(__UpperCAmelCase ) lowercase__: Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Dict = [downloaded_paths] lowercase__: Tuple = [urls] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): assert "train" in downloaded_paths.keys() lowercase__: Optional[Any] = downloaded_paths.values() lowercase__: Any = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__UpperCAmelCase , __UpperCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase__: Optional[Any] = Path(__UpperCAmelCase ) lowercase__: int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase__: Tuple = downloaded_path.read_text() assert content == CONTENT lowercase__: Dict = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowercase__: Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowercase__: List[Any] = str(__UpperCAmelCase ) if issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: int = filename elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: str = [filename] elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Dict = {'''train''': filename} lowercase__: int = '''dummy''' lowercase__: Optional[int] = xz_file.parent lowercase__: Dict = '''extracted''' lowercase__: Dict = DownloadConfig( cache_dir=__UpperCAmelCase , use_etag=__UpperCAmelCase , ) lowercase__: int = DownloadManager(dataset_name=__UpperCAmelCase , download_config=__UpperCAmelCase ) lowercase__: Any = dl_manager.extract(__UpperCAmelCase ) lowercase__: Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Optional[Any] = [extracted_paths] lowercase__: Union[str, Any] = [paths] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): assert "train" in extracted_paths.keys() lowercase__: Tuple = extracted_paths.values() lowercase__: List[Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(__UpperCAmelCase , __UpperCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase__: Dict = Path(__UpperCAmelCase ) lowercase__: Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(__UpperCAmelCase , etag=__UpperCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase__: Optional[Any] = extracted_path.read_text() lowercase__: Any = text_file.read_text() assert extracted_file_content == expected_file_content def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__UpperCAmelCase , start=1 ): lowercase__: Dict = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: List[Any] = request.getfixturevalue(__UpperCAmelCase ) lowercase__: Optional[int] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): _test_jsonl(__UpperCAmelCase , __UpperCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: Optional[Any] = request.getfixturevalue(__UpperCAmelCase ) lowercase__: List[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__UpperCAmelCase ) , start=1 ): _test_jsonl(__UpperCAmelCase , __UpperCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: lowercase__: List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__UpperCAmelCase ) , start=1 ): assert os.path.basename(__UpperCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ = 4 lowercase__ = 4_8 lowercase__ = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = [6, 6, 6, 6] lowercase__ = 6_0 lowercase__ = [6, 6, 6, 6] lowercase__ = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = 4 lowercase__ = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ = 1 lowercase__ = 1 lowercase__ = 1_2_6 lowercase__ = 7 lowercase__ = 2_5_5.0 lowercase__ = '''''' return config def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: if "patch_embed.proj" in name and "layers" not in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: lowercase__ = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: lowercase__ = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: lowercase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowercase__ = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowercase__ = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowercase__ = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowercase__ = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "conv_first" in name: lowercase__ = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: lowercase__ = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: lowercase__ = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) lowercase__ = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": lowercase__ = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) lowercase__ = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: lowercase__ = '''swin2sr.''' + name return name def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[1] ) lowercase__ = int(key_split[4] ) lowercase__ = config.embed_dim if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] pass else: lowercase__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowercase__ = get_config(__UpperCAmelCase ) lowercase__ = SwinaSRForImageSuperResolution(__UpperCAmelCase ) model.eval() lowercase__ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' ) lowercase__ = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(__UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values lowercase__ = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' lowercase__ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('''RGB''' ) lowercase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ = 1_2_6 if '''Jpeg''' in checkpoint_url else 2_5_6 lowercase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ = transforms(__UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ = model(__UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowercase__ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase__ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase__ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowercase__ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase__ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) lowercase__ = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } lowercase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") __A = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: List[Any] = parent lowercase__: List[str] = batch_size lowercase__: List[str] = seq_length lowercase__: List[str] = is_training lowercase__: Optional[int] = use_input_mask lowercase__: int = use_token_type_ids lowercase__: List[Any] = use_labels lowercase__: int = vocab_size lowercase__: Union[str, Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Dict = intermediate_size lowercase__: Any = hidden_act lowercase__: Dict = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: Dict = type_vocab_size lowercase__: Dict = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: List[Any] = num_labels lowercase__: Dict = num_choices lowercase__: List[Any] = scope def _snake_case ( self ): lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[int] = None if self.use_input_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[Any] = None if self.use_token_type_ids: lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[int] = None lowercase__: List[str] = None lowercase__: List[str] = None if self.use_labels: lowercase__: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = NystromformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Tuple = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = NystromformerForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = NystromformerForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = self.num_labels lowercase__: int = NystromformerForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = self.num_labels lowercase__: Union[str, Any] = NystromformerForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_choices lowercase__: Optional[int] = NystromformerForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() ( lowercase__ ): List[Any] = config_and_inputs lowercase__: Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Union[str, Any] = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Tuple = False _UpperCAmelCase :Any = False def _snake_case ( self ): lowercase__: Optional[Any] = NystromformerModelTester(self ) lowercase__: Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__: List[str] = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: str = NystromformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Dict = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__: Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowercase__: Any = model(_UpperCAmelCase )[0] lowercase__: str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: Union[str, Any] = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def _snake_case ( self ): lowercase__: List[Any] = '''the [MASK] of Belgium is Brussels''' lowercase__: str = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__: Optional[int] = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) lowercase__: Any = tokenizer(_UpperCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): lowercase__: Optional[int] = model(encoding.input_ids ).logits lowercase__: str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , '''capital''' )
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) (lowercase__ ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = "time_series_transformer" _UpperCAmelCase :Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "student_t" , _UpperCAmelCase = "nll" , _UpperCAmelCase = 1 , _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 32 , _UpperCAmelCase = 32 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = True , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 64 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): # time series specific configuration lowercase__: Union[str, Any] = prediction_length lowercase__: str = context_length or prediction_length lowercase__: int = distribution_output lowercase__: Dict = loss lowercase__: str = input_size lowercase__: Optional[Any] = num_time_features lowercase__: str = lags_sequence lowercase__: List[Any] = scaling lowercase__: Optional[int] = num_dynamic_real_features lowercase__: Tuple = num_static_real_features lowercase__: Tuple = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__: Optional[Any] = cardinality else: lowercase__: Dict = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__: Union[str, Any] = embedding_dimension else: lowercase__: Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__: List[str] = num_parallel_samples # Transformer architecture configuration lowercase__: int = input_size * len(_UpperCAmelCase ) + self._number_of_features lowercase__: Tuple = d_model lowercase__: Optional[Any] = encoder_attention_heads lowercase__: Optional[int] = decoder_attention_heads lowercase__: List[str] = encoder_ffn_dim lowercase__: Any = decoder_ffn_dim lowercase__: List[str] = encoder_layers lowercase__: Optional[Any] = decoder_layers lowercase__: Tuple = dropout lowercase__: Dict = attention_dropout lowercase__: Optional[int] = activation_dropout lowercase__: Optional[int] = encoder_layerdrop lowercase__: int = decoder_layerdrop lowercase__: Union[str, Any] = activation_function lowercase__: Tuple = init_std lowercase__: List[Any] = use_cache super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _snake_case ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: return "".join(sorted(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: return word_by_signature[signature(__UpperCAmelCase )] __A = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __A = sorted({word.strip().lower() for word in data.splitlines()}) __A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: lowercase__: List[Any] = int(__UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase__: Optional[Any] = 2 lowercase__: Union[str, Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase__: Optional[int] = i while n % i == 0: lowercase__: Union[str, Any] = n // i i += 1 return int(__UpperCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): lowercase__: int = parent lowercase__: List[Any] = batch_size lowercase__: List[Any] = seq_length lowercase__: Optional[int] = is_training lowercase__: List[Any] = use_attention_mask lowercase__: List[Any] = use_token_type_ids lowercase__: Optional[Any] = use_labels lowercase__: Any = vocab_size lowercase__: Optional[int] = hidden_size lowercase__: int = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: int = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: List[Any] = type_sequence_label_size lowercase__: Any = initializer_range lowercase__: Optional[int] = num_choices def _snake_case ( self ): lowercase__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[int] = None if self.use_attention_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Dict = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def _snake_case ( self ): lowercase__: Dict = self.prepare_config_and_inputs() lowercase__: Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ): lowercase__: Optional[Any] = FlaxDistilBertModelTester(self ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: lowercase__: List[str] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowercase__: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: List[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__: Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__: Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__: int = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[str] = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from ...processing_utils import ProcessorMixin class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "SpeechT5FeatureExtractor" _UpperCAmelCase :Optional[int] = "SpeechT5Tokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Optional[Any] = kwargs.pop('''audio''' , _UpperCAmelCase ) lowercase__: Tuple = kwargs.pop('''text''' , _UpperCAmelCase ) lowercase__: Dict = kwargs.pop('''text_target''' , _UpperCAmelCase ) lowercase__: Dict = kwargs.pop('''audio_target''' , _UpperCAmelCase ) lowercase__: Union[str, Any] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__: List[Any] = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) elif text is not None: lowercase__: Optional[int] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) else: lowercase__: Optional[Any] = None if audio_target is not None: lowercase__: Union[str, Any] = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Tuple = targets['''input_values'''] elif text_target is not None: lowercase__: Dict = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Union[str, Any] = targets['''input_ids'''] else: lowercase__: Tuple = None if inputs is None: return targets if targets is not None: lowercase__: Union[str, Any] = labels lowercase__: Tuple = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__: Any = decoder_attention_mask return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Any = kwargs.pop('''input_values''' , _UpperCAmelCase ) lowercase__: List[Any] = kwargs.pop('''input_ids''' , _UpperCAmelCase ) lowercase__: Any = kwargs.pop('''labels''' , _UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__: List[str] = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif input_ids is not None: lowercase__: str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) else: lowercase__: Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]): lowercase__: Tuple = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Union[str, Any] = targets['''input_ids'''] else: lowercase__: List[Any] = self.feature_extractor.feature_size lowercase__: List[Any] = self.feature_extractor.num_mel_bins lowercase__: Union[str, Any] = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: List[Any] = feature_size_hack lowercase__: str = targets['''input_values'''] else: lowercase__: Optional[Any] = None if inputs is None: return targets if targets is not None: lowercase__: Dict = labels lowercase__: Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__: Any = decoder_attention_mask return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import argparse from collections import defaultdict import yaml __A = "docs/source/en/_toctree.yml" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: int = defaultdict(__UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 lowercase__: List[str] = [key for key, value in counts.items() if value > 1] lowercase__: Optional[Any] = [] for duplicate_key in duplicates: lowercase__: Optional[int] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : s["title"].lower() ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=False ) -> str: with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Dict = yaml.safe_load(f.read() ) # Get to the API doc lowercase__: int = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__: int = content[api_idx]['''sections'''] # Then to the model doc lowercase__: List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase__: Union[str, Any] = api_doc[model_idx]['''sections'''] lowercase__: int = [(idx, section) for idx, section in enumerate(__UpperCAmelCase ) if '''sections''' in section] lowercase__: List[Any] = False for idx, modality_doc in modalities_docs: lowercase__: List[Any] = modality_doc['''sections'''] lowercase__: List[Any] = clean_model_doc_toc(__UpperCAmelCase ) if old_modality_doc != new_modality_doc: lowercase__: Dict = True if overwrite: lowercase__: int = new_modality_doc if diff: if overwrite: lowercase__: Optional[Any] = model_doc lowercase__: List[str] = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A = parser.parse_args() check_model_doc(args.fix_and_overwrite)
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: Optional[int] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__UpperCAmelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__UpperCAmelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__UpperCAmelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__UpperCAmelCase , default=1_0_0_0 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__UpperCAmelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__UpperCAmelCase , default=5_1_2 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__UpperCAmelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) lowercase__: List[Any] = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: def fn(__UpperCAmelCase ): return tokenizer(examples['''text'''] ) return fn def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: Dict = [] for i in range(len(tokenized_data['''input_ids'''] ) ): lowercase__: int = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } lowercase__: List[str] = tf.train.Features(feature=__UpperCAmelCase ) lowercase__: str = tf.train.Example(features=__UpperCAmelCase ) lowercase__: List[str] = example.SerializeToString() records.append(__UpperCAmelCase ) return records def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: lowercase__: Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowercase__: Union[str, Any] = min(len(__UpperCAmelCase ) , args.limit ) lowercase__: Optional[int] = dataset.select(range(__UpperCAmelCase ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) lowercase__: Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowercase__: Union[str, Any] = os.path.join(args.output_dir , args.split ) if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) else: lowercase__: List[str] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowercase__: str = tokenize_function(__UpperCAmelCase ) lowercase__: Tuple = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCAmelCase ): # Concatenate all texts. lowercase__: Optional[Any] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowercase__: List[str] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowercase__: Optional[int] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowercase__: Optional[int] = { k: [t[i : i + args.max_length] for i in range(0 , __UpperCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result lowercase__: Union[str, Any] = dataset_tokenized.map(__UpperCAmelCase , batched=__UpperCAmelCase , batch_size=1_0_0_0 , num_proc=4 ) lowercase__: int = 0 lowercase__: List[Any] = 0 for shard in range(0 , len(__UpperCAmelCase ) , args.shard_size ): lowercase__: Any = grouped_dataset[shard : shard + args.shard_size] lowercase__: Tuple = len(dataset_snapshot['''input_ids'''] ) lowercase__: Any = os.path.join(__UpperCAmelCase , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) lowercase__: int = get_serialized_examples(__UpperCAmelCase ) with tf.io.TFRecordWriter(__UpperCAmelCase ) as out_file: for i in range(len(__UpperCAmelCase ) ): lowercase__: Tuple = serialized_examples[i] out_file.write(__UpperCAmelCase ) print('''Wrote file {} containing {} records'''.format(__UpperCAmelCase , __UpperCAmelCase ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , '''w''' ) as f: print(F"""Total {args.split} records: {total_records}""" , file=__UpperCAmelCase ) if __name__ == "__main__": __A = parse_args() main(args)
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __lowerCamelCase ( __lowerCAmelCase : Callable[[int | float], int | float] , __lowerCAmelCase : int | float , __lowerCAmelCase : int | float , __lowerCAmelCase : int = 1_00 , ) -> float: snake_case = x_start snake_case = fnc(__lowerCAmelCase ) snake_case = 0.0 for _ in range(__lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length snake_case = (x_end - x_start) / steps + xa snake_case = fnc(__lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case = xa snake_case = fxa return length if __name__ == "__main__": def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _SCREAMING_SNAKE_CASE = 10 while i <= 100000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "linear" snake_case_ = "cosine" snake_case_ = "cosine_with_restarts" snake_case_ = "polynomial" snake_case_ = "constant" snake_case_ = "constant_with_warmup" snake_case_ = "piecewise_constant" def __lowerCamelCase ( __lowerCAmelCase : Optimizer , __lowerCAmelCase : int = -1 ) -> List[Any]: return LambdaLR(__lowerCAmelCase , lambda __lowerCAmelCase : 1 , last_epoch=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optimizer , __lowerCAmelCase : int , __lowerCAmelCase : int = -1 ) -> Any: def lr_lambda(__lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1.0 , __lowerCAmelCase ) ) return 1.0 return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optimizer , __lowerCAmelCase : str , __lowerCAmelCase : int = -1 ) -> Dict: snake_case = {} snake_case = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: snake_case , snake_case = rule_str.split(""":""" ) snake_case = int(__lowerCAmelCase ) snake_case = float(__lowerCAmelCase ) snake_case = value snake_case = float(rule_list[-1] ) def create_rules_function(__lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ): def rule_func(__lowerCAmelCase : int ) -> float: snake_case = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case = create_rules_function(__lowerCAmelCase , __lowerCAmelCase ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=-1 ) -> List[str]: def lr_lambda(__lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optimizer , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : int = -1 ) -> List[Any]: def lr_lambda(__lowerCAmelCase : Optional[int] ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optimizer , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = -1 ) -> Dict: def lr_lambda(__lowerCAmelCase : Optional[Any] ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) snake_case = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=1e-7 , __lowerCAmelCase : int=1.0 , __lowerCAmelCase : Tuple=-1 ) -> List[Any]: snake_case = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case = lr_init - lr_end snake_case = num_training_steps - num_warmup_steps snake_case = 1 - (current_step - num_warmup_steps) / decay_steps snake_case = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __lowerCAmelCase : Union[str, SchedulerType] , __lowerCAmelCase : Optimizer , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 1 , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : int = -1 , ) -> Tuple: snake_case = SchedulerType(__lowerCAmelCase ) snake_case = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCAmelCase , last_epoch=__lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCAmelCase , step_rules=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , num_cycles=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , power=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase )
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while b: snake_case , snake_case = b, a % b return a def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def __lowerCamelCase ( ) -> List[Any]: print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "gptj" snake_case_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __snake_case : Tuple=5_04_00 , __snake_case : List[str]=20_48 , __snake_case : Optional[int]=40_96 , __snake_case : Union[str, Any]=28 , __snake_case : Optional[Any]=16 , __snake_case : Optional[Any]=64 , __snake_case : Any=None , __snake_case : List[Any]="gelu_new" , __snake_case : Any=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=0.0 , __snake_case : Any=1e-5 , __snake_case : List[Any]=0.02 , __snake_case : str=True , __snake_case : Union[str, Any]=5_02_56 , __snake_case : Dict=5_02_56 , __snake_case : List[Any]=False , **__snake_case : Tuple , )-> Any: snake_case = vocab_size snake_case = n_positions snake_case = n_embd snake_case = n_layer snake_case = n_head snake_case = n_inner snake_case = rotary_dim snake_case = activation_function snake_case = resid_pdrop snake_case = embd_pdrop snake_case = attn_pdrop snake_case = layer_norm_epsilon snake_case = initializer_range snake_case = use_cache snake_case = bos_token_id snake_case = eos_token_id super().__init__( bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case ) class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : PretrainedConfig , __snake_case : str = "default" , __snake_case : List[PatchingSpec] = None , __snake_case : bool = False , )-> Optional[Any]: super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case ) if not getattr(self._config , """pad_token_id""" , __snake_case ): # TODO: how to do that better? snake_case = 0 @property def lowerCAmelCase ( self : str )-> Mapping[str, Mapping[int, str]]: snake_case = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) snake_case = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase ( self : int )-> int: return self._config.n_layer @property def lowerCAmelCase ( self : Optional[Any] )-> int: return self._config.n_head def lowerCAmelCase ( self : Any , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , )-> Mapping[str, Any]: snake_case = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() snake_case = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case = seqlen + 2 snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] snake_case = common_inputs["""attention_mask"""] if self.use_past: snake_case = ordered_inputs["""attention_mask"""].dtype snake_case = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self : Dict )-> int: return 13
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Dict ) -> Tuple: snake_case = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) snake_case = DatasetInfosDict.from_directory(__lowerCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : DatasetInfo ) -> Optional[Any]: snake_case = str(__lowerCAmelCase ) dataset_info.write_to_directory(__lowerCAmelCase ) snake_case = DatasetInfo.from_directory(__lowerCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowerCAmelCase , """dataset_info.json""" ) ) def __lowerCamelCase ( ) -> int: snake_case = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) snake_case = dataset_info._to_yaml_dict() assert sorted(__lowerCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case = yaml.safe_dump(__lowerCAmelCase ) snake_case = yaml.safe_load(__lowerCAmelCase ) assert dataset_info_yaml_dict == reloaded def __lowerCamelCase ( ) -> Dict: snake_case = DatasetInfo() snake_case = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=13_37 ), } ), ] , ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : DatasetInfosDict ) -> Optional[Any]: snake_case = str(__lowerCAmelCase ) dataset_infos_dict.write_to_directory(__lowerCAmelCase ) snake_case = DatasetInfosDict.from_directory(__lowerCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowerCAmelCase , """README.md""" ) )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Optional[Any]: snake_case = r"""\w+[.]\d+""" snake_case = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: snake_case = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) snake_case = flatten_dict(__lowerCAmelCase ) snake_case = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = rename_key(__lowerCAmelCase ) snake_case = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any ) -> int: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = torch.permute(__lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ): # linear layer snake_case = flax_key_tuple[:-1] + ("""weight""",) snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ) -> Any: if "metadata" in layer: snake_case = layer.split("""metadata""" ) snake_case = """""".join(split_layer[0] )[:-1] snake_case = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: snake_case = layer.split("""kvstore""" ) snake_case = """""".join(split_layer[0] )[:-1] snake_case = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: snake_case = layer.split("""/""" ) snake_case = """/""".join(split_layer[:-1] ) snake_case = (split_layer[-1],) if "kvstore/path" in layer: snake_case = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: snake_case = """file""" else: snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> Tuple: snake_case = rename_keys(__lowerCAmelCase ) snake_case = {} for k, v in current_block.items(): snake_case = v snake_case = new_current_block torch.save(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : str = WEIGHTS_NAME ) -> str: snake_case = convert_file_size_to_int(__lowerCAmelCase ) snake_case = [] snake_case = {} snake_case = 0 snake_case = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: snake_case = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] snake_case = flatten_dict(__lowerCAmelCase , sep="""/""" ) snake_case = {} for layer in checkpoint_info.keys(): snake_case , snake_case , snake_case = get_key_and_tensorstore_dict( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if curr_real_layer_name in all_layers: snake_case = content else: snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case = torch.tensor(__lowerCAmelCase ) snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case , snake_case = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCAmelCase ) snake_case = """/""".join(__lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case = os.path.join( __lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{len(__lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case = {} snake_case = 0 snake_case = raw_weights.to(getattr(__lowerCAmelCase , __lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case = os.path.join(__lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{len(__lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case = {} snake_case = {} for idx, shard in enumerate(__lowerCAmelCase ): snake_case = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} snake_case = os.path.join(__lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) snake_case = shard for key in shard: snake_case = shard_file # Add the metadata snake_case = {"""total_size""": total_size} snake_case = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" , encoding="""utf-8""" ) as f: snake_case = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + """\n""" f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) _SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __lowerCamelCase ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) snake_case = TaTokenizer.from_pretrained("""t5-small""" ) snake_case = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" snake_case = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids snake_case = model.generate(__lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowerCamelCase ( __lowerCAmelCase : Any ) -> int: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def __lowerCamelCase ( __lowerCAmelCase : str ) -> int: # word like '180' or '身高' or '神' for char in word: snake_case = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> int: snake_case = set() for token in tokens: snake_case = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) snake_case = list(__lowerCAmelCase ) return word_list def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ) -> Union[str, Any]: if not chinese_word_set: return bert_tokens snake_case = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) snake_case = bert_tokens snake_case , snake_case = 0, len(__lowerCAmelCase ) while start < end: snake_case = True if is_chinese(bert_word[start] ): snake_case = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): snake_case = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case = """##""" + bert_word[j] snake_case = start + i snake_case = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ) -> List[str]: snake_case = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): snake_case = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] snake_case = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) snake_case = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): snake_case = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) snake_case = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): snake_case = [] for id in input_ids: snake_case = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) snake_case = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) snake_case = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": snake_case = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> int: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: snake_case = f.readlines() snake_case = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case = LTP(args.ltp ) # faster in GPU device snake_case = BertTokenizer.from_pretrained(args.bert ) snake_case = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: snake_case = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , __snake_case : Any , __snake_case : str=1_00 , __snake_case : str=13 , __snake_case : str=30 , __snake_case : Optional[int]=2 , __snake_case : List[str]=3 , __snake_case : int=True , __snake_case : int=True , __snake_case : Tuple=32 , __snake_case : Union[str, Any]=4 , __snake_case : Optional[Any]=4 , __snake_case : Dict=37 , __snake_case : List[Any]="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : str=10 , __snake_case : List[Any]=0.02 , __snake_case : int=3 , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=[0, 1, 2, 3] , )-> str: snake_case = parent snake_case = 1_00 snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range snake_case = scope snake_case = out_indices snake_case = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case = (image_size // patch_size) ** 2 snake_case = num_patches + 1 def lowerCAmelCase ( self : List[str] )-> Dict: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : Any )-> Optional[Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase ( self : Dict , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[str] )-> Tuple: snake_case = BeitModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Any , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : Any )-> Optional[Any]: snake_case = BeitForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase ( self : str , __snake_case : str , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Tuple )-> Any: snake_case = self.type_sequence_label_size snake_case = BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Tuple )-> Union[str, Any]: snake_case = self.num_labels snake_case = BeitForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase ( self : str )-> Optional[Any]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : int )-> str: snake_case = BeitModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowerCAmelCase ( self : str )-> List[str]: pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCAmelCase ( self : Tuple )-> int: pass def lowerCAmelCase ( self : Tuple )-> Any: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowerCAmelCase ( self : Any )-> Union[str, Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowerCAmelCase ( self : Any )-> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def lowerCAmelCase ( self : Dict )-> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) def lowerCAmelCase ( self : str )-> int: if not self.model_tester.is_training: return snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling]: continue snake_case = model_class(__snake_case ) model.to(__snake_case ) model.train() snake_case = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) snake_case = model(**__snake_case ).loss loss.backward() def lowerCAmelCase ( self : Tuple )-> List[str]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case = False snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case = model_class(__snake_case ) model.gradient_checkpointing_enable() model.to(__snake_case ) model.train() snake_case = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) snake_case = model(**__snake_case ).loss loss.backward() def lowerCAmelCase ( self : int )-> Optional[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: snake_case = model_class(config=__snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase ( self : List[Any] )-> int: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BeitModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowerCamelCase ( ) -> Optional[int]: snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Any )-> Optional[int]: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Dict )-> str: snake_case = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(__snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).pixel_values.to(__snake_case ) # prepare bool_masked_pos snake_case = torch.ones((1, 1_96) , dtype=torch.bool ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(pixel_values=__snake_case , bool_masked_pos=__snake_case ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , __snake_case ) snake_case = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __snake_case , atol=1e-2 ) ) @slow def lowerCAmelCase ( self : List[Any] )-> Union[str, Any]: snake_case = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(__snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , __snake_case ) snake_case = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) ) snake_case = 2_81 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def lowerCAmelCase ( self : Tuple )-> int: snake_case = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( __snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , __snake_case ) snake_case = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) ) snake_case = 23_96 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case = model.to(__snake_case ) snake_case = BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) snake_case = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ) snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) snake_case = outputs.logits # verify the logits snake_case = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , __snake_case ) snake_case = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: snake_case = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=__snake_case , ) else: snake_case = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : List[str] )-> Any: snake_case = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case = model.to(__snake_case ) snake_case = BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) snake_case = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ) snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) snake_case = outputs.logits.detach().cpu() snake_case = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) snake_case = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) snake_case = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) snake_case = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , __snake_case )
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def __lowerCamelCase ( ) -> str: snake_case = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) snake_case = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__lowerCAmelCase ) # Let's go snake_case = parser.parse_args() if not hasattr(__lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run snake_case = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import os def __lowerCamelCase ( ) -> int: snake_case = os.path.join(os.path.dirname(__lowerCAmelCase ) , """num.txt""" ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any )-> Optional[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase ( self : Dict )-> Tuple: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 try: snake_case = tempfile.mktemp() with open(__snake_case , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , __snake_case ) snake_case = AlbertTokenizer.from_pretrained(__snake_case ) finally: os.remove(__snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , __snake_case ) snake_case = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def lowerCAmelCase ( self : Any )-> Dict: # This test is for deprecated behavior and can be removed in v5 snake_case = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : List[str] )-> List[str]: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Any )-> List[Any]: try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def lowerCAmelCase ( self : int )-> Any: with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = BertTokenizer(__snake_case ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__snake_case , repo_id="""test-tokenizer""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = BertTokenizer(__snake_case ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __snake_case , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCAmelCase ( self : Optional[Any] )-> int: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = BertTokenizerFast.from_pretrained(__snake_case ) bert_tokenizer.save_pretrained(__snake_case ) snake_case = CustomTokenizerFast.from_pretrained(__snake_case ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) snake_case = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__snake_case , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Dict: snake_case = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def lowerCAmelCase ( self : str )-> Dict: snake_case = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def lowerCAmelCase ( self : int )-> Optional[int]: snake_case = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def lowerCAmelCase ( self : Union[str, Any] )-> Dict: snake_case = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def lowerCAmelCase ( self : Optional[int] )-> Optional[int]: snake_case = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def lowerCAmelCase ( self : Optional[int] )-> List[Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case = Trie() snake_case = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__snake_case , ["""AB""", """C"""] )
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _SCREAMING_SNAKE_CASE = [{"type": "code", "content": INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["vqvae"] def __init__( self : List[str] , __snake_case : AutoencoderKL , __snake_case : UNetaDConditionModel , __snake_case : Mel , __snake_case : Union[DDIMScheduler, DDPMScheduler] , )-> Optional[int]: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case , mel=__snake_case , vqvae=__snake_case ) def lowerCAmelCase ( self : Union[str, Any] )-> int: return 50 if isinstance(self.scheduler , __snake_case ) else 10_00 @torch.no_grad() def __call__( self : Tuple , __snake_case : int = 1 , __snake_case : str = None , __snake_case : np.ndarray = None , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = None , __snake_case : torch.Generator = None , __snake_case : float = 0 , __snake_case : float = 0 , __snake_case : torch.Generator = None , __snake_case : float = 0 , __snake_case : torch.Tensor = None , __snake_case : torch.Tensor = None , __snake_case : Optional[int]=True , )-> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: snake_case = steps or self.get_default_steps() self.scheduler.set_timesteps(__snake_case ) snake_case = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: snake_case = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: snake_case = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__snake_case , device=self.device , ) snake_case = noise snake_case = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__snake_case , __snake_case ) snake_case = self.mel.audio_slice_to_image(__snake_case ) snake_case = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) snake_case = (input_image / 2_55) * 2 - 1 snake_case = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: snake_case = self.vqvae.encode(torch.unsqueeze(__snake_case , 0 ) ).latent_dist.sample( generator=__snake_case )[0] snake_case = self.vqvae.config.scaling_factor * input_images if start_step > 0: snake_case = self.scheduler.add_noise(__snake_case , __snake_case , self.scheduler.timesteps[start_step - 1] ) snake_case = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) snake_case = int(mask_start_secs * pixels_per_second ) snake_case = int(mask_end_secs * pixels_per_second ) snake_case = self.scheduler.add_noise(__snake_case , __snake_case , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __snake_case ): snake_case = self.unet(__snake_case , __snake_case , __snake_case )["""sample"""] else: snake_case = self.unet(__snake_case , __snake_case )["""sample"""] if isinstance(self.scheduler , __snake_case ): snake_case = self.scheduler.step( model_output=__snake_case , timestep=__snake_case , sample=__snake_case , eta=__snake_case , generator=__snake_case , )["""prev_sample"""] else: snake_case = self.scheduler.step( model_output=__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case , )["""prev_sample"""] if mask is not None: if mask_start > 0: snake_case = mask[:, step, :, :mask_start] if mask_end > 0: snake_case = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance snake_case = 1 / self.vqvae.config.scaling_factor * images snake_case = self.vqvae.decode(__snake_case )["""sample"""] snake_case = (images / 2 + 0.5).clamp(0 , 1 ) snake_case = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() snake_case = (images * 2_55).round().astype("""uint8""" ) snake_case = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__snake_case , mode="""RGB""" ).convert("""L""" ) for _ in images) ) snake_case = [self.mel.image_to_audio(__snake_case ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__snake_case )[:, np.newaxis, :] ) , **ImagePipelineOutput(__snake_case ) ) @torch.no_grad() def lowerCAmelCase ( self : Tuple , __snake_case : List[Image.Image] , __snake_case : int = 50 )-> np.ndarray: assert isinstance(self.scheduler , __snake_case ) self.scheduler.set_timesteps(__snake_case ) snake_case = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) snake_case = (sample / 2_55) * 2 - 1 snake_case = torch.Tensor(__snake_case ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): snake_case = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps snake_case = self.scheduler.alphas_cumprod[t] snake_case = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) snake_case = 1 - alpha_prod_t snake_case = self.unet(__snake_case , __snake_case )["""sample"""] snake_case = (1 - alpha_prod_t_prev) ** 0.5 * model_output snake_case = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) snake_case = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCAmelCase ( __snake_case : torch.Tensor , __snake_case : torch.Tensor , __snake_case : float )-> torch.Tensor: snake_case = acos(torch.dot(torch.flatten(__snake_case ) , torch.flatten(__snake_case ) ) / torch.norm(__snake_case ) / torch.norm(__snake_case ) ) return sin((1 - alpha) * theta ) * xa / sin(__snake_case ) + sin(alpha * theta ) * xa / sin(__snake_case )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int]=[] ) -> Tuple: snake_case = size[0] - overlap_pixels * 2 snake_case = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels snake_case = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 snake_case = np.pad(__lowerCAmelCase , mode="""linear_ramp""" , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: snake_case = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: snake_case = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: snake_case = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: snake_case = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ) -> Tuple: return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowerCamelCase ( __lowerCAmelCase : [int] , __lowerCAmelCase : [int] , __lowerCAmelCase : [int] ) -> Dict: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase ( __lowerCAmelCase : [int] , __lowerCAmelCase : int , __lowerCAmelCase : [int] ) -> Optional[int]: snake_case = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap snake_case = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ) -> str: snake_case = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Any: snake_case = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) snake_case = tile.crop(__lowerCAmelCase ) return tile def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Tuple: snake_case = n % d return n - divisor class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __snake_case : int = 3_50 , )-> str: super().__init__( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , low_res_scheduler=__snake_case , scheduler=__snake_case , max_noise_level=__snake_case , ) def lowerCAmelCase ( self : Any , __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[str] , **__snake_case : Optional[Any] )-> Union[str, Any]: torch.manual_seed(0 ) snake_case = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) snake_case = add_overlap_rect(__snake_case , __snake_case , image.size ) snake_case = image.crop(__snake_case ) snake_case = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] snake_case = translated_slice_x - (original_image_slice / 2) snake_case = max(0 , __snake_case ) snake_case = squeeze_tile(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case = to_input.size snake_case = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) snake_case = super(__snake_case , self ).__call__(image=__snake_case , **__snake_case ).images[0] snake_case = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) snake_case = unsqueeze_tile(__snake_case , __snake_case ) snake_case = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) snake_case = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) snake_case = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__snake_case ) , mode="""L""" , ) final_image.paste( __snake_case , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __snake_case ) @torch.no_grad() def __call__( self : List[Any] , __snake_case : Union[str, List[str]] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 75 , __snake_case : float = 9.0 , __snake_case : int = 50 , __snake_case : Optional[Union[str, List[str]]] = None , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , __snake_case : int = 1_28 , __snake_case : int = 32 , __snake_case : int = 32 , )-> List[Any]: snake_case = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) snake_case = math.ceil(image.size[0] / tile_size ) snake_case = math.ceil(image.size[1] / tile_size ) snake_case = tcx * tcy snake_case = 0 for y in range(__snake_case ): for x in range(__snake_case ): self._process_tile( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , prompt=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , noise_level=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __lowerCamelCase ( ) -> str: # Run a demo snake_case = """stabilityai/stable-diffusion-x4-upscaler""" snake_case = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision="""fp16""" , torch_dtype=torch.floataa ) snake_case = pipe.to("""cuda""" ) snake_case = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(__lowerCAmelCase : str ): print(F'''progress: {obj["progress"]:.4f}''' ) obj["image"].save("""diffusers_library_progress.jpg""" ) snake_case = pipe(image=__lowerCAmelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__lowerCAmelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = BartphoTokenizer snake_case_ = False snake_case_ = True def lowerCAmelCase ( self : Any )-> List[str]: super().setUp() snake_case = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = {"""unk_token""": """<unk>"""} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) snake_case = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[str] , **__snake_case : int )-> str: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : Tuple )-> str: snake_case = """This is a là test""" snake_case = """This is a<unk><unk> test""" return input_text, output_text def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) snake_case = """This is a là test""" snake_case = """▁This ▁is ▁a ▁l à ▁t est""".split() snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokens + [tokenizer.unk_token] snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case )
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = 1.5 snake_case = int(factor * num_class_images ) snake_case = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__lowerCAmelCase , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__lowerCAmelCase ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: snake_case = client.query(text=__lowerCAmelCase ) if len(__lowerCAmelCase ) >= factor * num_class_images or num_images > 1e4: break else: snake_case = int(factor * num_images ) snake_case = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__lowerCAmelCase , aesthetic_weight=0.1 , ) snake_case = 0 snake_case = 0 snake_case = tqdm(desc="""downloading real regularization images""" , total=__lowerCAmelCase ) with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open( F'''{class_data_dir}/images.txt''' , """w""" ) as fa: while total < num_class_images: snake_case = class_images[count] count += 1 try: snake_case = requests.get(images["""url"""] ) if img.status_code == 2_00: snake_case = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowerCamelCase ( ) -> List[str]: snake_case = argparse.ArgumentParser("""""" , add_help=__lowerCAmelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=2_00 , type=__lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _SCREAMING_SNAKE_CASE = HfArgumentParser(InitializationArguments) _SCREAMING_SNAKE_CASE = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _SCREAMING_SNAKE_CASE = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' import logging import os from .state import PartialState class _lowerCAmelCase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def lowerCAmelCase ( __snake_case : Dict )-> Optional[Any]: snake_case = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCAmelCase ( self : List[str] , __snake_case : Any , __snake_case : int , *__snake_case : List[str] , **__snake_case : int )-> Optional[Any]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) snake_case = kwargs.pop("""main_process_only""" , __snake_case ) snake_case = kwargs.pop("""in_order""" , __snake_case ) if self.isEnabledFor(__snake_case ): if self._should_log(__snake_case ): snake_case , snake_case = self.process(__snake_case , __snake_case ) self.logger.log(__snake_case , __snake_case , *__snake_case , **__snake_case ) elif in_order: snake_case = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case , snake_case = self.process(__snake_case , __snake_case ) self.logger.log(__snake_case , __snake_case , *__snake_case , **__snake_case ) state.wait_for_everyone() def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str = None ) -> Union[str, Any]: if log_level is None: snake_case = os.environ.get("""ACCELERATE_LOG_LEVEL""" , __lowerCAmelCase ) snake_case = logging.getLogger(__lowerCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCAmelCase , {} )
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCamelCase ( __lowerCAmelCase : str ) -> int: snake_case = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} snake_case = Stack() snake_case = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case = operator_stack.peek() operator_stack.pop() snake_case = operand_stack.peek() operand_stack.pop() snake_case = operand_stack.peek() operand_stack.pop() snake_case = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' from math import factorial, radians def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : int = 18 , __lowerCAmelCase : int = 10 ) -> float: snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians snake_case = radians(__lowerCAmelCase ) snake_case = angle_in_radians snake_case = 3 snake_case = -1 for _ in range(__lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCAmelCase ) snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CLIPTokenizer snake_case_ = CLIPTokenizerFast snake_case_ = True snake_case_ = {} snake_case_ = False def lowerCAmelCase ( self : str )-> int: super().setUp() # fmt: off snake_case = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] snake_case = {"""unk_token""": """<unk>"""} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowerCAmelCase ( self : Union[str, Any] , **__snake_case : Dict )-> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Any , **__snake_case : Tuple )-> Optional[int]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : Optional[int] )-> Any: snake_case = """lower newer""" snake_case = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : Tuple )-> Optional[int]: snake_case = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = """lower newer""" snake_case = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokens + [tokenizer.unk_token] snake_case = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @require_ftfy def lowerCAmelCase ( self : List[str] )-> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case = """xa\u0303y""" + """ """ + """x\xe3y""" snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of space type snake_case = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of line break type snake_case = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case = tokenizer_s.tokenize(__snake_case ) snake_case = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case = f'''{text_of_1_token} {text_of_1_token}''' snake_case = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) snake_case = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) snake_case = f''' {text}''' snake_case = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) snake_case = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ) + 1, 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) def lowerCAmelCase ( self : List[str] )-> List[str]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__snake_case ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCAmelCase ( self : str )-> Optional[int]: super().test_tokenization_python_rust_equals() def lowerCAmelCase ( self : List[Any] )-> Dict: # CLIP always lower cases letters pass
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "unispeech" def __init__( self : Union[str, Any] , __snake_case : List[Any]=32 , __snake_case : List[str]=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Union[str, Any]=12 , __snake_case : Tuple=30_72 , __snake_case : List[str]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : str=0.1 , __snake_case : List[Any]=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : Union[str, Any]=0.1 , __snake_case : str=0.1 , __snake_case : Tuple=0.02 , __snake_case : Tuple=1e-5 , __snake_case : Dict="group" , __snake_case : Optional[Any]="gelu" , __snake_case : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __snake_case : List[Any]=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Tuple=1_28 , __snake_case : int=16 , __snake_case : Dict=False , __snake_case : str=True , __snake_case : Union[str, Any]=0.05 , __snake_case : Tuple=10 , __snake_case : List[str]=2 , __snake_case : Dict=0.0 , __snake_case : int=10 , __snake_case : Any=0 , __snake_case : Any=3_20 , __snake_case : List[str]=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=1_00 , __snake_case : Optional[int]=2_56 , __snake_case : Optional[int]=2_56 , __snake_case : Optional[Any]=0.1 , __snake_case : int="mean" , __snake_case : Union[str, Any]=False , __snake_case : List[Any]=False , __snake_case : Optional[int]=2_56 , __snake_case : str=80 , __snake_case : Optional[int]=0 , __snake_case : Optional[int]=1 , __snake_case : int=2 , __snake_case : Optional[int]=0.5 , **__snake_case : Optional[int] , )-> Optional[Any]: super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) snake_case = hidden_size snake_case = feat_extract_norm snake_case = feat_extract_activation snake_case = list(__snake_case ) snake_case = list(__snake_case ) snake_case = list(__snake_case ) snake_case = conv_bias snake_case = num_conv_pos_embeddings snake_case = num_conv_pos_embedding_groups snake_case = len(self.conv_dim ) snake_case = num_hidden_layers snake_case = intermediate_size snake_case = hidden_act snake_case = num_attention_heads snake_case = hidden_dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = feat_proj_dropout snake_case = final_dropout snake_case = layerdrop snake_case = layer_norm_eps snake_case = initializer_range snake_case = num_ctc_classes snake_case = vocab_size snake_case = do_stable_layer_norm snake_case = use_weighted_layer_sum snake_case = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case = apply_spec_augment snake_case = mask_time_prob snake_case = mask_time_length snake_case = mask_time_min_masks snake_case = mask_feature_prob snake_case = mask_feature_length snake_case = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case = num_codevectors_per_group snake_case = num_codevector_groups snake_case = contrastive_logits_temperature snake_case = feat_quantizer_dropout snake_case = num_negatives snake_case = codevector_dim snake_case = proj_codevector_dim snake_case = diversity_loss_weight # ctc loss snake_case = ctc_loss_reduction snake_case = ctc_zero_infinity # pretraining loss snake_case = replace_prob @property def lowerCAmelCase ( self : str )-> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1 )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Dict: snake_case = RobertaPreLayerNormConfig.from_pretrained( __lowerCAmelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict snake_case = torch.load(hf_hub_download(repo_id=__lowerCAmelCase , filename="""pytorch_model.bin""" ) ) snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): snake_case = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue snake_case = tensor_value snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) # convert tokenizer snake_case = AutoTokenizer.from_pretrained(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _SCREAMING_SNAKE_CASE = "src/diffusers" # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla _SCREAMING_SNAKE_CASE = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") _SCREAMING_SNAKE_CASE = "\n{0} = None\n" _SCREAMING_SNAKE_CASE = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" _SCREAMING_SNAKE_CASE = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Dict: snake_case = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def __lowerCamelCase ( ) -> Optional[Any]: with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case = f.readlines() # Get to the point we do the actual imports for type checking snake_case = 0 snake_case = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 snake_case = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: snake_case = lines[line_index] snake_case = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: snake_case = objects else: line_index += 1 return backend_specific_objects def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any]=None ) -> Tuple: if backend_specific_objects is None: snake_case = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case = {} for backend, objects in backend_specific_objects.items(): snake_case = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" snake_case = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) snake_case = dummy_file return dummy_files def __lowerCamelCase ( __lowerCAmelCase : Optional[Any]=False ) -> Union[str, Any]: snake_case = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. snake_case = os.path.join(__lowerCAmelCase , """utils""" ) snake_case = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } snake_case = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case = f.read() else: snake_case = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() check_dummies(args.fix_and_overwrite)
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = IFPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase ( self : Dict )-> Dict: return self._get_dummy_components() def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : str=0 )-> Optional[Any]: if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Optional[Any] )-> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase ( self : str )-> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase ( self : List[Any] )-> List[str]: self._test_save_load_local() def lowerCAmelCase ( self : str )-> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : str )-> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] )-> Tuple: # if snake_case = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) snake_case = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=__snake_case , tokenizer=__snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) snake_case , snake_case = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case = None snake_case = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__snake_case , __snake_case , __snake_case , __snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case = IFImgaImgPipeline(**pipe_a.components ) snake_case = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__snake_case , __snake_case , __snake_case , __snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case = IFInpaintingPipeline(**pipe_a.components ) snake_case = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__snake_case , __snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int )-> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (64, 64, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Dict )-> str: # pipeline 1 _start_torch_memory_measurement() snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (64, 64, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , original_image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int )-> int: # pipeline 1 _start_torch_memory_measurement() snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , mask_image=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (64, 64, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__snake_case ) snake_case = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__snake_case ) snake_case = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , mask_image=__snake_case , original_image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(__snake_case , __snake_case ) def __lowerCamelCase ( ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _SCREAMING_SNAKE_CASE = (720, 1280) # Height, Width _SCREAMING_SNAKE_CASE = (0.4, 0.6) # if height or width lower than this scale, drop it. _SCREAMING_SNAKE_CASE = 1 / 100 _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = 250 def __lowerCamelCase ( ) -> None: snake_case , snake_case = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) for index in range(__lowerCAmelCase ): snake_case = random.sample(range(len(__lowerCAmelCase ) ) , 4 ) snake_case , snake_case , snake_case = update_image_and_anno( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , filter_scale=__lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case = random_chars(32 ) snake_case = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] snake_case = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) snake_case = [] for anno in new_annos: snake_case = anno[3] - anno[1] snake_case = anno[4] - anno[2] snake_case = anno[1] + width / 2 snake_case = anno[2] + height / 2 snake_case = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__lowerCAmelCase ) with open(F'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: snake_case = [] snake_case = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): snake_case = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: snake_case = in_file.readlines() snake_case = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) snake_case = [] for obj_list in obj_lists: snake_case = obj_list.rstrip("""\n""" ).split(""" """ ) snake_case = float(obj[1] ) - float(obj[3] ) / 2 snake_case = float(obj[2] ) - float(obj[4] ) / 2 snake_case = float(obj[1] ) + float(obj[3] ) / 2 snake_case = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : tuple[float, float] , __lowerCAmelCase : float = 0.0 , ) -> tuple[list, list, str]: snake_case = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case = int(scale_x * output_size[1] ) snake_case = int(scale_y * output_size[0] ) snake_case = [] snake_case = [] for i, index in enumerate(__lowerCAmelCase ): snake_case = all_img_list[index] path_list.append(__lowerCAmelCase ) snake_case = all_annos[index] snake_case = cva.imread(__lowerCAmelCase ) if i == 0: # top-left snake_case = cva.resize(__lowerCAmelCase , (divid_point_x, divid_point_y) ) snake_case = img for bbox in img_annos: snake_case = bbox[1] * scale_x snake_case = bbox[2] * scale_y snake_case = bbox[3] * scale_x snake_case = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case = cva.resize(__lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) snake_case = img for bbox in img_annos: snake_case = scale_x + bbox[1] * (1 - scale_x) snake_case = bbox[2] * scale_y snake_case = scale_x + bbox[3] * (1 - scale_x) snake_case = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case = cva.resize(__lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) snake_case = img for bbox in img_annos: snake_case = bbox[1] * scale_x snake_case = scale_y + bbox[2] * (1 - scale_y) snake_case = bbox[3] * scale_x snake_case = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case = cva.resize( __lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case = img for bbox in img_annos: snake_case = scale_x + bbox[1] * (1 - scale_x) snake_case = scale_y + bbox[2] * (1 - scale_y) snake_case = scale_x + bbox[3] * (1 - scale_x) snake_case = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowerCamelCase ( __lowerCAmelCase : int ) -> str: assert number_char > 1, "The number of character should greater than 1" snake_case = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "data2vec-vision" def __init__( self : Union[str, Any] , __snake_case : str=7_68 , __snake_case : Dict=12 , __snake_case : List[Any]=12 , __snake_case : List[Any]=30_72 , __snake_case : Optional[Any]="gelu" , __snake_case : List[Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Union[str, Any]=1e-12 , __snake_case : Any=2_24 , __snake_case : Dict=16 , __snake_case : int=3 , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : str=False , __snake_case : Tuple=False , __snake_case : Tuple=0.1 , __snake_case : int=0.1 , __snake_case : int=True , __snake_case : Dict=[3, 5, 7, 11] , __snake_case : Optional[int]=[1, 2, 3, 6] , __snake_case : str=True , __snake_case : int=0.4 , __snake_case : Any=2_56 , __snake_case : str=1 , __snake_case : int=False , __snake_case : Tuple=2_55 , **__snake_case : List[str] , )-> Dict: super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = use_mask_token snake_case = use_absolute_position_embeddings snake_case = use_relative_position_bias snake_case = use_shared_relative_position_bias snake_case = layer_scale_init_value snake_case = drop_path_rate snake_case = use_mean_pooling # decode head attributes (semantic segmentation) snake_case = out_indices snake_case = pool_scales # auxiliary head attributes (semantic segmentation) snake_case = use_auxiliary_head snake_case = auxiliary_loss_weight snake_case = auxiliary_channels snake_case = auxiliary_num_convs snake_case = auxiliary_concat_input snake_case = semantic_loss_ignore_index class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = version.parse("1.11" ) @property def lowerCAmelCase ( self : int )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : List[Any] )-> float: return 1e-4
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : str ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> bool: snake_case = credit_card_number snake_case = 0 snake_case = len(__lowerCAmelCase ) - 2 for i in range(__lowerCAmelCase , -1 , -2 ): # double the value of every second digit snake_case = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case = cc_number[:i] + str(__lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __lowerCamelCase ( __lowerCAmelCase : str ) -> bool: snake_case = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__lowerCAmelCase ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__lowerCAmelCase ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__lowerCAmelCase ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } _SCREAMING_SNAKE_CASE = { "camembert-base": 512, } _SCREAMING_SNAKE_CASE = "▁" class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Dict="</s>" , __snake_case : List[str]="<s>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : List[Any]="<pad>" , __snake_case : int="<mask>" , __snake_case : Dict=["<s>NOTUSED", "</s>NOTUSED"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Tuple , )-> None: # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) snake_case = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> snake_case = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} snake_case = len(self.fairseq_tokens_to_ids ) snake_case = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowerCAmelCase ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase ( self : Optional[Any] )-> List[str]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase ( self : Tuple )-> Dict: snake_case = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Any , __snake_case : str )-> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__snake_case ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : List[Any] )-> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Tuple )-> str: snake_case = [] snake_case = """""" snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token snake_case = True snake_case = [] else: current_sub_tokens.append(__snake_case ) snake_case = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Dict )-> str: snake_case = self.__dict__.copy() snake_case = None return state def __setstate__( self : Dict , __snake_case : Any )-> List[Any]: snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case = {} snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: snake_case = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __lowerCamelCase ( __lowerCAmelCase : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__lowerCAmelCase ) snake_case = """""".join(bin(__lowerCAmelCase )[2:].zfill(8 ) for byte in data ) snake_case = len(__lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later snake_case = B"""=""" * ((6 - len(__lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__lowerCAmelCase ) % 6) else: snake_case = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__lowerCAmelCase ) , 6 ) ).encode() + padding ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one snake_case = encoded_data[:-padding] snake_case = """""".join( bin(B64_CHARSET.index(__lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: snake_case = """""".join( bin(B64_CHARSET.index(__lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__lowerCAmelCase ) , 8 ) ] return bytes(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _SCREAMING_SNAKE_CASE = "Usage of script: script_name <size_of_canvas:int>" _SCREAMING_SNAKE_CASE = [0] * 100 + [1] * 10 random.shuffle(choice) def __lowerCamelCase ( __lowerCAmelCase : int ) -> list[list[bool]]: snake_case = [[False for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] return canvas def __lowerCamelCase ( __lowerCAmelCase : list[list[bool]] ) -> None: for i, row in enumerate(__lowerCAmelCase ): for j, _ in enumerate(__lowerCAmelCase ): snake_case = bool(random.getrandbits(1 ) ) def __lowerCamelCase ( __lowerCAmelCase : list[list[bool]] ) -> list[list[bool]]: snake_case = np.array(__lowerCAmelCase ) snake_case = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCAmelCase ): for c, pt in enumerate(__lowerCAmelCase ): snake_case = __judge_point( __lowerCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) snake_case = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. snake_case = current_canvas.tolist() return return_canvas def __lowerCamelCase ( __lowerCAmelCase : bool , __lowerCAmelCase : list[list[bool]] ) -> bool: snake_case = 0 snake_case = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. snake_case = pt if pt: if alive < 2: snake_case = False elif alive == 2 or alive == 3: snake_case = True elif alive > 3: snake_case = False else: if alive == 3: snake_case = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _SCREAMING_SNAKE_CASE = int(sys.argv[1]) # main working structure of this module. _SCREAMING_SNAKE_CASE = create_canvas(canvas_size) seed(c) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = plt.subplots() fig.show() _SCREAMING_SNAKE_CASE = ListedColormap(["w", "k"]) try: while True: _SCREAMING_SNAKE_CASE = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "informer" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "student_t" , __snake_case : str = "nll" , __snake_case : int = 1 , __snake_case : List[int] = None , __snake_case : Optional[Union[str, bool]] = "mean" , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : Optional[List[int]] = None , __snake_case : Optional[List[int]] = None , __snake_case : int = 64 , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : bool = True , __snake_case : str = "gelu" , __snake_case : float = 0.05 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 1_00 , __snake_case : float = 0.02 , __snake_case : Tuple=True , __snake_case : str = "prob" , __snake_case : int = 5 , __snake_case : bool = True , **__snake_case : List[Any] , )-> int: # time series specific configuration snake_case = prediction_length snake_case = context_length or prediction_length snake_case = distribution_output snake_case = loss snake_case = input_size snake_case = num_time_features snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case = scaling snake_case = num_dynamic_real_features snake_case = num_static_real_features snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case = cardinality else: snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case = embedding_dimension else: snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case = num_parallel_samples # Transformer architecture configuration snake_case = input_size * len(self.lags_sequence ) + self._number_of_features snake_case = d_model snake_case = encoder_attention_heads snake_case = decoder_attention_heads snake_case = encoder_ffn_dim snake_case = decoder_ffn_dim snake_case = encoder_layers snake_case = decoder_layers snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = activation_function snake_case = init_std snake_case = use_cache # Informer snake_case = attention_type snake_case = sampling_factor snake_case = distil super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : Optional[int] )-> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = DistilBertTokenizer snake_case_ = DistilBertTokenizerFast snake_case_ = True @slow def lowerCAmelCase ( self : int )-> Tuple: snake_case = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) snake_case = tokenizer.encode("""sequence builders""" , add_special_tokens=__snake_case ) snake_case = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__snake_case ) snake_case = tokenizer.build_inputs_with_special_tokens(__snake_case ) snake_case = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "new-model" if is_tf_available(): class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = NewModelConfig @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : int )-> List[str]: snake_case = """bert-base-cased""" snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> List[str]: snake_case = """bert-base-cased""" snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForPreTraining.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForCausalLM.from_pretrained(__snake_case ) snake_case , snake_case = TFAutoModelForCausalLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : int )-> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : str )-> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForMaskedLM.from_pretrained(__snake_case ) snake_case , snake_case = TFAutoModelForMaskedLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : int )-> Tuple: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case ) snake_case , snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForSequenceClassification.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Union[str, Any] )-> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow @require_tensorflow_probability def lowerCAmelCase ( self : Tuple )-> List[str]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: snake_case = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained(__snake_case ) snake_case , snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained( __snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) def lowerCAmelCase ( self : int )-> Optional[Any]: snake_case = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel snake_case = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(__snake_case , __snake_case ) snake_case = copy.deepcopy(model.config ) snake_case = ["""FunnelBaseModel"""] snake_case = TFAutoModel.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) snake_case = TFAutoModel.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Any: try: AutoConfig.register("""new-model""" , __snake_case ) snake_case = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) auto_class.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = BertModelTester(self ).get_config() snake_case = NewModelConfig(**tiny_config.to_dict() ) snake_case = auto_class.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) snake_case = auto_class.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCAmelCase ( self : str )-> str: with self.assertRaisesRegex( __snake_case , """bert-base is not a local folder and is not a valid model identifier""" ): snake_case = TFAutoModel.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : Any )-> str: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = TFAutoModel.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Optional[Any] )-> Any: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): snake_case = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : Any )-> Dict: with self.assertRaisesRegex(__snake_case , """Use `from_pt=True` to load this model""" ): snake_case = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def lowerCAmelCase ( self : List[Any] )-> Optional[int]: # Make sure we have cached the model. snake_case = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: snake_case = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint snake_case = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: snake_case = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "bert" def __init__( self : Union[str, Any] , __snake_case : Any=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : int=12 , __snake_case : int=12 , __snake_case : Dict=30_72 , __snake_case : Any="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Optional[Any]=5_12 , __snake_case : Dict=2 , __snake_case : List[Any]=0.02 , __snake_case : int=1e-12 , __snake_case : Optional[Any]=0 , __snake_case : List[Any]="absolute" , __snake_case : List[Any]=True , __snake_case : List[Any]=None , **__snake_case : List[str] , )-> Optional[int]: super().__init__(pad_token_id=__snake_case , **__snake_case ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class _lowerCAmelCase ( A__ ): """simple docstring""" @property def lowerCAmelCase ( self : Tuple )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCamelCase ( __lowerCAmelCase : int ) -> Optional[int]: snake_case = SwinConfig(image_size=1_92 ) if "base" in model_name: snake_case = 6 snake_case = 1_28 snake_case = (2, 2, 18, 2) snake_case = (4, 8, 16, 32) elif "large" in model_name: snake_case = 12 snake_case = 1_92 snake_case = (2, 2, 18, 2) snake_case = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) snake_case = window_size snake_case = embed_dim snake_case = depths snake_case = num_heads return config def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> Tuple: if "encoder.mask_token" in name: snake_case = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: snake_case = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: snake_case = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: snake_case = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": snake_case = """layernorm.weight""" if name == "encoder.norm.bias": snake_case = """layernorm.bias""" if "decoder" in name: pass else: snake_case = """swin.""" + name return name def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(__lowerCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: snake_case = key.split(""".""" ) snake_case = int(key_split[2] ) snake_case = int(key_split[4] ) snake_case = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: snake_case = val return orig_state_dict def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> Union[str, Any]: snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] snake_case = get_swin_config(__lowerCAmelCase ) snake_case = SwinForMaskedImageModeling(__lowerCAmelCase ) model.eval() snake_case = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) snake_case = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case = ViTImageProcessor(size={"""height""": 1_92, """width""": 1_92} ) snake_case = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) snake_case = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) with torch.no_grad(): snake_case = model(**__lowerCAmelCase ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 0.0 snake_case_ = 1 snake_case_ = 1 snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = jnp.floataa def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case = [] snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) snake_case = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) snake_case = resnets snake_case = attentions if self.add_downsample: snake_case = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Union[str, Any]=True )-> Union[str, Any]: snake_case = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case = resnet(__snake_case , __snake_case , deterministic=__snake_case ) snake_case = attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: snake_case = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 0.0 snake_case_ = 1 snake_case_ = True snake_case_ = jnp.floataa def lowerCAmelCase ( self : Tuple )-> int: snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) snake_case = resnets if self.add_downsample: snake_case = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any]=True )-> Dict: snake_case = () for resnet in self.resnets: snake_case = resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: snake_case = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 0.0 snake_case_ = 1 snake_case_ = 1 snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = jnp.floataa def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = [] snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case = self.prev_output_channel if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) snake_case = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) snake_case = resnets snake_case = attentions if self.add_upsample: snake_case = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , __snake_case : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any]=True )-> List[Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case = res_hidden_states_tuple[-1] snake_case = res_hidden_states_tuple[:-1] snake_case = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case = resnet(__snake_case , __snake_case , deterministic=__snake_case ) snake_case = attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: snake_case = self.upsamplers_a(__snake_case ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 0.0 snake_case_ = 1 snake_case_ = True snake_case_ = jnp.floataa def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case = self.prev_output_channel if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) snake_case = resnets if self.add_upsample: snake_case = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Dict=True )-> Tuple: for resnet in self.resnets: # pop res hidden states snake_case = res_hidden_states_tuple[-1] snake_case = res_hidden_states_tuple[:-1] snake_case = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case = resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: snake_case = self.upsamplers_a(__snake_case ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = 0.0 snake_case_ = 1 snake_case_ = 1 snake_case_ = False snake_case_ = False snake_case_ = jnp.floataa def lowerCAmelCase ( self : List[str] )-> List[Any]: # there is always at least one resnet snake_case = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case = [] for _ in range(self.num_layers ): snake_case = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) snake_case = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) snake_case = resnets snake_case = attentions def __call__( self : List[str] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict=True )-> Union[str, Any]: snake_case = self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case = attn(__snake_case , __snake_case , deterministic=__snake_case ) snake_case = resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : Dict , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple=False )-> str: snake_case = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): snake_case = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Tuple , __snake_case : List[Any] , __snake_case : str=13 , __snake_case : Optional[Any]=7 , __snake_case : Union[str, Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : List[str]=True , __snake_case : int=99 , __snake_case : str=32 , __snake_case : List[Any]=32 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=4 , __snake_case : List[str]=37 , __snake_case : str="gelu" , __snake_case : Any=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=5_12 , __snake_case : Optional[int]=16 , __snake_case : str=2 , __snake_case : int=0.02 , __snake_case : Any=3 , __snake_case : Tuple=4 , __snake_case : List[str]=None , )-> Tuple: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = embedding_size def lowerCAmelCase ( self : int )-> Optional[int]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Tuple )-> Optional[int]: snake_case = TFMobileBertModel(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) snake_case = [input_ids, input_mask] snake_case = model(__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : str , __snake_case : str , __snake_case : int , __snake_case : List[Any] , __snake_case : int , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[int] )-> Any: snake_case = TFMobileBertForMaskedLM(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __snake_case : Any , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple )-> Any: snake_case = TFMobileBertForNextSentencePrediction(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] )-> List[Any]: snake_case = TFMobileBertForPreTraining(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Tuple , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : List[str] )-> Optional[int]: snake_case = self.num_labels snake_case = TFMobileBertForSequenceClassification(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int )-> Tuple: snake_case = self.num_choices snake_case = TFMobileBertForMultipleChoice(config=__snake_case ) snake_case = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) snake_case = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[int] )-> List[str]: snake_case = self.num_labels snake_case = TFMobileBertForTokenClassification(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Dict )-> int: snake_case = TFMobileBertForQuestionAnswering(config=__snake_case ) snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case = TFMobileBertModelTest.TFMobileBertModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : int )-> str: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict )-> Tuple: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__snake_case ) def lowerCAmelCase ( self : List[Any] )-> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__snake_case ) def lowerCAmelCase ( self : Any )-> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__snake_case ) def lowerCAmelCase ( self : int )-> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__snake_case ) def lowerCAmelCase ( self : Optional[Any] )-> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__snake_case ) def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__snake_case ) @slow def lowerCAmelCase ( self : Any )-> str: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: snake_case = TFMobileBertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[int] )-> Dict: snake_case = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case = model(__snake_case )[0] snake_case = [1, 6, 3_05_22] self.assertEqual(output.shape , __snake_case ) snake_case = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1e-4 )
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=A__ ): """simple docstring""" snake_case_ = ["transformers", "torch", "note_seq"] def __init__( self : Tuple , *__snake_case : Tuple , **__snake_case : int )-> Union[str, Any]: requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowerCAmelCase ( cls : List[str] , *__snake_case : List[Any] , **__snake_case : Optional[int] )-> Any: requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowerCAmelCase ( cls : int , *__snake_case : Any , **__snake_case : int )-> int: requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "markuplm" def __init__( self : Union[str, Any] , __snake_case : List[Any]=3_05_22 , __snake_case : Tuple=7_68 , __snake_case : List[Any]=12 , __snake_case : Optional[Any]=12 , __snake_case : Dict=30_72 , __snake_case : Dict="gelu" , __snake_case : Dict=0.1 , __snake_case : str=0.1 , __snake_case : str=5_12 , __snake_case : Optional[int]=2 , __snake_case : str=0.02 , __snake_case : str=1e-12 , __snake_case : Tuple=0 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any=2_56 , __snake_case : List[Any]=10_24 , __snake_case : Tuple=2_16 , __snake_case : int=10_01 , __snake_case : Tuple=32 , __snake_case : Tuple=50 , __snake_case : Dict="absolute" , __snake_case : List[Any]=True , __snake_case : List[Any]=None , **__snake_case : str , )-> Dict: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout # additional properties snake_case = max_depth snake_case = max_xpath_tag_unit_embeddings snake_case = max_xpath_subs_unit_embeddings snake_case = tag_pad_id snake_case = subs_pad_id snake_case = xpath_unit_hidden_size
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "OwlViTImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , **__snake_case : int )-> List[str]: snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) snake_case = kwargs.pop("""feature_extractor""" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[Any] , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : List[Any]=None , __snake_case : Any="max_length" , __snake_case : List[str]="np" , **__snake_case : int )-> Any: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__snake_case , __snake_case ) or (isinstance(__snake_case , __snake_case ) and not isinstance(text[0] , __snake_case )): snake_case = [self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case )] elif isinstance(__snake_case , __snake_case ) and isinstance(text[0] , __snake_case ): snake_case = [] # Maximum number of queries across batch snake_case = max([len(__snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__snake_case ) != max_num_queries: snake_case = t + [""" """] * (max_num_queries - len(__snake_case )) snake_case = self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case ) encodings.append(__snake_case ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": snake_case = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) snake_case = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp snake_case = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) snake_case = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch snake_case = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) snake_case = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf snake_case = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) snake_case = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) snake_case = BatchEncoding() snake_case = input_ids snake_case = attention_mask if query_images is not None: snake_case = BatchEncoding() snake_case = self.image_processor( __snake_case , return_tensors=__snake_case , **__snake_case ).pixel_values snake_case = query_pixel_values if images is not None: snake_case = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: snake_case = image_features.pixel_values return encoding elif query_images is not None and images is not None: snake_case = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowerCAmelCase ( self : List[Any] , *__snake_case : int , **__snake_case : Union[str, Any] )-> str: return self.image_processor.post_process(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Dict , *__snake_case : Union[str, Any] , **__snake_case : Tuple )-> List[str]: return self.image_processor.post_process_object_detection(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[str] , *__snake_case : str , **__snake_case : Union[str, Any] )-> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : List[Any] , **__snake_case : Union[str, Any] )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : List[Any] , **__snake_case : List[Any] )-> Any: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : Any )-> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCAmelCase ( self : int )-> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list ) -> float: _validate_point(__lowerCAmelCase ) _validate_point(__lowerCAmelCase ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ) ) ) def __lowerCamelCase ( __lowerCAmelCase : list[float] ) -> None: if point: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for item in point: if not isinstance(__lowerCAmelCase , (int, float) ): snake_case = ( """Expected a list of numbers as input, found """ F'''{type(__lowerCAmelCase ).__name__}''' ) raise TypeError(__lowerCAmelCase ) else: snake_case = F'''Expected a list of numbers as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) else: raise ValueError("""Missing an input""" ) def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list ) -> float: _validate_point(__lowerCAmelCase ) _validate_point(__lowerCAmelCase ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__lowerCAmelCase , __lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' import operator as op _SCREAMING_SNAKE_CASE = "scaler.pt" _SCREAMING_SNAKE_CASE = "pytorch_model" _SCREAMING_SNAKE_CASE = "random_states" _SCREAMING_SNAKE_CASE = "optimizer" _SCREAMING_SNAKE_CASE = "scheduler" _SCREAMING_SNAKE_CASE = "pytorch_model.bin" _SCREAMING_SNAKE_CASE = "pytorch_model.bin.index.json" _SCREAMING_SNAKE_CASE = "model.safetensors" _SCREAMING_SNAKE_CASE = "model.safetensors.index.json" _SCREAMING_SNAKE_CASE = "1.10.2" _SCREAMING_SNAKE_CASE = "py38" _SCREAMING_SNAKE_CASE = "4.17.0" _SCREAMING_SNAKE_CASE = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _SCREAMING_SNAKE_CASE = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _SCREAMING_SNAKE_CASE = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _SCREAMING_SNAKE_CASE = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _SCREAMING_SNAKE_CASE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _SCREAMING_SNAKE_CASE = "2.0.1" _SCREAMING_SNAKE_CASE = ["pdsh", "standard", "openmpi", "mvapich"] _SCREAMING_SNAKE_CASE = ["default", "reduce-overhead", "max-autotune"] _SCREAMING_SNAKE_CASE = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _SCREAMING_SNAKE_CASE = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _SCREAMING_SNAKE_CASE = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _SCREAMING_SNAKE_CASE = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list ) -> bool: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__lowerCAmelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(__lowerCAmelCase ) == 1: return True snake_case = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __lowerCamelCase ( __lowerCAmelCase : list ) -> float: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__lowerCAmelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) snake_case = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _SCREAMING_SNAKE_CASE = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _SCREAMING_SNAKE_CASE = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _SCREAMING_SNAKE_CASE = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Any )-> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def lowerCAmelCase ( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int]=None , __snake_case : Optional[int]=True , __snake_case : Dict=False )-> Any: if rouge_types is None: snake_case = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] snake_case = rouge_scorer.RougeScorer(rouge_types=__snake_case , use_stemmer=__snake_case ) if use_aggregator: snake_case = scoring.BootstrapAggregator() else: snake_case = [] for ref, pred in zip(__snake_case , __snake_case ): snake_case = scorer.score(__snake_case , __snake_case ) if use_aggregator: aggregator.add_scores(__snake_case ) else: scores.append(__snake_case ) if use_aggregator: snake_case = aggregator.aggregate() else: snake_case = {} for key in scores[0]: snake_case = [score[key] for score in scores] return result
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any]=0.0 , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : str = "layer_norm" , __snake_case : bool = False , )-> Dict: super().__init__() snake_case = only_cross_attention snake_case = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case = AdaLayerNorm(__snake_case , __snake_case ) elif self.use_ada_layer_norm_zero: snake_case = AdaLayerNormZero(__snake_case , __snake_case ) else: snake_case = nn.LayerNorm(__snake_case , elementwise_affine=__snake_case ) snake_case = Attention( query_dim=__snake_case , heads=__snake_case , dim_head=__snake_case , dropout=__snake_case , bias=__snake_case , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__snake_case , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case = ( AdaLayerNorm(__snake_case , __snake_case ) if self.use_ada_layer_norm else nn.LayerNorm(__snake_case , elementwise_affine=__snake_case ) ) snake_case = Attention( query_dim=__snake_case , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__snake_case , dim_head=__snake_case , dropout=__snake_case , bias=__snake_case , upcast_attention=__snake_case , ) # is self-attn if encoder_hidden_states is none else: snake_case = None snake_case = None # 3. Feed-forward snake_case = nn.LayerNorm(__snake_case , elementwise_affine=__snake_case ) snake_case = FeedForward(__snake_case , dropout=__snake_case , activation_fn=__snake_case , final_dropout=__snake_case ) # let chunk size default to None snake_case = None snake_case = 0 def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int )-> List[str]: # Sets chunk feed-forward snake_case = chunk_size snake_case = dim def lowerCAmelCase ( self : Union[str, Any] , __snake_case : torch.FloatTensor , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Dict[str, Any] = None , __snake_case : Optional[torch.LongTensor] = None , )-> List[str]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case = self.norma(__snake_case , __snake_case ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case = self.norma( __snake_case , __snake_case , __snake_case , hidden_dtype=hidden_states.dtype ) else: snake_case = self.norma(__snake_case ) snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case = self.attna( __snake_case , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__snake_case , **__snake_case , ) if self.use_ada_layer_norm_zero: snake_case = gate_msa.unsqueeze(1 ) * attn_output snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case = ( self.norma(__snake_case , __snake_case ) if self.use_ada_layer_norm else self.norma(__snake_case ) ) snake_case = self.attna( __snake_case , encoder_hidden_states=__snake_case , attention_mask=__snake_case , **__snake_case , ) snake_case = attn_output + hidden_states # 3. Feed-forward snake_case = self.norma(__snake_case ) if self.use_ada_layer_norm_zero: snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case = torch.cat( [self.ff(__snake_case ) for hid_slice in norm_hidden_states.chunk(__snake_case , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case = self.ff(__snake_case ) if self.use_ada_layer_norm_zero: snake_case = gate_mlp.unsqueeze(1 ) * ff_output snake_case = ff_output + hidden_states return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : Optional[int] = None , __snake_case : int = 4 , __snake_case : float = 0.0 , __snake_case : str = "geglu" , __snake_case : bool = False , )-> Tuple: super().__init__() snake_case = int(dim * mult ) snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case = GELU(__snake_case , __snake_case ) if activation_fn == "gelu-approximate": snake_case = GELU(__snake_case , __snake_case , approximate="""tanh""" ) elif activation_fn == "geglu": snake_case = GEGLU(__snake_case , __snake_case ) elif activation_fn == "geglu-approximate": snake_case = ApproximateGELU(__snake_case , __snake_case ) snake_case = nn.ModuleList([] ) # project in self.net.append(__snake_case ) # project dropout self.net.append(nn.Dropout(__snake_case ) ) # project out self.net.append(nn.Linear(__snake_case , __snake_case ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__snake_case ) ) def lowerCAmelCase ( self : List[str] , __snake_case : Any )-> Optional[int]: for module in self.net: snake_case = module(__snake_case ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : str = "none" )-> Optional[Any]: super().__init__() snake_case = nn.Linear(__snake_case , __snake_case ) snake_case = approximate def lowerCAmelCase ( self : Optional[Any] , __snake_case : Union[str, Any] )-> str: if gate.device.type != "mps": return F.gelu(__snake_case , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCAmelCase ( self : List[str] , __snake_case : List[Any] )-> Optional[Any]: snake_case = self.proj(__snake_case ) snake_case = self.gelu(__snake_case ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : int )-> Union[str, Any]: super().__init__() snake_case = nn.Linear(__snake_case , dim_out * 2 ) def lowerCAmelCase ( self : Optional[int] , __snake_case : Optional[Any] )-> int: if gate.device.type != "mps": return F.gelu(__snake_case ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCAmelCase ( self : Any , __snake_case : Union[str, Any] )-> Tuple: snake_case , snake_case = self.proj(__snake_case ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__snake_case ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : int , __snake_case : int )-> List[str]: super().__init__() snake_case = nn.Linear(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any] )-> Any: snake_case = self.proj(__snake_case ) return x * torch.sigmoid(1.7_02 * x ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : int )-> str: super().__init__() snake_case = nn.Embedding(__snake_case , __snake_case ) snake_case = nn.SiLU() snake_case = nn.Linear(__snake_case , embedding_dim * 2 ) snake_case = nn.LayerNorm(__snake_case , elementwise_affine=__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[str] )-> Tuple: snake_case = self.linear(self.silu(self.emb(__snake_case ) ) ) snake_case , snake_case = torch.chunk(__snake_case , 2 ) snake_case = self.norm(__snake_case ) * (1 + scale) + shift return x class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : str , __snake_case : Union[str, Any] )-> Any: super().__init__() snake_case = CombinedTimestepLabelEmbeddings(__snake_case , __snake_case ) snake_case = nn.SiLU() snake_case = nn.Linear(__snake_case , 6 * embedding_dim , bias=__snake_case ) snake_case = nn.LayerNorm(__snake_case , elementwise_affine=__snake_case , eps=1e-6 ) def lowerCAmelCase ( self : str , __snake_case : Dict , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any]=None )-> Optional[int]: snake_case = self.linear(self.silu(self.emb(__snake_case , __snake_case , hidden_dtype=__snake_case ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = emb.chunk(6 , dim=1 ) snake_case = self.norm(__snake_case ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Optional[str] = None , __snake_case : float = 1e-5 )-> List[Any]: super().__init__() snake_case = num_groups snake_case = eps if act_fn is None: snake_case = None else: snake_case = get_activation(__snake_case ) snake_case = nn.Linear(__snake_case , out_dim * 2 ) def lowerCAmelCase ( self : Dict , __snake_case : Optional[Any] , __snake_case : Tuple )-> Optional[Any]: if self.act: snake_case = self.act(__snake_case ) snake_case = self.linear(__snake_case ) snake_case = emb[:, :, None, None] snake_case , snake_case = emb.chunk(2 , dim=1 ) snake_case = F.group_norm(__snake_case , self.num_groups , eps=self.eps ) snake_case = x * (1 + scale) + shift return x
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Union[str, Any]: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Dict: snake_case = [[float("""inf""" ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): snake_case = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCAmelCase ): # looping through rows of graph array for i in range(__lowerCAmelCase ): # looping through columns of graph array for j in range(__lowerCAmelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case = dist[i][k] + dist[k][j] _print_dist(__lowerCAmelCase , __lowerCAmelCase ) return dist, v if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input("Enter number of vertices: ")) _SCREAMING_SNAKE_CASE = int(input("Enter number of edges: ")) _SCREAMING_SNAKE_CASE = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): _SCREAMING_SNAKE_CASE = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) _SCREAMING_SNAKE_CASE = int(input("Enter source:")) _SCREAMING_SNAKE_CASE = int(input("Enter destination:")) _SCREAMING_SNAKE_CASE = float(input("Enter weight:")) _SCREAMING_SNAKE_CASE = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __lowerCamelCase ( __lowerCAmelCase : torch.nn.Module , __lowerCAmelCase : BnbQuantizationConfig , __lowerCAmelCase : Union[str, os.PathLike] = None , __lowerCAmelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCAmelCase : Optional[Union[str, os.PathLike]] = None , __lowerCAmelCase : bool = False , ) -> Dict: snake_case = bnb_quantization_config.load_in_abit snake_case = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) snake_case = [] # custom device map if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(device_map.keys() ) > 1: snake_case = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case = get_keys_to_not_convert(__lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCAmelCase ) snake_case = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case = [] snake_case = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCAmelCase ) # compatibility with peft snake_case = load_in_abit snake_case = load_in_abit snake_case = get_parameter_device(__lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) snake_case = replace_with_bnb_layers(__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) # convert param to the right dtype snake_case = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCAmelCase ): param.to(__lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): snake_case = replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) snake_case = get_quantized_model_device_map( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_memory=__lowerCAmelCase , no_split_module_classes=__lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case = True snake_case = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCAmelCase , offload_state_dict=__lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCAmelCase , device_map=__lowerCAmelCase , offload_dir=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : str=None ) -> Tuple: if device_map is None: if torch.cuda.is_available(): snake_case = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) snake_case = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case = {} snake_case = special_dtypes snake_case = no_split_module_classes snake_case = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case = get_balanced_memory( __lowerCAmelCase , low_zero=(device_map == """balanced_low_0""") , max_memory=__lowerCAmelCase , **__lowerCAmelCase , ) snake_case = max_memory snake_case = infer_auto_device_map(__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # check if don't have any quantized module on the cpu snake_case = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=None ) -> Any: if modules_to_not_convert is None: snake_case = [] snake_case , snake_case = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None , ) -> str: snake_case = False for name, module in model.named_children(): if current_key_name is None: snake_case = [] current_key_name.append(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case = """.""".join(__lowerCAmelCase ) snake_case = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) snake_case = module.weight.data if module.bias is not None: snake_case = module.bias.data bnb_module.requires_grad_(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case = True if len(list(module.children() ) ) > 0: snake_case , snake_case = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> List[Any]: # Create a copy of the model with init_empty_weights(): snake_case = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case = sum(__lowerCAmelCase , [] ) snake_case = len(__lowerCAmelCase ) > 0 # Check if it is a base model snake_case = False if hasattr(__lowerCAmelCase , """base_model_prefix""" ): snake_case = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case = list(model.named_children() ) snake_case = [list_modules[-1][0]] # add last module together with tied weights snake_case = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) snake_case = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys snake_case = [""".weight""", """.bias"""] snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> str: for m in model.modules(): if isinstance(__lowerCAmelCase , bnb.nn.Linearabit ): return True return False def __lowerCamelCase ( __lowerCAmelCase : nn.Module ) -> int: return next(parameter.parameters() ).device def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , 0 , dtype=__lowerCAmelCase , value=__lowerCAmelCase ) snake_case = param_name snake_case = model if "." in tensor_name: snake_case = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) snake_case = new_module snake_case = splits[-1] # offload weights snake_case = False offload_weight(module._parameters[tensor_name] , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase , ) else: offload_weight(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) offload_weight(__lowerCAmelCase , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase ) set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , """meta""" , dtype=__lowerCAmelCase , value=torch.empty(*param.size() ) )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: snake_case = VideoMAEConfig() set_architecture_configs(__lowerCAmelCase , __lowerCAmelCase ) if "finetuned" not in model_name: snake_case = False if "finetuned" in model_name: snake_case = """huggingface/label-files""" if "kinetics" in model_name: snake_case = 4_00 snake_case = """kinetics400-id2label.json""" elif "ssv2" in model_name: snake_case = 1_74 snake_case = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) snake_case = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: if "small" in model_name: snake_case = 3_84 snake_case = 15_36 snake_case = 12 snake_case = 16 snake_case = 12 snake_case = 3 snake_case = 1_92 snake_case = 7_68 elif "large" in model_name: snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 snake_case = 12 snake_case = 8 snake_case = 5_12 snake_case = 20_48 elif "huge" in model_name: snake_case = 12_80 snake_case = 51_20 snake_case = 32 snake_case = 16 snake_case = 12 snake_case = 8 snake_case = 6_40 snake_case = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> Union[str, Any]: if "encoder." in name: snake_case = name.replace("""encoder.""" , """""" ) if "cls_token" in name: snake_case = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: snake_case = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: snake_case = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: snake_case = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: snake_case = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: snake_case = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: snake_case = name.replace("""attn""" , """attention.self""" ) if "attn" in name: snake_case = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: snake_case = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: snake_case = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: snake_case = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: snake_case = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: snake_case = name.replace("""head""" , """classifier""" ) return name def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str ) -> List[str]: for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(__lowerCAmelCase ) if key.startswith("""encoder.""" ): snake_case = key.replace("""encoder.""" , """""" ) if "qkv" in key: snake_case = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): snake_case = config.decoder_hidden_size snake_case = int(key_split[2] ) snake_case = """decoder.decoder_layers.""" if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = config.hidden_size snake_case = int(key_split[1] ) snake_case = """videomae.encoder.layer.""" if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val return orig_state_dict def __lowerCamelCase ( ) -> int: snake_case = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) snake_case = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: snake_case = get_videomae_config(__lowerCAmelCase ) if "finetuned" in model_name: snake_case = VideoMAEForVideoClassification(__lowerCAmelCase ) else: snake_case = VideoMAEForPreTraining(__lowerCAmelCase ) # download original checkpoint, hosted on Google Drive snake_case = """pytorch_model.bin""" gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) if "model" in files: snake_case = files["""model"""] else: snake_case = files["""module"""] snake_case = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify model on basic input snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case = prepare_video() snake_case = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) if "finetuned" not in model_name: snake_case = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) snake_case = torch.load(__lowerCAmelCase ) snake_case = model(**__lowerCAmelCase ) snake_case = outputs.logits snake_case = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case = torch.Size([1, 4_00] ) snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case = torch.Size([1, 14_08, 15_36] ) snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case = torch.Size([1, 1_74] ) snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case = outputs.loss assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(__lowerCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
3
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
1
'''simple docstring''' import itertools import math def __lowerCamelCase ( __lowerCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( ) -> Optional[Any]: snake_case = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def __lowerCamelCase ( __lowerCAmelCase : int = 1_00_01 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple )-> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Tuple , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , )-> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __snake_case ): snake_case = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case ).prev_sample snake_case = (image / 2 + 0.5).clamp(0 , 1 ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
3
'''simple docstring''' _SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: snake_case = start # add current to visited visited.append(__lowerCAmelCase ) snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(__lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): for vertice in vertices: if vertice not in visited: snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
3
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"text": Value("string" )} ) snake_case_ = Features({"summary": Value("string" )} ) snake_case_ = "text" snake_case_ = "summary" @property def lowerCAmelCase ( self : List[str] )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCAmelCase ) snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: snake_case = dataset_size < in_memory_max_size else: snake_case = False snake_case = is_small_dataset(__lowerCAmelCase ) assert result == expected
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: snake_case = 0 snake_case = len(__lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , __lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> str: if len(__lowerCAmelCase ) <= 1: return arr, 0 snake_case = len(__lowerCAmelCase ) // 2 snake_case = arr[0:mid] snake_case = arr[mid:] snake_case , snake_case = count_inversions_recursive(__lowerCAmelCase ) snake_case , snake_case = count_inversions_recursive(__lowerCAmelCase ) snake_case , snake_case = _count_cross_inversions(__lowerCAmelCase , __lowerCAmelCase ) snake_case = inversion_p + inversions_q + cross_inversions return c, num_inversions def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Tuple: snake_case = [] snake_case = snake_case = snake_case = 0 while i < len(__lowerCAmelCase ) and j < len(__lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __lowerCamelCase ( ) -> Optional[int]: snake_case = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) snake_case = count_inversions_bf(__lowerCAmelCase ) snake_case , snake_case = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() snake_case = count_inversions_bf(__lowerCAmelCase ) snake_case , snake_case = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __lowerCAmelCase ) # an empty list should also have zero inversions snake_case = [] snake_case = count_inversions_bf(__lowerCAmelCase ) snake_case , snake_case = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __lowerCAmelCase ) if __name__ == "__main__": main()
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = None snake_case_ = None _SCREAMING_SNAKE_CASE = namedtuple("CoinsDistribResult", "moves excess") def __lowerCamelCase ( __lowerCAmelCase : TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(__lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCAmelCase ) != count_coins(__lowerCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(__lowerCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case , snake_case = get_distrib(node.left ) snake_case , snake_case = get_distrib(node.right ) snake_case = 1 - left_distrib_excess snake_case = 1 - right_distrib_excess snake_case = ( left_distrib_moves + right_distrib_moves + abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) ) snake_case = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCAmelCase , __lowerCAmelCase ) return get_distrib(__lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "Salesforce/blip-image-captioning-base" snake_case_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) snake_case_ = "image_captioner" snake_case_ = AutoModelForVisionaSeq snake_case_ = ["image"] snake_case_ = ["text"] def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any )-> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , __snake_case : "Image" )-> int: return self.pre_processor(images=__snake_case , return_tensors="""pt""" ) def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> Union[str, Any]: return self.model.generate(**__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any )-> Dict: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
3
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE = { "google/rembert": 256, } _SCREAMING_SNAKE_CASE = "▁" class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = RemBertTokenizer def __init__( self : List[Any] , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : List[str]=True , __snake_case : Any=True , __snake_case : Tuple=False , __snake_case : Optional[int]="[CLS]" , __snake_case : Tuple="[SEP]" , __snake_case : str="<unk>" , __snake_case : List[str]="[SEP]" , __snake_case : Union[str, Any]="<pad>" , __snake_case : List[str]="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : str , )-> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) snake_case = do_lower_case snake_case = remove_space snake_case = keep_accents snake_case = vocab_file snake_case = False if not self.vocab_file else True def lowerCAmelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error("""Vocabulary path ({}) should be a directory""".format(__snake_case ) ) return snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
3
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=7 , __snake_case : Optional[Any]=3 , __snake_case : str=18 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=4_00 , __snake_case : Optional[int]=True , __snake_case : Any=None , __snake_case : List[str]=True , )-> Optional[Any]: snake_case = size if size is not None else {"""height""": 18, """width""": 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def lowerCAmelCase ( self : List[Any] )-> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : int )-> Tuple: snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: pass def lowerCAmelCase ( self : Tuple )-> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int )-> List[Any]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
3
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image"] snake_case_ = [ "image_embeds", "negative_image_embeds", "image", ] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : List[Any] )-> List[str]: return 32 @property def lowerCAmelCase ( self : Tuple )-> Optional[int]: return 32 @property def lowerCAmelCase ( self : Union[str, Any] )-> Optional[int]: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Dict: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : List[str] )-> Tuple: torch.manual_seed(0 ) snake_case = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Dict )-> str: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[int]=0 )-> List[str]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> List[Any]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = """A red cartoon frog, 4k""" snake_case = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def __lowerCamelCase ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
3
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "WhisperFeatureExtractor" snake_case_ = "WhisperTokenizer" def __init__( self : Dict , __snake_case : Any , __snake_case : int )-> List[Any]: super().__init__(__snake_case , __snake_case ) snake_case = self.feature_extractor snake_case = False def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : int=True )-> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : str , *__snake_case : Tuple , **__snake_case : Union[str, Any] )-> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) snake_case = kwargs.pop("""audio""" , __snake_case ) snake_case = kwargs.pop("""sampling_rate""" , __snake_case ) snake_case = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: snake_case = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : str )-> Optional[Any]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Any , **__snake_case : Union[str, Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : str , __snake_case : Dict="np" )-> Any: return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
3
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] )-> Any: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[str] , **__snake_case : int )-> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).image_processor def lowerCAmelCase ( self : Any )-> Dict: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: snake_case = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[Any] )-> Any: snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def lowerCAmelCase ( self : int )-> Union[str, Any]: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__snake_case , return_tensors="""np""" ) snake_case = processor(images=__snake_case , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def lowerCAmelCase ( self : List[str] )-> Any: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = [torch.ones((1, 3, 5, 5) )] snake_case = [[17_64, 26_46]] snake_case = [[6_83, 10_24]] snake_case = processor.post_process_masks(__snake_case , __snake_case , __snake_case ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case = processor.post_process_masks( __snake_case , torch.tensor(__snake_case ) , torch.tensor(__snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np snake_case = [np.ones((1, 3, 5, 5) )] snake_case = processor.post_process_masks(__snake_case , np.array(__snake_case ) , np.array(__snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case = [[1, 0], [0, 1]] with self.assertRaises(__snake_case ): snake_case = processor.post_process_masks(__snake_case , np.array(__snake_case ) , np.array(__snake_case ) ) @require_vision @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] )-> Union[str, Any]: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] , **__snake_case : Dict )-> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).image_processor def lowerCAmelCase ( self : Tuple )-> int: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Any )-> Union[str, Any]: snake_case = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[Any] )-> Union[str, Any]: snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def lowerCAmelCase ( self : Any )-> int: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__snake_case , return_tensors="""np""" ) snake_case = processor(images=__snake_case , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = [tf.ones((1, 3, 5, 5) )] snake_case = [[17_64, 26_46]] snake_case = [[6_83, 10_24]] snake_case = processor.post_process_masks(__snake_case , __snake_case , __snake_case , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case = processor.post_process_masks( __snake_case , tf.convert_to_tensor(__snake_case ) , tf.convert_to_tensor(__snake_case ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np snake_case = [np.ones((1, 3, 5, 5) )] snake_case = processor.post_process_masks( __snake_case , np.array(__snake_case ) , np.array(__snake_case ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case = processor.post_process_masks( __snake_case , np.array(__snake_case ) , np.array(__snake_case ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str )-> List[Any]: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Dict , **__snake_case : Tuple )-> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).image_processor def lowerCAmelCase ( self : str )-> Any: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Dict )-> Dict: snake_case = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCAmelCase ( self : int )-> Union[str, Any]: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case = [tf.convert_to_tensor(__snake_case )] snake_case = [torch.tensor(__snake_case )] snake_case = [[17_64, 26_46]] snake_case = [[6_83, 10_24]] snake_case = processor.post_process_masks( __snake_case , __snake_case , __snake_case , return_tensors="""tf""" ) snake_case = processor.post_process_masks( __snake_case , __snake_case , __snake_case , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCAmelCase ( self : Union[str, Any] )-> str: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__snake_case ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy() snake_case = processor(images=__snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy() snake_case = image_processor(__snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy() snake_case = processor(images=__snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(__snake_case , __snake_case ) ) self.assertTrue(np.allclose(__snake_case , __snake_case ) ) self.assertTrue(np.allclose(__snake_case , __snake_case ) )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case = 0 snake_case = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case = [int(__lowerCAmelCase ) for i in num_string] snake_case = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : Dict=3 , __snake_case : str=32 , __snake_case : List[str]=3 , __snake_case : Dict=10 , __snake_case : Any=[10, 20, 30, 40] , __snake_case : List[Any]=[1, 1, 2, 1] , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : List[str]=3 , __snake_case : Optional[Any]=None , )-> Tuple: snake_case = parent snake_case = batch_size snake_case = image_size snake_case = num_channels snake_case = embeddings_size snake_case = hidden_sizes snake_case = depths snake_case = is_training snake_case = use_labels snake_case = hidden_act snake_case = num_labels snake_case = scope snake_case = len(__snake_case ) def lowerCAmelCase ( self : int )-> Union[str, Any]: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] )-> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCAmelCase ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Dict )-> Dict: snake_case = RegNetModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] )-> Union[str, Any]: snake_case = self.num_labels snake_case = RegNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = RegNetModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def lowerCAmelCase ( self : List[str] )-> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[str] )-> Dict: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase ( self : Dict )-> Dict: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase ( self : Union[str, Any] )-> Any: pass def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : Any )-> Dict: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(config=__snake_case ) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: def check_hidden_states_output(__snake_case : int , __snake_case : Optional[int] , __snake_case : str ): snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case = layer_type snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCAmelCase ( self : Tuple )-> Any: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = RegNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowerCamelCase ( ) -> Any: snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : List[str] )-> Dict: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(**__snake_case ) # verify the logits snake_case = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) snake_case = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , __snake_case : Dict , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Any=True , __snake_case : Dict=True , __snake_case : Tuple=True , __snake_case : Union[str, Any]=True , __snake_case : Optional[Any]=99 , __snake_case : Union[str, Any]=16 , __snake_case : Optional[Any]=36 , __snake_case : int=6 , __snake_case : Tuple=6 , __snake_case : List[str]=6 , __snake_case : Optional[int]=37 , __snake_case : Tuple="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=0.1 , __snake_case : str=5_12 , __snake_case : List[Any]=16 , __snake_case : Optional[int]=2 , __snake_case : Tuple=0.02 , __snake_case : int=3 , __snake_case : List[str]=4 , __snake_case : str=None , )-> int: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = embedding_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_hidden_groups snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def lowerCAmelCase ( self : Tuple )-> Any: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict )-> Union[str, Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] )-> int: snake_case = AlbertModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) snake_case = model(__snake_case , token_type_ids=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[Any] )-> Any: snake_case = AlbertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , sentence_order_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : List[Any] )-> Any: snake_case = AlbertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : str , __snake_case : str )-> Union[str, Any]: snake_case = AlbertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Dict , __snake_case : Any , __snake_case : Any , __snake_case : Dict , __snake_case : Tuple , __snake_case : str , __snake_case : List[str] , __snake_case : int )-> Any: snake_case = self.num_labels snake_case = AlbertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple )-> List[Any]: snake_case = self.num_labels snake_case = AlbertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : str )-> Tuple: snake_case = self.num_choices snake_case = AlbertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def lowerCAmelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Tuple=False )-> List[str]: snake_case = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def lowerCAmelCase ( self : Any )-> Any: snake_case = AlbertModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : int )-> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase ( self : int )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Tuple: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowerCAmelCase ( self : str )-> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowerCAmelCase ( self : Optional[int] )-> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*__snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> List[str]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = AlbertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Any )-> Tuple: snake_case = AlbertModel.from_pretrained("""albert-base-v2""" ) snake_case = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case = model(__snake_case , attention_mask=__snake_case )[0] snake_case = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __snake_case ) snake_case = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1e-4 ) )
3
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __snake_case : Optional[int]=80 , __snake_case : int=1_60_00 , __snake_case : Union[str, Any]=80 , __snake_case : Optional[int]=0.0 , __snake_case : Dict=True , __snake_case : Any=True , __snake_case : List[Any]=True , **__snake_case : Any , )-> Tuple: super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) snake_case = num_mel_bins snake_case = do_ceptral_normalize snake_case = normalize_means snake_case = normalize_vars snake_case = True def lowerCAmelCase ( self : List[str] , __snake_case : np.ndarray , )-> np.ndarray: snake_case = waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case = torch.from_numpy(__snake_case ).unsqueeze(0 ) snake_case = ta_kaldi.fbank(__snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase ( __snake_case : np.ndarray , __snake_case : int , __snake_case : Optional[bool] = True , __snake_case : Optional[bool] = True , __snake_case : float = 0.0 , )-> np.ndarray: # make sure we normalize float32 arrays if normalize_means: snake_case = x[:input_length].mean(axis=0 ) snake_case = np.subtract(__snake_case , __snake_case ) if normalize_vars: snake_case = x[:input_length].std(axis=0 ) snake_case = np.divide(__snake_case , __snake_case ) if input_length < x.shape[0]: snake_case = padding_value # make sure array is in float32 snake_case = x.astype(np.floataa ) return x def lowerCAmelCase ( self : List[Any] , __snake_case : List[np.ndarray] , __snake_case : Optional[np.ndarray] = None )-> List[np.ndarray]: snake_case = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__snake_case , __snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__snake_case , __snake_case ) ] def __call__( self : List[str] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , **__snake_case : Union[str, Any] , )-> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case = [np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): snake_case = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case = [raw_speech] # extract fbank features snake_case = [self._extract_fbank_features(__snake_case ) for waveform in raw_speech] # convert into correct format for padding snake_case = BatchFeature({"""input_features""": features} ) snake_case = self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) # make sure list is in array format snake_case = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __snake_case ): snake_case = [np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] snake_case = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: snake_case = [np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case = ( np.array(__snake_case , dtype=np.intaa ) if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case = self.normalize( padded_inputs["""input_features"""] , attention_mask=__snake_case ) if return_tensors is not None: snake_case = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
3
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCamelCase ( __lowerCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __lowerCamelCase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ) -> XGBClassifier: snake_case = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCamelCase ( ) -> None: snake_case = load_iris() snake_case , snake_case = data_handling(__lowerCAmelCase ) snake_case , snake_case , snake_case , snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) snake_case = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
3
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "BlipImageProcessor" snake_case_ = "AutoTokenizer" def __init__( self : Any , __snake_case : Dict , __snake_case : Tuple , __snake_case : Any )-> int: super().__init__(__snake_case , __snake_case ) # add QFormer tokenizer snake_case = qformer_tokenizer def __call__( self : str , __snake_case : ImageInput = None , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Any , )-> BatchFeature: if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) snake_case = BatchFeature() if text is not None: snake_case = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) encoding.update(__snake_case ) snake_case = self.qformer_tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) snake_case = qformer_text_encoding.pop("""input_ids""" ) snake_case = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: snake_case = self.image_processor(__snake_case , return_tensors=__snake_case ) encoding.update(__snake_case ) return encoding def lowerCAmelCase ( self : Any , *__snake_case : int , **__snake_case : Optional[int] )-> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : int , *__snake_case : int , **__snake_case : str )-> Union[str, Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase ( self : Union[str, Any] )-> List[str]: snake_case = self.tokenizer.model_input_names snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase ( self : Tuple , __snake_case : Dict , **__snake_case : Optional[Any] )-> Optional[int]: if os.path.isfile(__snake_case ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) snake_case = os.path.join(__snake_case , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(__snake_case ) return super().save_pretrained(__snake_case , **__snake_case ) @classmethod def lowerCAmelCase ( cls : List[str] , __snake_case : str , **__snake_case : int )-> Tuple: snake_case = AutoTokenizer.from_pretrained(__snake_case , subfolder="""qformer_tokenizer""" ) snake_case = cls._get_arguments_from_pretrained(__snake_case , **__snake_case ) args.append(__snake_case ) return cls(*__snake_case )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ) -> dict: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = soup.findAll("""h1""" ) snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
3
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> tuple[complex, complex]: if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) snake_case = b * b - 4 * a * c snake_case = (-b + sqrt(__lowerCAmelCase )) / (2 * a) snake_case = (-b - sqrt(__lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCamelCase ( ) -> str: snake_case , snake_case = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } _SCREAMING_SNAKE_CASE = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> str: snake_case = list(state_dict.keys() ) for name in state_dict_keys: snake_case = state_dict.pop(__lowerCAmelCase ) # emb -> embedding if name.startswith("""emb.""" ): snake_case = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): snake_case = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention snake_case = re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , __lowerCAmelCase ) # ffn -> feed_forward snake_case = re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , __lowerCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): snake_case = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): snake_case = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): snake_case = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": snake_case = """rwkv.""" + name snake_case = weight return state_dict def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=None ) -> Optional[Any]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) snake_case = 5_02_77 snake_case = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: snake_case = PreTrainedTokenizerFast(tokenizer_file=__lowerCAmelCase ) snake_case = len(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) # 2. Build the config snake_case = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) snake_case = RwkvConfig( vocab_size=__lowerCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__lowerCAmelCase ) # 3. Download model file then convert state_dict snake_case = hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) snake_case = torch.load(__lowerCAmelCase , map_location="""cpu""" ) snake_case = convert_state_dict(__lowerCAmelCase ) # 4. Split in shards and save snake_case , snake_case = shard_checkpoint(__lowerCAmelCase ) for shard_file, shard in shards.items(): torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if index is not None: snake_case = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) # Save the index as well with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: snake_case = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + """\n""" f.write(__lowerCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) snake_case = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case = torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) snake_case = AutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) model.push_to_hub(__lowerCAmelCase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
3
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 500000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : int ) -> Tuple: snake_case = dataset.map(**__lowerCAmelCase ) @get_duration def __lowerCamelCase ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : Dict ) -> Dict: snake_case = dataset.filter(**__lowerCAmelCase ) def __lowerCamelCase ( ) -> int: snake_case = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) snake_case = generate_example_dataset( os.path.join(__lowerCAmelCase , """dataset.arrow""" ) , __lowerCAmelCase , num_examples=__lowerCAmelCase ) snake_case = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__lowerCAmelCase ) def tokenize(__lowerCAmelCase : str ): return tokenizer(examples["""text"""] ) snake_case = map(__lowerCAmelCase ) snake_case = map(__lowerCAmelCase , batched=__lowerCAmelCase ) snake_case = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""numpy""" ): snake_case = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""pandas""" ): snake_case = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): snake_case = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): snake_case = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) snake_case = map(__lowerCAmelCase , function=__lowerCAmelCase , batched=__lowerCAmelCase ) snake_case = filter(__lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(__lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
3
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
1
'''simple docstring''' from typing import Any def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : dict , __lowerCAmelCase : dict , __lowerCAmelCase : dict , ) -> list: _validation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # Creates data structures and fill initial step snake_case = {} snake_case = {} for state in states_space: snake_case = observations_space[0] snake_case = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCAmelCase ) ): snake_case = observations_space[o] snake_case = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case = """""" snake_case = -1 for k_state in states_space: snake_case = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case = probability snake_case = k_state # Update probabilities and pointers dicts snake_case = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case = arg_max # The final observation snake_case = observations_space[len(__lowerCAmelCase ) - 1] # argmax for given final observation snake_case = """""" snake_case = -1 for k_state in states_space: snake_case = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case = probability snake_case = k_state snake_case = arg_max # Process pointers backwards snake_case = last_state snake_case = [] for o in range(len(__lowerCAmelCase ) - 1 , -1 , -1 ): result.append(__lowerCAmelCase ) snake_case = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , ) -> None: _validate_not_empty( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _validate_lists(__lowerCAmelCase , __lowerCAmelCase ) _validate_dicts( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> None: _validate_list(__lowerCAmelCase , """observations_space""" ) _validate_list(__lowerCAmelCase , """states_space""" ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> None: if not isinstance(_object , __lowerCAmelCase ): snake_case = F'''{var_name} must be a list''' raise ValueError(__lowerCAmelCase ) else: for x in _object: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = F'''{var_name} must be a list of strings''' raise ValueError(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Any , ) -> None: _validate_dict(__lowerCAmelCase , """initial_probabilities""" , __lowerCAmelCase ) _validate_nested_dict(__lowerCAmelCase , """transition_probabilities""" ) _validate_nested_dict(__lowerCAmelCase , """emission_probabilities""" ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> None: _validate_dict(_object , __lowerCAmelCase , __lowerCAmelCase ) for x in _object.values(): _validate_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : type , __lowerCAmelCase : bool = False ) -> None: if not isinstance(_object , __lowerCAmelCase ): snake_case = F'''{var_name} must be a dict''' raise ValueError(__lowerCAmelCase ) if not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for x in _object ): snake_case = F'''{var_name} all keys must be strings''' raise ValueError(__lowerCAmelCase ) if not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for x in _object.values() ): snake_case = """nested dictionary """ if nested else """""" snake_case = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
3
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1