|
import csv |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{koto-etal-2023-indommlu, |
|
title = "Large Language Models Only Pass Primary School Exams in {I}ndonesia: A Comprehensive Test on {I}ndo{MMLU}", |
|
author = "Fajri Koto and Nurul Aisyah and Haonan Li and Timothy Baldwin", |
|
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)", |
|
month = December, |
|
year = "2023", |
|
address = "Singapore", |
|
publisher = "Association for Computational Linguistics", |
|
}""" |
|
|
|
|
|
subject2english = { |
|
'Sejarah': 'History', |
|
'Geografi': 'Geography', |
|
'Bahasa Lampung': 'Lampungic', |
|
'IPS': 'Social science', |
|
'Bahasa Bali': 'Balinese', |
|
'Bahasa Makassar': 'Makassarese', |
|
'Bahasa Banjar': 'Banjarese', |
|
'Kimia': 'Chemistry', |
|
'Biologi': 'Biology', |
|
'IPA': 'Science', |
|
'Agama Kristen': 'Christian religion', |
|
'Kesenian': 'Art', |
|
'Agama Islam': 'Islam religion', |
|
'Agama Hindu': 'Hindu religion', |
|
'Bahasa Madura': 'Madurese', |
|
'Penjaskes': 'Sport', |
|
'Bahasa Indonesia': 'Indonesian language', |
|
'Fisika': 'Physics', |
|
'Budaya Alam Minangkabau': 'Minangkabau culture', |
|
'Bahasa Dayak Ngaju': 'Dayak language', |
|
'Sosiologi': 'Sociology', |
|
'Ekonomi': 'Economy', |
|
'Bahasa Sunda': 'Sundanese', |
|
'Bahasa Jawa': 'Javanese', |
|
'PPKN': 'Civic education', |
|
} |
|
|
|
subject2group = { |
|
'Sejarah': 'Humanities', |
|
'Geografi': 'Social science', |
|
'Bahasa Lampung': 'Local languages and cultures', |
|
'IPS': 'Social science', |
|
'Bahasa Bali': 'Local languages and cultures', |
|
'Bahasa Makassar': 'Local languages and cultures', |
|
'Bahasa Banjar': 'Local languages and cultures', |
|
'Kimia': 'STEM', |
|
'Biologi': 'STEM', |
|
'IPA': 'STEM', |
|
'Agama Kristen': 'Humanities', |
|
'Kesenian': 'Humanities', |
|
'Agama Islam': 'Humanities', |
|
'Agama Hindu': 'Humanities', |
|
'Bahasa Madura': 'Local languages and cultures', |
|
'Penjaskes': 'Humanities', |
|
'Bahasa Indonesia': 'Indonesian language', |
|
'Fisika': 'STEM', |
|
'Budaya Alam Minangkabau': 'Local languages and cultures', |
|
'Bahasa Dayak Ngaju': 'Local languages and cultures', |
|
'Sosiologi': 'Social science', |
|
'Ekonomi': 'Social science', |
|
'Bahasa Sunda': 'Local languages and cultures', |
|
'Bahasa Jawa': 'Local languages and cultures', |
|
'PPKN': 'Social science', |
|
} |
|
|
|
special_case = ['SD-SMP-SMA', 'SD-SMP'] |
|
level_mapper = { |
|
'SMA': 'SMA', |
|
'Seleksi PTN': 'University entrance test', |
|
'SD': 'SD', |
|
'SMP': 'SMP', |
|
'Kelas I SD': 'SD', |
|
'Kelas X SMA': 'SMA', |
|
'Kelas XI SMA': 'SMA', |
|
'Kelas XII SMA': 'SMA', |
|
'V SD': 'SD', |
|
'VI SD': 'SD', |
|
'VII SMP': 'SMP', |
|
'VIII SMP ': 'SMP', |
|
'IX SMP': 'SMP', |
|
'Kelas III SD':'SD', |
|
'Kelas IV SD': 'SD', |
|
'Kelas II SD': 'SD' |
|
} |
|
|
|
def fix_level(level, kelas): |
|
|
|
if level in special_case: |
|
kelas = float(kelas) |
|
if kelas >=1 and kelas <= 6: |
|
level = 'SD' |
|
elif kelas >=7 and kelas <= 9: |
|
level = 'SMP' |
|
elif kelas >=10: |
|
level = 'SMA' |
|
else: |
|
print(level) |
|
fixed_level = level_mapper[level] |
|
|
|
|
|
fixed_kelas = -1 |
|
if kelas.strip() in ['PTN', '2023-10-12 00:00:00']: |
|
fixed_kelas = 13 |
|
elif kelas == '4,5,6': |
|
fixed_kelas = 6 |
|
else: |
|
fixed_kelas = int(kelas.strip()) |
|
|
|
|
|
return fixed_level, fixed_kelas |
|
|
|
|
|
_URL = { |
|
'test': "https://huggingface.co/datasets/indolem/IndoMMLU/resolve/main/IndoMMLU.csv", |
|
} |
|
|
|
class IndoMMLUConfig(datasets.BuilderConfig): |
|
"""IndoMMLUConfig for IndoMMLU""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for IndoStoryCloze. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = ['subject', 'group', 'level', 'class', 'question', 'options', 'answer', 'is_for_fewshot'] |
|
|
|
|
|
class IndoMMLU(datasets.GeneratorBasedBuilder): |
|
"""The IndoMMLU Datasets.""" |
|
|
|
BUILDER_CONFIGS = [IndoMMLUConfig()] |
|
|
|
def _info(self): |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
|
|
return datasets.DatasetInfo( |
|
description='IndoMMLU', |
|
features=datasets.Features(features), |
|
homepage='https://github.com/fajri91/IndoMMLU', |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_file['test']}), |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
data = csv.DictReader(open(data_file, newline='')) |
|
for i, row in enumerate(data): |
|
fixed_level, fixed_kelas = fix_level(row['level'], row['kelas']) |
|
yield i, { |
|
"subject": subject2english[row['subject']], |
|
"group": subject2group[row['subject']], |
|
"level": fixed_level, |
|
"class": fixed_class, |
|
"question": row['soal'], |
|
"options": row['jawaban'].split('\n'), |
|
"answer": row['kunci'], |
|
"is_for_fewshot": row['is_for_fewshot'] |
|
} |