|
from __future__ import annotations |
|
from dataclasses import dataclass |
|
from typing import Generator |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from tqdm import tqdm |
|
import torch |
|
import argparse |
|
from pathlib import Path |
|
from datasets import load_dataset |
|
|
|
parser = argparse.ArgumentParser(description="Convert datasets to embeddings") |
|
parser.add_argument( |
|
"-t", |
|
"--target", |
|
type=str, |
|
required=True, |
|
choices=["data", "chunked"], |
|
help="target dataset, data or chunked", |
|
) |
|
|
|
parser.add_argument( |
|
"-d", |
|
"--debug", |
|
action="store_true", |
|
help="debug mode, use small dataset", |
|
) |
|
|
|
parser.add_argument( |
|
"-m", |
|
"--model_name", |
|
type=str, |
|
required=True, |
|
help="huggingface model name", |
|
) |
|
|
|
parser.add_argument( |
|
"-i", |
|
"--input_prefix", |
|
type=str, |
|
required=False, |
|
default="", |
|
help="input prefix", |
|
) |
|
|
|
parser.add_argument( |
|
"-l", |
|
"--max_seq_length", |
|
type=int, |
|
required=False, |
|
default=512, |
|
help="max sequence length", |
|
) |
|
|
|
parser.add_argument( |
|
"-o", |
|
"--output_name", |
|
type=str, |
|
required=True, |
|
help="output dir", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
@dataclass |
|
class EmbConfig: |
|
model_name: str |
|
input_prefix: str |
|
max_seq_length: int |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
target_local_ds = args.target |
|
|
|
EMB_CONFIG = EmbConfig( |
|
model_name=args.model_name, |
|
input_prefix=args.input_prefix, |
|
max_seq_length=args.max_seq_length, |
|
) |
|
embs_dir = f"embs{'_debug' if args.debug else ''}" |
|
|
|
output_embs_path = Path("/".join([embs_dir, args.output_name, target_local_ds])) |
|
output_embs_path.mkdir(parents=True, exist_ok=True) |
|
|
|
print("output path:", output_embs_path) |
|
|
|
MODEL = SentenceTransformer(EMB_CONFIG.model_name) |
|
MODEL.max_seq_length = EMB_CONFIG.max_seq_length |
|
|
|
|
|
def to_embs(texts: list[str], group_size=1024) -> Generator[np.ndarray, None, None]: |
|
group = [] |
|
for text in texts: |
|
group.append(text) |
|
if len(group) == group_size: |
|
embeddings = MODEL.encode( |
|
group, |
|
normalize_embeddings=True, |
|
show_progress_bar=False, |
|
) |
|
yield embeddings |
|
group = [] |
|
if len(group) > 0: |
|
embeddings = MODEL.encode( |
|
group, normalize_embeddings=True, show_progress_bar=False |
|
) |
|
yield embeddings |
|
|
|
|
|
def _to_data_text( |
|
data, prefix=EMB_CONFIG.input_prefix, max_len=int(EMB_CONFIG.max_seq_length * 1.5) |
|
): |
|
return (prefix + data["title"] + "\n" + data["text"])[0:max_len] |
|
|
|
|
|
def _to_chunk_text( |
|
data, prefix=EMB_CONFIG.input_prefix, max_len=int(EMB_CONFIG.max_seq_length * 1.5) |
|
): |
|
return (prefix + data["title"] + "\n" + data["overlap_text"] + data["text"])[ |
|
:max_len |
|
] |
|
|
|
|
|
def ds_to_embs( |
|
ds, |
|
text_fn, |
|
group_size: int, |
|
): |
|
texts = [] |
|
total = len(ds) |
|
pbar = tqdm(total=total) |
|
|
|
for i in range(0, total, group_size): |
|
texts = [] |
|
for data in ds.select(range(i, min(i + group_size, total))): |
|
data: dict = data |
|
text = text_fn(data) |
|
texts.append(text) |
|
embs = [] |
|
for group_embs in to_embs(texts): |
|
embs.append(group_embs) |
|
pbar.update(len(group_embs)) |
|
embs = np.concatenate(embs) |
|
yield embs, i, pbar |
|
|
|
|
|
if torch.cuda.is_available(): |
|
print("use cuda") |
|
MODEL.to("cuda") |
|
else: |
|
print("!! Warning: use cpu") |
|
|
|
ds = load_dataset(args.target)["train"] |
|
to_text = _to_data_text if args.target == "data" else _to_chunk_text |
|
|
|
if args.debug: |
|
print("debug mode") |
|
ds = ds.select(range(19998)) |
|
print("small dataset len:", len(ds)) |
|
group_size = 10000 |
|
else: |
|
print("dataset len:", len(ds)) |
|
group_size = 100_000 |
|
|
|
for embs, idx, pbar in ds_to_embs(ds, to_text, group_size=group_size): |
|
filename = f"{idx}.npz" |
|
filepath = output_embs_path / filename |
|
pbar.desc = f"saving...: {str(filepath)}" |
|
np.savez_compressed(filepath, embs=embs.astype(np.float16)) |
|
pbar.desc = "" |
|
|