Datasets:

Languages:
French
ArXiv:
License:
system HF staff commited on
Commit
27b0027
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.1.0/dummy_data.zip +3 -0
  4. fquad.py +109 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "FQuAD: French Question Answering Dataset\nWe introduce FQuAD, a native French Question Answering Dataset. FQuAD contains 25,000+ question and answer pairs.\nFinetuning CamemBERT on FQuAD yields a F1 score of 88% and an exact match of 77.9%.\n\n", "citation": "@ARTICLE{2020arXiv200206071\n author = {Martin, d'Hoffschmidt and Maxime, Vidal and\n Wacim, Belblidia and Tom, Brendl\u00e9},\n title = \"{FQuAD: French Question Answering Dataset}\",\n journal = {arXiv e-prints},\n keywords = {Computer Science - Computation and Language},\n year = \"2020\",\n month = \"Feb\",\n eid = {arXiv:2002.06071},\n pages = {arXiv:2002.06071},\narchivePrefix = {arXiv},\n eprint = {2002.06071},\n primaryClass = {cs.CL}\n}\n", "homepage": "https://fquad.illuin.tech/", "license": "", "features": {"context": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answers": {"feature": {"texts": {"dtype": "string", "id": null, "_type": "Value"}, "answers_starts": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "fquad", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5910248, "num_examples": 4921, "dataset_name": "fquad"}, "validation": {"name": "validation", "num_bytes": 1033253, "num_examples": 768, "dataset_name": "fquad"}}, "download_checksums": {"https://storage.googleapis.com/illuin/fquad/train.json.zip": {"num_bytes": 2813123, "checksum": "64f0aea68bacee6ffca7f2f7d56a97e504b2ad2abce057ab6c14768a72c09b47"}, "https://storage.googleapis.com/illuin/fquad/valid.json.zip": {"num_bytes": 479113, "checksum": "53eb7f33573f619f6d56f9e656c6ea6030639ebd663bb445b86b999123be1ef3"}}, "download_size": 3292236, "dataset_size": 6943501, "size_in_bytes": 10235737}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3cbda7105c329d43952fea07a739e9d27b739bb0f26867e792e9bcd6f26d7fb
3
+ size 6764
fquad.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(fquad): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO(fquad): BibTeX citation
12
+ _CITATION = """\
13
+ @ARTICLE{2020arXiv200206071
14
+ author = {Martin, d'Hoffschmidt and Maxime, Vidal and
15
+ Wacim, Belblidia and Tom, Brendlé},
16
+ title = "{FQuAD: French Question Answering Dataset}",
17
+ journal = {arXiv e-prints},
18
+ keywords = {Computer Science - Computation and Language},
19
+ year = "2020",
20
+ month = "Feb",
21
+ eid = {arXiv:2002.06071},
22
+ pages = {arXiv:2002.06071},
23
+ archivePrefix = {arXiv},
24
+ eprint = {2002.06071},
25
+ primaryClass = {cs.CL}
26
+ }
27
+ """
28
+
29
+ # TODO(fquad):
30
+ _DESCRIPTION = """\
31
+ FQuAD: French Question Answering Dataset
32
+ We introduce FQuAD, a native French Question Answering Dataset. FQuAD contains 25,000+ question and answer pairs.
33
+ Finetuning CamemBERT on FQuAD yields a F1 score of 88% and an exact match of 77.9%.
34
+
35
+ """
36
+ _URL = "https://storage.googleapis.com/illuin/fquad"
37
+ _TRAIN_DATA = "train.json.zip"
38
+ _VALID_DATA = "valid.json.zip"
39
+
40
+
41
+ class Fquad(datasets.GeneratorBasedBuilder):
42
+ """TODO(fquad): Short description of my dataset."""
43
+
44
+ # TODO(fquad): Set up version.
45
+ VERSION = datasets.Version("0.1.0")
46
+
47
+ def _info(self):
48
+ # TODO(fquad): Specifies the datasets.DatasetInfo object
49
+ return datasets.DatasetInfo(
50
+ # This is the description that will appear on the datasets page.
51
+ description=_DESCRIPTION,
52
+ # datasets.features.FeatureConnectors
53
+ features=datasets.Features(
54
+ {
55
+ "context": datasets.Value("string"),
56
+ "questions": datasets.features.Sequence(datasets.Value("string")),
57
+ "answers": datasets.features.Sequence(
58
+ {"texts": datasets.Value("string"), "answers_starts": datasets.Value("int32")}
59
+ ),
60
+ # These are the features of your dataset like images, labels ...
61
+ }
62
+ ),
63
+ # If there's a common (input, target) tuple from the features,
64
+ # specify them here. They'll be used if as_supervised=True in
65
+ # builder.as_dataset.
66
+ supervised_keys=None,
67
+ # Homepage of the dataset for documentation
68
+ homepage="https://fquad.illuin.tech/",
69
+ citation=_CITATION,
70
+ )
71
+
72
+ def _split_generators(self, dl_manager):
73
+ """Returns SplitGenerators."""
74
+ # TODO(fquad): Downloads the data and defines the splits
75
+ # dl_manager is a datasets.download.DownloadManager that can be used to
76
+ # download and extract URLs
77
+ download_urls = {"train": os.path.join(_URL, _TRAIN_DATA), "valid": os.path.join(_URL, _VALID_DATA)}
78
+ dl_dir = dl_manager.download_and_extract(download_urls)
79
+ return [
80
+ datasets.SplitGenerator(
81
+ name=datasets.Split.TRAIN,
82
+ # These kwargs will be passed to _generate_examples
83
+ gen_kwargs={"filepath": os.path.join(dl_dir["train"], "train.json")},
84
+ ),
85
+ datasets.SplitGenerator(
86
+ name=datasets.Split.VALIDATION,
87
+ # These kwargs will be passed to _generate_examples
88
+ gen_kwargs={"filepath": os.path.join(dl_dir["valid"], "valid.json")},
89
+ ),
90
+ ]
91
+
92
+ def _generate_examples(self, filepath):
93
+
94
+ """Yields examples."""
95
+ # TODO(fquad): Yields (key, example) tuples from the dataset
96
+ with open(filepath, encoding="utf-8") as f:
97
+ data = json.load(f)
98
+ for id1, examples in enumerate(data["data"]):
99
+ for id2, example in enumerate(examples["paragraphs"]):
100
+ questions = [question["question"] for question in example["qas"]]
101
+ answers = [answer["answers"] for answer in example["qas"]]
102
+ texts = [answer[0]["text"] for answer in answers]
103
+ answers_starts = [answer[0]["answer_start"] for answer in answers]
104
+
105
+ yield str(id1) + "_" + str(id2), {
106
+ "context": example["context"],
107
+ "questions": questions,
108
+ "answers": {"texts": texts, "answers_starts": answers_starts},
109
+ }