|
import os |
|
from glob import glob |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@software{HLS_Foundation_2023, |
|
author = {Phillips, Christopher and Roy, Sujit and Ankur, Kumar and Ramachandran, Rahul}, |
|
doi = {10.57967/hf/0956}, |
|
month = aug, |
|
title = {{HLS Foundation Burnscars Dataset}}, |
|
url = {https://huggingface.co/ibm-nasa-geospatial/hls_burn_scars}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains Harmonized Landsat and Sentinel-2 imagery of burn scars and the associated masks for the years 2018-2021 over the contiguous United States. There are 804 512x512 scenes. Its primary purpose is for training geospatial machine learning models. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars" |
|
|
|
_LICENSE = "cc-by-4.0" |
|
|
|
_URLS = { |
|
"hls_burn_scars": { |
|
"train/val": "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars/resolve/main/hls_burn_scars.tar.gz" |
|
} |
|
} |
|
|
|
class HLSBurnScars(datasets.GeneratorBasedBuilder): |
|
"""MIT Scene Parsing Benchmark dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="hls_burn_scars", version=VERSION, description=_DESCRIPTION), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"annotation": datasets.Image(), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
|
|
data_dirs = dl_manager.download_and_extract(urls) |
|
train_data = os.path.join(data_dirs['train/val'], "training") |
|
val_data = os.path.join(data_dirs['train/val'], "validation") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": train_data, |
|
"split": "training", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data": val_data, |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data": val_data, |
|
"split": "testing", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data, split): |
|
files = glob(f"{data}/*_merged.tif") |
|
for idx, filename in enumerate(files): |
|
if filename.endswith("_merged.tif"): |
|
annotation_filename = filename.replace('_merged.tif', '.mask.tif') |
|
yield idx, { |
|
"image": {"path": filename}, |
|
"annotation": {"path": annotation_filename} |
|
} |