hw-liang commited on
Commit
0745831
1 Parent(s): 02c2dcd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -8
README.md CHANGED
@@ -17,28 +17,25 @@ size_categories:
17
 
18
  # Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
19
 
20
- [[Project Page]](https://vita-group.github.io/Diffusion4D/) | [[Code]](https://github.com/VITA-Group/Diffusion4D) |
21
 
22
  ## News
23
  - 2024.6.4: Released rendered data from curated [objaverse-1.0](https://huggingface.co/datasets/hw-liang/Diffusion4D/tree/main/objaverse1.0_curated), including orbital videos of dynamic 3D, orbital videos of static 3D, and monocular videos from front view.
24
  - 2024.5.27: Released metadata for objects!
25
 
26
  ## Overview
27
-
28
- We collect a large-scale, high-quality dynamic 3D(4D) dataset sourced from the
29
- vast 3D data corpus of [Objaverse-1.0](https://objaverse.allenai.org/objaverse-1.0/) and [Objaverse-XL](https://github.com/allenai/objaverse-xl). We apply a series of empirical rules to filter the dataset. You can find more details in our paper. In this part, we will release the selected 4D assets, including:
30
  1. Selected high-quality 4D object ID.
31
  2. A render script using Blender, providing optional settings to render your personalized data.
32
- 3. Rendered 4D images by our team to save your GPU time.
33
 
34
  ## 4D Dataset ID/Metadata
35
- We collect 365k dynamic 3D assets from Objaverse-1.0 (42k) and Objaverse-xl (323k).
36
 
37
  Metadata of animated objects (323k) from objaverse-xl can be found in [meta_xl_animation_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_animation_tot.csv).
38
  We also release the metadata of all successfully rendered objects from objaverse-xl's Github subset in [meta_xl_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_tot.csv).
39
 
40
- For text-to-4D generation, the captions are obtained from the work [Cap3D](https://huggingface.co/datasets/tiange/Cap3D).
41
- More about the dataset and curation scripts are coming soon!
42
 
43
 
44
  ## Citation
 
17
 
18
  # Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
19
 
20
+ [[Project Page]](https://vita-group.github.io/Diffusion4D/) | [[Arxiv]](https://arxiv.org/abs/2405.16645) | [[Code]](https://github.com/VITA-Group/Diffusion4D)
21
 
22
  ## News
23
  - 2024.6.4: Released rendered data from curated [objaverse-1.0](https://huggingface.co/datasets/hw-liang/Diffusion4D/tree/main/objaverse1.0_curated), including orbital videos of dynamic 3D, orbital videos of static 3D, and monocular videos from front view.
24
  - 2024.5.27: Released metadata for objects!
25
 
26
  ## Overview
27
+ We collect a large-scale, high-quality dynamic 3D(4D) dataset sourced from the vast 3D data corpus of [Objaverse-1.0](https://objaverse.allenai.org/objaverse-1.0/) and [Objaverse-XL](https://github.com/allenai/objaverse-xl). We apply a series of empirical rules to filter the dataset. You can find more details in our paper. In this part, we will release the selected 4D assets, including:
 
 
28
  1. Selected high-quality 4D object ID.
29
  2. A render script using Blender, providing optional settings to render your personalized data.
30
+ 3. Rendered 4D images by our team to save your GPU time. With 8 GPUs and a total of 16 threads, it took 5.5 days to render the curated objaverse-1.0 dataset.
31
 
32
  ## 4D Dataset ID/Metadata
33
+ We collect 365k dynamic 3D assets from Objaverse-1.0 (42k) and Objaverse-xl (323k). Then we curate a high-quality subset to train our models.
34
 
35
  Metadata of animated objects (323k) from objaverse-xl can be found in [meta_xl_animation_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_animation_tot.csv).
36
  We also release the metadata of all successfully rendered objects from objaverse-xl's Github subset in [meta_xl_tot.csv](https://huggingface.co/datasets/hw-liang/Diffusion4D/blob/main/meta_xl_tot.csv).
37
 
38
+ For text-to-4D generation, the captions are obtained from the work [Cap3D](https://huggingface.co/datasets/tiange/Cap3D).
 
39
 
40
 
41
  ## Citation