Datasets:
ibm
/

Modalities:
Tabular
Text
Formats:
csv
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
statsguy commited on
Commit
bba7bd1
1 Parent(s): 3b65000

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -1,3 +1,43 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - question-answering
5
+ language:
6
+ - en
7
+ ---
8
+ license: mit
9
+ ---
10
+
11
+ # Dataset Card for "PopQA-robustness"
12
+
13
+ ### Dataset Summary
14
+
15
+ PopQS-robustness is an expanded version of the PopQA dataset (https://aclanthology.org/2023.acl-long.546/) but with perturbations of the original input questions.
16
+ It is intended for use as a benchmark for evaluating model robustness on question-answering to these perturbations.
17
+
18
+ ### Data Instances
19
+
20
+ #### popqa_robustness
21
+
22
+ - **Size of downloaded dataset file:** 26.4 MB
23
+
24
+ ### Data Fields
25
+ #### boolq_robustness
26
+ - `id` (integer): original question grouping ID
27
+ - `question` (string): variant of question from BoolQ.
28
+ - `variant_id` (integer): identifier of the variant. 0 indicates it is the original unperturbed question.
29
+ - `variant_type` (string): name of the expansion variant type. "original" is the original question; "simple" is a superficial non-semantic perturbation; "paraphrase" is a semantic paraphrase of the question.
30
+ - `possible_answers` (string): list of strings of possible answers.
31
+
32
+ ### Citation Information
33
+ ```
34
+ @misc{ackerman2024novelmetricmeasuringrobustness,
35
+ title={A Novel Metric for Measuring the Robustness of Large Language Models in Non-adversarial Scenarios},
36
+ author={Samuel Ackerman and Ella Rabinovich and Eitan Farchi and Ateret Anaby-Tavor},
37
+ year={2024},
38
+ eprint={2408.01963},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CL},
41
+ url={https://arxiv.org/abs/2408.01963},
42
+ }
43
+ ```