hotchpotch
commited on
Commit
•
07119c3
1
Parent(s):
e45db75
Add script to generate embeddings from datasets
Browse files- .gitignore +1 -0
- Generate.md +32 -0
- datasets_to_embs.py +171 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*_debug/*
|
Generate.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# create embeddings
|
3 |
+
|
4 |
+
### multilingual-e5-small + passage
|
5 |
+
|
6 |
+
```
|
7 |
+
python datasets_to_embs.py \
|
8 |
+
--target="data" \
|
9 |
+
--model_name="intfloat/multilingual-e5-small" \
|
10 |
+
--output_name="multilingual-e5-small-passage" \
|
11 |
+
--input_prefix="passage: "
|
12 |
+
python datasets_to_embs.py \
|
13 |
+
--target="chunked" \
|
14 |
+
--model_name="intfloat/multilingual-e5-small" \
|
15 |
+
--output_name="multilingual-e5-small-passage" \
|
16 |
+
--input_prefix="passage: "
|
17 |
+
```
|
18 |
+
|
19 |
+
### multilingual-e5-small + query
|
20 |
+
|
21 |
+
```
|
22 |
+
python datasets_to_embs.py \
|
23 |
+
--target="data" \
|
24 |
+
--model_name="intfloat/multilingual-e5-small" \
|
25 |
+
--output_name="multilingual-e5-small-query" \
|
26 |
+
--input_prefix="query: "
|
27 |
+
python datasets_to_embs.py \
|
28 |
+
--target="chunked" \
|
29 |
+
--model_name="intfloat/multilingual-e5-small" \
|
30 |
+
--output_name="multilingual-e5-small-query" \
|
31 |
+
--input_prefix="query: "
|
32 |
+
``````
|
datasets_to_embs.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Generator
|
4 |
+
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from tqdm import tqdm
|
7 |
+
import torch
|
8 |
+
import argparse
|
9 |
+
from pathlib import Path
|
10 |
+
from datasets import load_dataset
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser(description="Convert datasets to embeddings")
|
13 |
+
parser.add_argument(
|
14 |
+
"-t",
|
15 |
+
"--target",
|
16 |
+
type=str,
|
17 |
+
required=True,
|
18 |
+
choices=["data", "chunked"],
|
19 |
+
help="target dataset, data or chunked",
|
20 |
+
)
|
21 |
+
|
22 |
+
parser.add_argument(
|
23 |
+
"-d",
|
24 |
+
"--debug",
|
25 |
+
action="store_true",
|
26 |
+
help="debug mode, use small dataset",
|
27 |
+
)
|
28 |
+
# model_name
|
29 |
+
parser.add_argument(
|
30 |
+
"-m",
|
31 |
+
"--model_name",
|
32 |
+
type=str,
|
33 |
+
required=True,
|
34 |
+
help="huggingface model name",
|
35 |
+
)
|
36 |
+
# input_prefix
|
37 |
+
parser.add_argument(
|
38 |
+
"-i",
|
39 |
+
"--input_prefix",
|
40 |
+
type=str,
|
41 |
+
required=False,
|
42 |
+
default="",
|
43 |
+
help="input prefix",
|
44 |
+
)
|
45 |
+
# max_seq_length
|
46 |
+
parser.add_argument(
|
47 |
+
"-l",
|
48 |
+
"--max_seq_length",
|
49 |
+
type=int,
|
50 |
+
required=False,
|
51 |
+
default=512,
|
52 |
+
help="max sequence length",
|
53 |
+
)
|
54 |
+
# output_name
|
55 |
+
parser.add_argument(
|
56 |
+
"-o",
|
57 |
+
"--output_name",
|
58 |
+
type=str,
|
59 |
+
required=True,
|
60 |
+
help="output dir",
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class EmbConfig:
|
67 |
+
model_name: str
|
68 |
+
input_prefix: str
|
69 |
+
max_seq_length: int
|
70 |
+
|
71 |
+
|
72 |
+
args = parser.parse_args()
|
73 |
+
|
74 |
+
target_local_ds = args.target
|
75 |
+
|
76 |
+
EMB_CONFIG = EmbConfig(
|
77 |
+
model_name=args.model_name,
|
78 |
+
input_prefix=args.input_prefix,
|
79 |
+
max_seq_length=args.max_seq_length,
|
80 |
+
)
|
81 |
+
embs_dir = f"embs{'_debug' if args.debug else ''}"
|
82 |
+
|
83 |
+
output_embs_path = Path("/".join([embs_dir, args.output_name, target_local_ds]))
|
84 |
+
output_embs_path.mkdir(parents=True, exist_ok=True)
|
85 |
+
|
86 |
+
print("output path:", output_embs_path)
|
87 |
+
|
88 |
+
MODEL = SentenceTransformer(EMB_CONFIG.model_name)
|
89 |
+
MODEL.max_seq_length = EMB_CONFIG.max_seq_length
|
90 |
+
|
91 |
+
|
92 |
+
def to_embs(texts: list[str], group_size=1024) -> Generator[np.ndarray, None, None]:
|
93 |
+
group = []
|
94 |
+
for text in texts:
|
95 |
+
group.append(text)
|
96 |
+
if len(group) == group_size:
|
97 |
+
embeddings = MODEL.encode(
|
98 |
+
group,
|
99 |
+
normalize_embeddings=True,
|
100 |
+
show_progress_bar=False,
|
101 |
+
)
|
102 |
+
yield embeddings # type: ignore
|
103 |
+
group = []
|
104 |
+
if len(group) > 0:
|
105 |
+
embeddings = MODEL.encode(
|
106 |
+
group, normalize_embeddings=True, show_progress_bar=False
|
107 |
+
)
|
108 |
+
yield embeddings # type: ignore
|
109 |
+
|
110 |
+
|
111 |
+
def _to_data_text(
|
112 |
+
data, prefix=EMB_CONFIG.input_prefix, max_len=int(EMB_CONFIG.max_seq_length * 1.5)
|
113 |
+
):
|
114 |
+
return (prefix + data["title"] + "\n" + data["text"])[0:max_len]
|
115 |
+
|
116 |
+
|
117 |
+
def _to_chunk_text(
|
118 |
+
data, prefix=EMB_CONFIG.input_prefix, max_len=int(EMB_CONFIG.max_seq_length * 1.5)
|
119 |
+
):
|
120 |
+
return (prefix + data["title"] + "\n" + data["overlap_text"] + data["text"])[
|
121 |
+
:max_len
|
122 |
+
]
|
123 |
+
|
124 |
+
|
125 |
+
def ds_to_embs(
|
126 |
+
ds,
|
127 |
+
text_fn,
|
128 |
+
group_size: int,
|
129 |
+
):
|
130 |
+
texts = []
|
131 |
+
total = len(ds)
|
132 |
+
pbar = tqdm(total=total)
|
133 |
+
# text は group_size 件ごとに処理する
|
134 |
+
for i in range(0, total, group_size):
|
135 |
+
texts = []
|
136 |
+
for data in ds.select(range(i, min(i + group_size, total))):
|
137 |
+
data: dict = data
|
138 |
+
text = text_fn(data)
|
139 |
+
texts.append(text)
|
140 |
+
embs = []
|
141 |
+
for group_embs in to_embs(texts):
|
142 |
+
embs.append(group_embs)
|
143 |
+
pbar.update(len(group_embs))
|
144 |
+
embs = np.concatenate(embs)
|
145 |
+
yield embs, i, pbar
|
146 |
+
|
147 |
+
|
148 |
+
if torch.cuda.is_available():
|
149 |
+
print("use cuda")
|
150 |
+
MODEL.to("cuda")
|
151 |
+
else:
|
152 |
+
print("!! Warning: use cpu")
|
153 |
+
|
154 |
+
ds = load_dataset(args.target)["train"] # type: ignore
|
155 |
+
to_text = _to_data_text if args.target == "data" else _to_chunk_text
|
156 |
+
|
157 |
+
if args.debug:
|
158 |
+
print("debug mode")
|
159 |
+
ds = ds.select(range(19998)) # type: ignore
|
160 |
+
print("small dataset len:", len(ds))
|
161 |
+
group_size = 10000
|
162 |
+
else:
|
163 |
+
print("dataset len:", len(ds))
|
164 |
+
group_size = 100_000
|
165 |
+
|
166 |
+
for embs, idx, pbar in ds_to_embs(ds, to_text, group_size=group_size):
|
167 |
+
filename = f"{idx}.npz"
|
168 |
+
filepath = output_embs_path / filename
|
169 |
+
pbar.desc = f"saving...: {str(filepath)}"
|
170 |
+
np.savez_compressed(filepath, embs=embs.astype(np.float16))
|
171 |
+
pbar.desc = ""
|