|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{keren2021parashoot, |
|
title={ParaShoot: A Hebrew Question Answering Dataset}, |
|
author={Keren, Omri and Levy, Omer}, |
|
booktitle={Proceedings of the 3rd Workshop on Machine Reading for Question Answering}, |
|
pages={106--112}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
A Hebrew question and answering dataset in the style of SQuAD, based on articles scraped from Wikipedia. The dataset contains a few thousand crowdsource-annotated pairs of questions and answers, in a setting suitable for few-shot learning. |
|
""" |
|
|
|
_URLS = { |
|
"train": "data/train.tar.gz", |
|
"validation": "data/dev.tar.gz", |
|
"test": "data/test.tar.gz", |
|
} |
|
|
|
|
|
class ParashootConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Parashoot.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Parashoot. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ParashootConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Parashoot(datasets.GeneratorBasedBuilder): |
|
"""Parashoot: The Hebrew Question Answering Dataset. Version 1.1.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ParashootConfig( |
|
version=datasets.Version("1.1.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://github.com/omrikeren/ParaShoot", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", |
|
context_column="context", |
|
answers_column="answers", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
"basename": "train.jsonl", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["validation"], |
|
"basename": "dev.jsonl", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
"basename": "test.jsonl", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, basename): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(os.path.join(filepath, basename), encoding="utf-8") as f: |
|
for line in f: |
|
article = json.loads(line) |
|
title = article.get("title", "") |
|
context = article["context"] |
|
answer_starts = article["answers"]["answer_start"] |
|
answers = article["answers"]["text"] |
|
yield key, { |
|
"title": title, |
|
"context": context, |
|
"question": article["question"], |
|
"id": article["id"], |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
key += 1 |
|
|