Datasets:
gentaiscool
commited on
Commit
•
ba6b53e
1
Parent(s):
5c0a87b
Update URL for datasets
Browse files- indonlu.py +49 -49
indonlu.py
CHANGED
@@ -38,7 +38,7 @@ and analyzing natural language understanding systems for Bahasa Indonesia.
|
|
38 |
|
39 |
_INDONLU_HOMEPAGE = "https://www.indobenchmark.com/"
|
40 |
|
41 |
-
_INDONLU_LICENSE = "https://raw.githubusercontent.com/
|
42 |
|
43 |
|
44 |
class IndonluConfig(datasets.BuilderConfig):
|
@@ -93,12 +93,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
93 |
different emotion labels: sadness, anger, love, fear, and happy."""
|
94 |
),
|
95 |
text_features={"tweet": "tweet"},
|
96 |
-
# label classes sorted refer to https://github.com/
|
97 |
label_classes=["sadness", "anger", "love", "fear", "happy"],
|
98 |
label_column="label",
|
99 |
-
train_url="https://raw.githubusercontent.com/
|
100 |
-
valid_url="https://raw.githubusercontent.com/
|
101 |
-
test_url="https://raw.githubusercontent.com/
|
102 |
citation=textwrap.dedent(
|
103 |
"""\
|
104 |
@inproceedings{saputri2018emotion,
|
@@ -122,12 +122,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
122 |
dataset: positive, negative, and neutral."""
|
123 |
),
|
124 |
text_features={"text": "text"},
|
125 |
-
# label classes sorted refer to https://github.com/
|
126 |
label_classes=["positive", "neutral", "negative"],
|
127 |
label_column="label",
|
128 |
-
train_url="https://raw.githubusercontent.com/
|
129 |
-
valid_url="https://raw.githubusercontent.com/
|
130 |
-
test_url="https://raw.githubusercontent.com/
|
131 |
citation=textwrap.dedent(
|
132 |
"""\
|
133 |
@inproceedings{purwarianti2019improving,
|
@@ -151,12 +151,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
151 |
negative, and neutral."""
|
152 |
),
|
153 |
text_features={"sentence": "sentence"},
|
154 |
-
# label classes sorted refer to https://github.com/
|
155 |
label_classes=["negative", "neutral", "positive"],
|
156 |
label_column=["fuel", "machine", "others", "part", "price", "service"],
|
157 |
-
train_url="https://raw.githubusercontent.com/
|
158 |
-
valid_url="https://raw.githubusercontent.com/
|
159 |
-
test_url="https://raw.githubusercontent.com/
|
160 |
citation=textwrap.dedent(
|
161 |
"""\
|
162 |
@inproceedings{ilmania2018aspect,
|
@@ -181,7 +181,7 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
181 |
of the same aspect but for different objects (e.g., cleanliness of bed and toilet)."""
|
182 |
),
|
183 |
text_features={"sentence": "sentence"},
|
184 |
-
# label classes sorted refer to https://github.com/
|
185 |
label_classes=["neg", "neut", "pos", "neg_pos"],
|
186 |
label_column=[
|
187 |
"ac",
|
@@ -195,9 +195,9 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
195 |
"tv",
|
196 |
"wifi",
|
197 |
],
|
198 |
-
train_url="https://raw.githubusercontent.com/
|
199 |
-
valid_url="https://raw.githubusercontent.com/
|
200 |
-
test_url="https://raw.githubusercontent.com/
|
201 |
citation=textwrap.dedent(
|
202 |
"""\
|
203 |
@inproceedings{azhar2019multi,
|
@@ -223,12 +223,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
223 |
"hypothesis": "hypothesis",
|
224 |
"category": "category",
|
225 |
},
|
226 |
-
# label classes sorted refer to https://github.com/
|
227 |
label_classes=["NotEntail", "Entail_or_Paraphrase"],
|
228 |
label_column="label",
|
229 |
-
train_url="https://raw.githubusercontent.com/
|
230 |
-
valid_url="https://raw.githubusercontent.com/
|
231 |
-
test_url="https://raw.githubusercontent.com/
|
232 |
citation=textwrap.dedent(
|
233 |
"""\
|
234 |
@inproceedings{setya2018semi,
|
@@ -248,7 +248,7 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
248 |
Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention."""
|
249 |
),
|
250 |
text_features={"tokens": "tokens"},
|
251 |
-
# label classes sorted refer to https://github.com/
|
252 |
label_classes=[
|
253 |
"B-PPO",
|
254 |
"B-KUA",
|
@@ -278,9 +278,9 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
278 |
"B-VBE",
|
279 |
],
|
280 |
label_column="pos_tags",
|
281 |
-
train_url="https://raw.githubusercontent.com/
|
282 |
-
valid_url="https://raw.githubusercontent.com/
|
283 |
-
test_url="https://raw.githubusercontent.com/
|
284 |
citation=textwrap.dedent(
|
285 |
"""\
|
286 |
@inproceedings{hoesen2018investigating,
|
@@ -302,7 +302,7 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
302 |
the experimental setting used by Kurniawan and Aji (2018)"""
|
303 |
),
|
304 |
text_features={"tokens": "tokens"},
|
305 |
-
# label classes sorted refer to https://github.com/
|
306 |
label_classes=[
|
307 |
"B-PR",
|
308 |
"B-CD",
|
@@ -347,9 +347,9 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
347 |
"B-X",
|
348 |
],
|
349 |
label_column="pos_tags",
|
350 |
-
train_url="https://raw.githubusercontent.com/
|
351 |
-
valid_url="https://raw.githubusercontent.com/
|
352 |
-
test_url="https://raw.githubusercontent.com/
|
353 |
citation=textwrap.dedent(
|
354 |
"""\
|
355 |
@inproceedings{dinakaramani2014designing,
|
@@ -380,12 +380,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
380 |
Inside-Outside-Beginning (IOB) tagging representation with two kinds of tags, aspect and sentiment."""
|
381 |
),
|
382 |
text_features={"tokens": "tokens"},
|
383 |
-
# label classes sorted refer to https://github.com/
|
384 |
label_classes=["I-SENTIMENT", "O", "I-ASPECT", "B-SENTIMENT", "B-ASPECT"],
|
385 |
label_column="seq_label",
|
386 |
-
train_url="https://raw.githubusercontent.com/
|
387 |
-
valid_url="https://raw.githubusercontent.com/
|
388 |
-
test_url="https://raw.githubusercontent.com/
|
389 |
citation=textwrap.dedent(
|
390 |
"""\
|
391 |
@article{winatmoko2019aspect,
|
@@ -413,12 +413,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
413 |
which represents the position of the keyphrase."""
|
414 |
),
|
415 |
text_features={"tokens": "tokens"},
|
416 |
-
# label classes sorted refer to https://github.com/
|
417 |
label_classes=["O", "B", "I"],
|
418 |
label_column="seq_label",
|
419 |
-
train_url="https://raw.githubusercontent.com/
|
420 |
-
valid_url="https://raw.githubusercontent.com/
|
421 |
-
test_url="https://raw.githubusercontent.com/
|
422 |
citation=textwrap.dedent(
|
423 |
"""\
|
424 |
@inproceedings{mahfuzh2019improving,
|
@@ -440,12 +440,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
440 |
ORGANIZATION (name of organization)."""
|
441 |
),
|
442 |
text_features={"tokens": "tokens"},
|
443 |
-
# label classes sorted refer to https://github.com/
|
444 |
label_classes=["I-PERSON", "B-ORGANISATION", "I-ORGANISATION", "B-PLACE", "I-PLACE", "O", "B-PERSON"],
|
445 |
label_column="ner_tags",
|
446 |
-
train_url="https://raw.githubusercontent.com/
|
447 |
-
valid_url="https://raw.githubusercontent.com/
|
448 |
-
test_url="https://raw.githubusercontent.com/
|
449 |
citation=textwrap.dedent(
|
450 |
"""\
|
451 |
@online{nergrit2019,
|
@@ -465,7 +465,7 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
465 |
EVT (name of the event), and FNB (name of food and beverage). The NERP dataset uses the IOB chunking format."""
|
466 |
),
|
467 |
text_features={"tokens": "tokens"},
|
468 |
-
# label classes sorted refer to https://github.com/
|
469 |
label_classes=[
|
470 |
"I-PPL",
|
471 |
"B-EVT",
|
@@ -480,9 +480,9 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
480 |
"I-FNB",
|
481 |
],
|
482 |
label_column="ner_tags",
|
483 |
-
train_url="https://raw.githubusercontent.com/
|
484 |
-
valid_url="https://raw.githubusercontent.com/
|
485 |
-
test_url="https://raw.githubusercontent.com/
|
486 |
citation=textwrap.dedent(
|
487 |
"""\
|
488 |
@inproceedings{hoesen2018investigating,
|
@@ -505,12 +505,12 @@ class Indonlu(datasets.GeneratorBasedBuilder):
|
|
505 |
There are six categories of questions: date, location, name, organization, person, and quantitative."""
|
506 |
),
|
507 |
text_features={"question": "question", "passage": "passage"},
|
508 |
-
# label classes sorted refer to https://github.com/
|
509 |
label_classes=["O", "B", "I"],
|
510 |
label_column="seq_label",
|
511 |
-
train_url="https://raw.githubusercontent.com/
|
512 |
-
valid_url="https://raw.githubusercontent.com/
|
513 |
-
test_url="https://raw.githubusercontent.com/
|
514 |
citation=textwrap.dedent(
|
515 |
"""\
|
516 |
@inproceedings{purwarianti2007machine,
|
|
|
38 |
|
39 |
_INDONLU_HOMEPAGE = "https://www.indobenchmark.com/"
|
40 |
|
41 |
+
_INDONLU_LICENSE = "https://raw.githubusercontent.com/IndoNLP/indonlu/master/LICENSE"
|
42 |
|
43 |
|
44 |
class IndonluConfig(datasets.BuilderConfig):
|
|
|
93 |
different emotion labels: sadness, anger, love, fear, and happy."""
|
94 |
),
|
95 |
text_features={"tweet": "tweet"},
|
96 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
97 |
label_classes=["sadness", "anger", "love", "fear", "happy"],
|
98 |
label_column="label",
|
99 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/emot_emotion-twitter/train_preprocess.csv",
|
100 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/emot_emotion-twitter/valid_preprocess.csv",
|
101 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/emot_emotion-twitter/test_preprocess.csv",
|
102 |
citation=textwrap.dedent(
|
103 |
"""\
|
104 |
@inproceedings{saputri2018emotion,
|
|
|
122 |
dataset: positive, negative, and neutral."""
|
123 |
),
|
124 |
text_features={"text": "text"},
|
125 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
126 |
label_classes=["positive", "neutral", "negative"],
|
127 |
label_column="label",
|
128 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/smsa_doc-sentiment-prosa/train_preprocess.tsv",
|
129 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/smsa_doc-sentiment-prosa/valid_preprocess.tsv",
|
130 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/smsa_doc-sentiment-prosa/test_preprocess.tsv",
|
131 |
citation=textwrap.dedent(
|
132 |
"""\
|
133 |
@inproceedings{purwarianti2019improving,
|
|
|
151 |
negative, and neutral."""
|
152 |
),
|
153 |
text_features={"sentence": "sentence"},
|
154 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
155 |
label_classes=["negative", "neutral", "positive"],
|
156 |
label_column=["fuel", "machine", "others", "part", "price", "service"],
|
157 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv",
|
158 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv",
|
159 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv",
|
160 |
citation=textwrap.dedent(
|
161 |
"""\
|
162 |
@inproceedings{ilmania2018aspect,
|
|
|
181 |
of the same aspect but for different objects (e.g., cleanliness of bed and toilet)."""
|
182 |
),
|
183 |
text_features={"sentence": "sentence"},
|
184 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
185 |
label_classes=["neg", "neut", "pos", "neg_pos"],
|
186 |
label_column=[
|
187 |
"ac",
|
|
|
195 |
"tv",
|
196 |
"wifi",
|
197 |
],
|
198 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/train_preprocess.csv",
|
199 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/valid_preprocess.csv",
|
200 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/test_preprocess.csv",
|
201 |
citation=textwrap.dedent(
|
202 |
"""\
|
203 |
@inproceedings{azhar2019multi,
|
|
|
223 |
"hypothesis": "hypothesis",
|
224 |
"category": "category",
|
225 |
},
|
226 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
227 |
label_classes=["NotEntail", "Entail_or_Paraphrase"],
|
228 |
label_column="label",
|
229 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/wrete_entailment-ui/train_preprocess.csv",
|
230 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/wrete_entailment-ui/valid_preprocess.csv",
|
231 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/wrete_entailment-ui/test_preprocess.csv",
|
232 |
citation=textwrap.dedent(
|
233 |
"""\
|
234 |
@inproceedings{setya2018semi,
|
|
|
248 |
Indonesian Association of Computational Linguistics (INACL) POS Tagging Convention."""
|
249 |
),
|
250 |
text_features={"tokens": "tokens"},
|
251 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
252 |
label_classes=[
|
253 |
"B-PPO",
|
254 |
"B-KUA",
|
|
|
278 |
"B-VBE",
|
279 |
],
|
280 |
label_column="pos_tags",
|
281 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/train_preprocess.txt",
|
282 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/valid_preprocess.txt",
|
283 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/posp_pos-prosa/test_preprocess.txt",
|
284 |
citation=textwrap.dedent(
|
285 |
"""\
|
286 |
@inproceedings{hoesen2018investigating,
|
|
|
302 |
the experimental setting used by Kurniawan and Aji (2018)"""
|
303 |
),
|
304 |
text_features={"tokens": "tokens"},
|
305 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
306 |
label_classes=[
|
307 |
"B-PR",
|
308 |
"B-CD",
|
|
|
347 |
"B-X",
|
348 |
],
|
349 |
label_column="pos_tags",
|
350 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/bapos_pos-idn/train_preprocess.txt",
|
351 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/bapos_pos-idn/valid_preprocess.txt",
|
352 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/bapos_pos-idn/test_preprocess.txt",
|
353 |
citation=textwrap.dedent(
|
354 |
"""\
|
355 |
@inproceedings{dinakaramani2014designing,
|
|
|
380 |
Inside-Outside-Beginning (IOB) tagging representation with two kinds of tags, aspect and sentiment."""
|
381 |
),
|
382 |
text_features={"tokens": "tokens"},
|
383 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
384 |
label_classes=["I-SENTIMENT", "O", "I-ASPECT", "B-SENTIMENT", "B-ASPECT"],
|
385 |
label_column="seq_label",
|
386 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/train_preprocess.txt",
|
387 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/valid_preprocess.txt",
|
388 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/test_preprocess.txt",
|
389 |
citation=textwrap.dedent(
|
390 |
"""\
|
391 |
@article{winatmoko2019aspect,
|
|
|
413 |
which represents the position of the keyphrase."""
|
414 |
),
|
415 |
text_features={"tokens": "tokens"},
|
416 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
417 |
label_classes=["O", "B", "I"],
|
418 |
label_column="seq_label",
|
419 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/train_preprocess.txt",
|
420 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/valid_preprocess.txt",
|
421 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/test_preprocess.txt",
|
422 |
citation=textwrap.dedent(
|
423 |
"""\
|
424 |
@inproceedings{mahfuzh2019improving,
|
|
|
440 |
ORGANIZATION (name of organization)."""
|
441 |
),
|
442 |
text_features={"tokens": "tokens"},
|
443 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
444 |
label_classes=["I-PERSON", "B-ORGANISATION", "I-ORGANISATION", "B-PLACE", "I-PLACE", "O", "B-PERSON"],
|
445 |
label_column="ner_tags",
|
446 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nergrit_ner-grit/train_preprocess.txt",
|
447 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nergrit_ner-grit/valid_preprocess.txt",
|
448 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nergrit_ner-grit/test_preprocess.txt",
|
449 |
citation=textwrap.dedent(
|
450 |
"""\
|
451 |
@online{nergrit2019,
|
|
|
465 |
EVT (name of the event), and FNB (name of food and beverage). The NERP dataset uses the IOB chunking format."""
|
466 |
),
|
467 |
text_features={"tokens": "tokens"},
|
468 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
469 |
label_classes=[
|
470 |
"I-PPL",
|
471 |
"B-EVT",
|
|
|
480 |
"I-FNB",
|
481 |
],
|
482 |
label_column="ner_tags",
|
483 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/train_preprocess.txt",
|
484 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/valid_preprocess.txt",
|
485 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/nerp_ner-prosa/test_preprocess.txt",
|
486 |
citation=textwrap.dedent(
|
487 |
"""\
|
488 |
@inproceedings{hoesen2018investigating,
|
|
|
505 |
There are six categories of questions: date, location, name, organization, person, and quantitative."""
|
506 |
),
|
507 |
text_features={"question": "question", "passage": "passage"},
|
508 |
+
# label classes sorted refer to https://github.com/IndoNLP/indonlu/blob/master/utils/data_utils.py
|
509 |
label_classes=["O", "B", "I"],
|
510 |
label_column="seq_label",
|
511 |
+
train_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/train_preprocess.csv",
|
512 |
+
valid_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/valid_preprocess.csv",
|
513 |
+
test_url="https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/test_preprocess.csv",
|
514 |
citation=textwrap.dedent(
|
515 |
"""\
|
516 |
@inproceedings{purwarianti2007machine,
|