Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
:: Oriented Metric-Affine Plane - Part I | |
:: by Jaroslaw Zajkowski | |
environ | |
vocabularies NUMBERS, RLVECT_1, XBOOLE_0, SUBSET_1, ARYTM_3, REAL_1, RELAT_1, | |
ARYTM_1, ANALMETR, SUPINF_2, CARD_1, MCART_1, ANALOAF, SYMSP_1, ZFMISC_1, | |
STRUCT_0, ANALORT; | |
notations TARSKI, ZFMISC_1, XXREAL_0, ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, | |
RELSET_1, NUMBERS, STRUCT_0, ALGSTR_0, RLVECT_1, ANALOAF, ANALMETR, | |
GEOMTRAP; | |
constructors DOMAIN_1, XXREAL_0, REAL_1, MEMBERED, TDGROUP, ANALMETR, | |
GEOMTRAP; | |
registrations RELSET_1, MEMBERED, STRUCT_0, XREAL_0, ANALMETR; | |
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; | |
equalities RLVECT_1; | |
theorems GEOMTRAP, RELAT_1, RLVECT_1, ANALOAF, ANALMETR, ZFMISC_1, XCMPLX_0, | |
XCMPLX_1, XREAL_1, XTUPLE_0; | |
schemes RELSET_1; | |
begin | |
reserve V for RealLinearSpace, | |
u,u1,u2,v,v1,v2,w,w1,x,y for VECTOR of V, | |
a,a1,a2,b,b1,b2,c1,c2,n,k1,k2 for Real; | |
Lm1: v1 = b1*x + b2*y & v2 = c1*x + c2*y implies | |
v1 + v2 = (b1 + c1)*x + (b2 + c2)*y & v1 - v2 = (b1 - c1)*x + (b2 - c2)*y | |
proof | |
assume that | |
A1: v1 = b1*x + b2*y and | |
A2: v2 = c1*x + c2*y; | |
thus v1 + v2 = ((b1*x + b2*y) + c1*x) + c2*y by A1,A2,RLVECT_1:def 3 | |
.= ((b1*x + c1*x) + b2*y) + c2*y by RLVECT_1:def 3 | |
.= ((b1 + c1)*x + b2*y) + c2*y by RLVECT_1:def 6 | |
.= (b1 + c1)*x + (b2*y + c2*y) by RLVECT_1:def 3 | |
.= (b1 + c1)*x + (b2 + c2)*y by RLVECT_1:def 6; | |
thus v1 - v2 = (b1*x + b2*y)+(-(c1*x) + -(c2*y)) by A1,A2,RLVECT_1:31 | |
.= (b1*x + b2*y)+(c1*(-x) + -(c2*y)) by RLVECT_1:25 | |
.= (b1*x + b2*y)+(c1*(-x) + c2*(-y)) by RLVECT_1:25 | |
.= (b1*x + b2*y)+((-c1)*x + c2*(-y)) by RLVECT_1:24 | |
.= (b1*x + b2*y)+((-c1)*x + (-c2)*y) by RLVECT_1:24 | |
.= ((b1*x + b2*y) + (-c1)*x) + (-c2)*y by RLVECT_1:def 3 | |
.= ((b1*x + (-c1)*x) + b2*y) + (-c2)*y by RLVECT_1:def 3 | |
.= ((b1 + (-c1))*x + b2*y) + (-c2)*y by RLVECT_1:def 6 | |
.= (b1 + (-c1))*x + (b2*y + (-c2)*y) by RLVECT_1:def 3 | |
.= (b1 - c1)*x + (b2 + (-c2))*y by RLVECT_1:def 6 | |
.= (b1 - c1)*x + (b2 - c2)*y; | |
end; | |
Lm2: v = b1*x + b2*y implies a*v = (a*b1)*x + (a*b2)*y | |
proof | |
assume v= b1*x + b2*y; | |
hence a*v = a*(b1*x) + a*(b2*y) by RLVECT_1:def 5 | |
.= (a*b1)*x + a*(b2*y) by RLVECT_1:def 7 | |
.= (a*b1)*x + (a*b2)*y by RLVECT_1:def 7; | |
end; | |
Lm3: Gen x,y & a1*x + a2*y = b1*x + b2*y implies a1=b1 & a2=b2 | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: a1*x+a2*y=b1*x+b2*y; | |
A3: 0.V = (a1*x+a2*y)-(b1*x+b2*y) by A2,RLVECT_1:15 | |
.= (a1-b1)*x+(a2-b2)*y by Lm1; | |
then | |
A4: -b1 + a1 =0 by A1,ANALMETR:def 1; | |
-b2 + a2 = 0 by A1,A3,ANALMETR:def 1; | |
hence thesis by A4; | |
end; | |
Lm4: Gen x,y implies x<>0.V & y<>0.V | |
proof | |
assume | |
A1: Gen x,y; | |
A2: x<>0.V | |
proof | |
assume | |
A3: x=0.V; | |
consider a,b such that | |
A4: a=1 and | |
A5: b=0; | |
a*x+b*y=0.V+0*y by A3,A5,RLVECT_1:10 | |
.=0.V+0.V by RLVECT_1:10 | |
.=0.V by RLVECT_1:4; | |
hence contradiction by A1,A4,ANALMETR:def 1; | |
end; | |
y<>0.V | |
proof | |
assume | |
A6: y=0.V; | |
consider a,b such that | |
A7: a=0 and | |
A8: b=1; | |
a*x+b*y=0.V+1*0.V by A6,A7,A8,RLVECT_1:10 | |
.=0.V+0.V by RLVECT_1:10 | |
.=0.V by RLVECT_1:4; | |
hence thesis by A1,A8,ANALMETR:def 1; | |
end; | |
hence thesis by A2; | |
end; | |
Lm5: Gen x,y implies u = pr1(x,y,u)*x + pr2(x,y,u)*y | |
proof | |
assume | |
A1: Gen x,y; | |
then consider b such that | |
A2: u = (pr1(x,y,u))*x + b*y by GEOMTRAP:def 4; | |
thus thesis by A1,GEOMTRAP:def 5,A2; | |
end; | |
Lm6: Gen x,y & u=k1*x+k2*y implies k1=pr1(x,y,u) & k2=pr2(x,y,u) | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: u=k1*x+k2*y; | |
u = pr1(x,y,u)*x + pr2(x,y,u)*y by A1,Lm5; | |
hence thesis by A1,A2,Lm3; | |
end; | |
Lm7: Gen x,y implies pr1(x,y,u+v) = pr1(x,y,u)+pr1(x,y,v) & | |
pr2(x,y,u+v) = pr2(x,y,u)+pr2(x,y,v) & pr1(x,y,u-v) = pr1(x,y,u)-pr1(x,y,v) & | |
pr2(x,y,u-v) = pr2(x,y,u)-pr2(x,y,v) & pr1(x,y,a*u) = a*pr1(x,y,u) & | |
pr2(x,y,a*u) = a*pr2(x,y,u) | |
proof | |
assume | |
A1: Gen x,y; | |
set p1u = pr1(x,y,u), p2u = pr2(x,y,u), p1v = pr1(x,y,v), p2v = pr2(x,y,v); | |
A2: u = p1u*x + p2u*y by A1,Lm5; | |
A3: v = p1v*x + p2v*y by A1,Lm5; | |
then u + v = (p1u*x + p2u*y + p1v*x) + p2v*y by A2,RLVECT_1:def 3 | |
.= ((p1u*x + p1v*x) + p2u*y) + p2v*y by RLVECT_1:def 3 | |
.= (p1u*x + p1v*x) + (p2u*y + p2v*y) by RLVECT_1:def 3 | |
.= (p1u + p1v)*x + (p2u*y + p2v*y) by RLVECT_1:def 6 | |
.= (p1u + p1v)*x + (p2u + p2v)*y by RLVECT_1:def 6; | |
hence pr1(x,y,u+v) = p1u + p1v & pr2(x,y,u+v) = p2u + p2v by A1,Lm6; | |
u - v = (p1u - p1v)*x + (p2u - p2v)*y by A2,A3,Lm1; | |
hence pr1(x,y,u-v) = p1u - p1v & pr2(x,y,u-v) = p2u - p2v by A1,Lm6; | |
a*u = (a*p1u)*x + (a*p2u)*y by A2,Lm2; | |
hence thesis by A1,Lm6; | |
end; | |
definition | |
let V,x,y; | |
let u; | |
func Ortm(x,y,u) -> VECTOR of V equals | |
pr1(x,y,u)*x + (-pr2(x,y,u))*y; | |
correctness; | |
end; | |
theorem Th1: | |
Gen x,y implies Ortm(x,y,u+v)=Ortm(x,y,u)+Ortm(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Ortm(x,y,u+v)= (pr1(x,y,u)+pr1(x,y,v))*x + (-pr2(x,y,u+v))*y by Lm7 | |
.=(pr1(x,y,u) + pr1(x,y,v))*x + (-(pr2(x,y,u) + pr2(x,y,v)))*y by A1,Lm7 | |
.=pr1(x,y,u)*x + pr1(x,y,v)*x + (-(pr2(x,y,u) + pr2(x,y,v)))*y | |
by RLVECT_1:def 6 | |
.=pr1(x,y,u)*x + pr1(x,y,v)*x + (pr2(x,y,u) + pr2(x,y,v))*(-y) | |
by RLVECT_1:24 | |
.=pr1(x,y,u)*x + pr1(x,y,v)*x + (-((pr2(x,y,u) + pr2(x,y,v))*y)) | |
by RLVECT_1:25 | |
.=pr1(x,y,u)*x + pr1(x,y,v)*x + (-(pr2(x,y,u)*y +pr2(x,y,v)*y)) | |
by RLVECT_1:def 6 | |
.=pr1(x,y,u)*x + pr1(x,y,v)*x + (-(pr2(x,y,u)*y) + (-(pr2(x,y,v)*y))) | |
by RLVECT_1:31 | |
.=pr1(x,y,u)*x + (pr1(x,y,v)*x + (-(pr2(x,y,u)*y) + (-(pr2(x,y,v)*y)))) | |
by RLVECT_1:def 3 | |
.=pr1(x,y,u)*x + ((-(pr2(x,y,u)*y)) + (pr1(x,y,v)*x + (-pr2(x,y,v)*y))) | |
by RLVECT_1:def 3 | |
.=pr1(x,y,u)*x + (-(pr2(x,y,u)*y)) + (pr1(x,y,v)*x + (-pr2(x,y,v)*y)) | |
by RLVECT_1:def 3 | |
.=pr1(x,y,u)*x + (pr2(x,y,u)*(-y)) + (pr1(x,y,v)*x + (-pr2(x,y,v)*y)) | |
by RLVECT_1:25 | |
.=pr1(x,y,u)*x + (pr2(x,y,u)*(-y)) + (pr1(x,y,v)*x + (pr2(x,y,v)*(-y))) | |
by RLVECT_1:25 | |
.=pr1(x,y,u)*x + (-pr2(x,y,u))*y + (pr1(x,y,v)*x + (pr2(x,y,v)*(-y))) | |
by RLVECT_1:24 | |
.=Ortm(x,y,u) + Ortm(x,y,v) by RLVECT_1:24; | |
end; | |
theorem Th2: | |
Gen x,y implies Ortm(x,y,n*u)= n*Ortm(x,y,u) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Ortm(x,y,n*u)=n*pr1(x,y,u)*x + (-pr2(x,y,n*u))*y by Lm7 | |
.=n*pr1(x,y,u)*x + (-(n*pr2(x,y,u)))*y by A1,Lm7 | |
.=n*pr1(x,y,u)*x + (n*pr2(x,y,u)*(-y)) by RLVECT_1:24 | |
.=n*pr1(x,y,u)*x + (-(n*pr2(x,y,u)*y)) by RLVECT_1:25 | |
.=n*pr1(x,y,u)*x + (-(n*(pr2(x,y,u)*y))) by RLVECT_1:def 7 | |
.=n*pr1(x,y,u)*x + n*(-pr2(x,y,u)*y) by RLVECT_1:25 | |
.=n*(pr1(x,y,u)*x) + n*(-pr2(x,y,u)*y) by RLVECT_1:def 7 | |
.=n*((pr1(x,y,u)*x) + (-pr2(x,y,u)*y)) by RLVECT_1:def 5 | |
.=n*((pr1(x,y,u)*x) + (pr2(x,y,u)*(-y))) by RLVECT_1:25 | |
.=n*Ortm(x,y,u) by RLVECT_1:24; | |
end; | |
theorem | |
Gen x,y implies Ortm(x,y,0.V) = 0.V | |
proof | |
assume | |
A1: Gen x,y; | |
set u = the VECTOR of V; | |
thus Ortm(x,y,0.V) = Ortm(x,y,0*u) by RLVECT_1:10 | |
.= 0*Ortm(x,y,u) by A1,Th2 | |
.= 0.V by RLVECT_1:10; | |
end; | |
theorem Th4: | |
Gen x,y implies Ortm(x,y,-u) = -Ortm(x,y,u) | |
proof | |
assume | |
A1: Gen x,y; | |
then | |
A2: -u=-(pr1(x,y,u)*x + pr2(x,y,u)*y) by Lm5 | |
.=-(pr1(x,y,u)*x) + (-(pr2(x,y,u)*y)) by RLVECT_1:31 | |
.=pr1(x,y,u)*(-x) + (-(pr2(x,y,u)*y)) by RLVECT_1:25 | |
.=(-pr1(x,y,u))*x + (-(pr2(x,y,u)*y)) by RLVECT_1:24 | |
.=(-pr1(x,y,u))*x + pr2(x,y,u)*(-y) by RLVECT_1:25 | |
.=(-pr1(x,y,u))*x + (-pr2(x,y,u))*y by RLVECT_1:24; | |
hence Ortm(x,y,-u)=(-pr1(x,y,u))*x + (-pr2(x,y,-u))*y by A1,Lm6 | |
.=(-pr1(x,y,u))*x + (-(-pr2(x,y,u)))*y by A1,A2,Lm6 | |
.=pr1(x,y,u)*(-x) + (-(-pr2(x,y,u)))*y by RLVECT_1:24 | |
.=-(pr1(x,y,u)*x) + (-(-pr2(x,y,u)))*y by RLVECT_1:25 | |
.=-(pr1(x,y,u)*x) + (-pr2(x,y,u))*(-y) by RLVECT_1:24 | |
.=-(pr1(x,y,u)*x) + (-((-pr2(x,y,u))*y)) by RLVECT_1:25 | |
.=-Ortm(x,y,u) by RLVECT_1:31; | |
end; | |
theorem Th5: | |
Gen x,y implies Ortm(x,y,u-v)=Ortm(x,y,u)-Ortm(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Ortm(x,y,u-v)=Ortm(x,y,u) + Ortm(x,y,(-v)) by Th1 | |
.=Ortm(x,y,u) - Ortm(x,y,v) by A1,Th4; | |
end; | |
theorem Th6: | |
Gen x,y & Ortm(x,y,u)=Ortm(x,y,v) implies u=v | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: Ortm(x,y,u)=Ortm(x,y,v); | |
pr1(x,y,u)*x + (-pr2(x,y,u))*y - (pr1(x,y,v)*x + (-pr2(x,y,v))*y) | |
=0.V by A2,RLVECT_1:15; | |
then pr1(x,y,u)*x + (-pr2(x,y,u))*y - (pr1(x,y,v)*x) - (-pr2(x,y,v))*y | |
=0.V by RLVECT_1:27; | |
then pr1(x,y,u)*x + (-(pr1(x,y,v))*x) + ((-pr2(x,y,u))*y) - (-pr2(x,y,v))*y | |
=0.V by RLVECT_1:def 3; | |
then pr1(x,y,u)*x - pr1(x,y,v)*x + ((-pr2(x,y,u))*y - (-pr2(x,y,v))*y) | |
=0.V by RLVECT_1:def 3; | |
then (pr1(x,y,u) - pr1(x,y,v))*x + ((-pr2(x,y,u))*y - (-pr2(x,y,v))*y) | |
=0.V by RLVECT_1:35; | |
then | |
A3: (pr1(x,y,u) - pr1(x,y,v))*x + ((-pr2(x,y,u)) - (-pr2(x,y,v)))*y | |
=0.V by RLVECT_1:35; | |
then | |
A4: pr1(x,y,u) - pr1(x,y,v)=0 by A1,ANALMETR:def 1; | |
(-pr2(x,y,u)) - (-pr2(x,y,v))=0 by A1,A3,ANALMETR:def 1; | |
hence u=pr1(x,y,v)*x + pr2(x,y,v)*y by A1,A4,Lm5 | |
.=v by A1,Lm5; | |
end; | |
theorem Th7: | |
Gen x,y implies Ortm(x,y,Ortm(x,y,u))=u | |
proof | |
assume | |
A1: Gen x,y; | |
hence Ortm(x,y,Ortm(x,y,u))= | |
pr1(x,y,u)*x+(-pr2(x,y,pr1(x,y,u)*x+(-pr2(x,y,u))*y))*y by GEOMTRAP:def 4 | |
.=pr1(x,y,u)*x+(-(-pr2(x,y,u)))*y by A1,GEOMTRAP:def 5 | |
.=u by A1,Lm5; | |
end; | |
theorem Th8: | |
Gen x,y implies ex v st u=Ortm(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
take Ortm(x,y,u); | |
thus thesis by A1,Th7; | |
end; | |
definition | |
let V,x,y; | |
let u; | |
func Orte(x,y,u) -> VECTOR of V equals | |
pr2(x,y,u)*x + (-pr1(x,y,u))*y; | |
correctness; | |
end; | |
theorem Th9: | |
Gen x,y implies Orte(x,y,-v)= -Orte(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
then | |
A2: -v=-(pr1(x,y,v)*x + pr2(x,y,v)*y) by Lm5 | |
.=-(pr1(x,y,v)*x) + (-(pr2(x,y,v)*y)) by RLVECT_1:31 | |
.=pr1(x,y,v)*(-x) + (-(pr2(x,y,v)*y)) by RLVECT_1:25 | |
.=(-pr1(x,y,v))*x + (-(pr2(x,y,v)*y)) by RLVECT_1:24 | |
.=(-pr1(x,y,v))*x + pr2(x,y,v)*(-y) by RLVECT_1:25 | |
.=(-pr1(x,y,v))*x + (-pr2(x,y,v))*y by RLVECT_1:24; | |
hence Orte(x,y,-v)=(-pr2(x,y,v))*x + (-pr1(x,y,-v))*y by A1,Lm6 | |
.=(-pr2(x,y,v))*x + (-(-pr1(x,y,v)))*y by A1,A2,Lm6 | |
.=pr2(x,y,v)*(-x) + (-(-pr1(x,y,v)))*y by RLVECT_1:24 | |
.=-(pr2(x,y,v)*x) + (-(-pr1(x,y,v)))*y by RLVECT_1:25 | |
.=-(pr2(x,y,v)*x) + (-pr1(x,y,v))*(-y) by RLVECT_1:24 | |
.=-(pr2(x,y,v)*x) + (-((-pr1(x,y,v))*y)) by RLVECT_1:25 | |
.=-Orte(x,y,v) by RLVECT_1:31; | |
end; | |
theorem Th10: | |
Gen x,y implies Orte(x,y,u+v)=Orte(x,y,u) + Orte(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Orte(x,y,u+v)=(pr2(x,y,u+v))*x + (-(pr1(x,y,u)+pr1(x,y,v)))*y by Lm7 | |
.=(pr2(x,y,u)+pr2(x,y,v))*x + (-(pr1(x,y,u)+pr1(x,y,v)))*y by A1,Lm7 | |
.=pr2(x,y,u)*x + pr2(x,y,v)*x + (-(pr1(x,y,u)+pr1(x,y,v)))*y | |
by RLVECT_1:def 6 | |
.=pr2(x,y,u)*x + pr2(x,y,v)*x + (pr1(x,y,u)+pr1(x,y,v))*(-y) | |
by RLVECT_1:24 | |
.=pr2(x,y,u)*x + pr2(x,y,v)*x + (-((pr1(x,y,u)+pr1(x,y,v))*y)) | |
by RLVECT_1:25 | |
.=pr2(x,y,u)*x + pr2(x,y,v)*x + (-(pr1(x,y,u)*y +pr1(x,y,v)*y)) | |
by RLVECT_1:def 6 | |
.=pr2(x,y,u)*x + pr2(x,y,v)*x + (-(pr1(x,y,u)*y) +(-(pr1(x,y,v)*y))) | |
by RLVECT_1:31 | |
.=pr2(x,y,u)*x + (pr2(x,y,v)*x + (-(pr1(x,y,u)*y) +(-(pr1(x,y,v)*y)))) | |
by RLVECT_1:def 3 | |
.=pr2(x,y,u)*x + (-(pr1(x,y,u)*y) + (pr2(x,y,v)*x +(-(pr1(x,y,v)*y)))) | |
by RLVECT_1:def 3 | |
.=pr2(x,y,u)*x + (-(pr1(x,y,u)*y)) + (pr2(x,y,v)*x +(-(pr1(x,y,v)*y))) | |
by RLVECT_1:def 3 | |
.=pr2(x,y,u)*x + (pr1(x,y,u)*(-y)) + (pr2(x,y,v)*x +(-(pr1(x,y,v)*y))) | |
by RLVECT_1:25 | |
.=pr2(x,y,u)*x + (pr1(x,y,u)*(-y)) + (pr2(x,y,v)*x +(pr1(x,y,v)*(-y))) | |
by RLVECT_1:25 | |
.=pr2(x,y,u)*x + ((-pr1(x,y,u))*y) + (pr2(x,y,v)*x +(pr1(x,y,v)*(-y))) | |
by RLVECT_1:24 | |
.=Orte(x,y,u) + Orte(x,y,v) by RLVECT_1:24; | |
end; | |
theorem Th11: | |
Gen x,y implies Orte(x,y,u-v)=Orte(x,y,u)-Orte(x,y,v) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Orte(x,y,u-v)=Orte(x,y,u) + Orte(x,y,(-v)) by Th10 | |
.=Orte(x,y,u) - Orte(x,y,v) by A1,Th9; | |
end; | |
theorem Th12: | |
Gen x,y implies Orte(x,y,n*u)=n*Orte(x,y,u) | |
proof | |
assume | |
A1: Gen x,y; | |
hence Orte(x,y,n*u)=n*pr2(x,y,u)*x + (-pr1(x,y,n*u))*y by Lm7 | |
.=n*pr2(x,y,u)*x + (-(n*pr1(x,y,u)))*y by A1,Lm7 | |
.=n*pr2(x,y,u)*x + (n*pr1(x,y,u))*(-y) by RLVECT_1:24 | |
.=n*pr2(x,y,u)*x + (-(n*pr1(x,y,u)*y)) by RLVECT_1:25 | |
.=n*pr2(x,y,u)*x + (-(n*(pr1(x,y,u)*y))) by RLVECT_1:def 7 | |
.=n*pr2(x,y,u)*x + n*(-(pr1(x,y,u)*y)) by RLVECT_1:25 | |
.=n*(pr2(x,y,u)*x) + n*(-(pr1(x,y,u)*y)) by RLVECT_1:def 7 | |
.=n*(pr2(x,y,u)*x + (-(pr1(x,y,u)*y))) by RLVECT_1:def 5 | |
.=n*(pr2(x,y,u)*x + (pr1(x,y,u)*(-y))) by RLVECT_1:25 | |
.=n*Orte(x,y,u) by RLVECT_1:24; | |
end; | |
theorem Th13: | |
Gen x,y & Orte(x,y,u)=Orte(x,y,v) implies u=v | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: Orte(x,y,u)=Orte(x,y,v); | |
pr2(x,y,u)*x + (-pr1(x,y,u))*y - (pr2(x,y,v)*x + (-pr1(x,y,v))*y) | |
=0.V by A2,RLVECT_1:15; | |
then pr2(x,y,u)*x + (-pr1(x,y,u))*y - (pr2(x,y,v)*x) - (-pr1(x,y,v))*y | |
=0.V by RLVECT_1:27; | |
then pr2(x,y,u)*x + (-(pr2(x,y,v))*x) + ((-pr1(x,y,u))*y) - (-pr1(x,y,v))*y | |
=0.V by RLVECT_1:def 3; | |
then pr2(x,y,u)*x - pr2(x,y,v)*x + ((-pr1(x,y,u))*y - (-pr1(x,y,v))*y) | |
=0.V by RLVECT_1:def 3; | |
then (pr2(x,y,u) - pr2(x,y,v))*x + ((-pr1(x,y,u))*y - (-pr1(x,y,v))*y) | |
=0.V by RLVECT_1:35; | |
then | |
A3: (pr2(x,y,u) - pr2(x,y,v))*x + ((-pr1(x,y,u)) - (-pr1(x,y,v)))*y | |
=0.V by RLVECT_1:35; | |
then | |
A4: pr2(x,y,u) - pr2(x,y,v)=0 by A1,ANALMETR:def 1; | |
(-pr1(x,y,u)) - (-pr1(x,y,v))=0 by A1,A3,ANALMETR:def 1; | |
hence u=pr1(x,y,v)*x + pr2(x,y,v)*y by A1,A4,Lm5 | |
.=v by A1,Lm5; | |
end; | |
theorem Th14: | |
Gen x,y implies Orte(x,y,Orte(x,y,u)) = -u | |
proof | |
assume | |
A1: Gen x,y; | |
hence Orte(x,y,Orte(x,y,u))=(-pr1(x,y,u))*x+ | |
(-pr1(x,y,pr2(x,y,u)*x+(-pr1(x,y,u))*y))*y by GEOMTRAP:def 5 | |
.=(-pr1(x,y,u))*x+(-pr2(x,y,u))*y by A1,GEOMTRAP:def 4 | |
.=pr1(x,y,u)*(-x)+(-pr2(x,y,u))*y by RLVECT_1:24 | |
.=-(pr1(x,y,u)*x)+(-pr2(x,y,u))*y by RLVECT_1:25 | |
.=-(pr1(x,y,u)*x)+pr2(x,y,u)*(-y) by RLVECT_1:24 | |
.=-(pr1(x,y,u)*x)+(-(pr2(x,y,u)*y)) by RLVECT_1:25 | |
.=-(pr1(x,y,u)*x+pr2(x,y,u)*y) by RLVECT_1:31 | |
.=-u by A1,Lm5; | |
end; | |
theorem Th15: | |
Gen x,y implies ex v st Orte(x,y,v) = u | |
proof | |
assume | |
A1: Gen x,y; | |
take v= -Orte(x,y,u); | |
thus Orte(x,y,v) = -Orte(x,y,Orte(x,y,u)) by A1,Th9 | |
.= -(-u) by A1,Th14 | |
.= u by RLVECT_1:17; | |
end; | |
definition | |
let V; | |
let x,y,u,v,u1,v1; | |
pred u,v,u1,v1 are_COrte_wrt x,y means | |
Orte(x,y,u),Orte(x,y,v) // u1,v1; | |
pred u,v,u1,v1 are_COrtm_wrt x,y means | |
Ortm(x,y,u),Ortm(x,y,v) // u1,v1; | |
end; | |
theorem Th16: | |
Gen x,y implies (u,v // u1,v1 implies | |
Orte(x,y,u),Orte(x,y,v) // Orte(x,y,u1),Orte(x,y,v1)) | |
proof | |
assume | |
A1: Gen x,y; | |
assume | |
A2: u,v // u1,v1; | |
now | |
assume that | |
A3: u<>v and | |
A4: u1<>v1; | |
consider a,b such that | |
A5: 0<a and | |
A6: 0<b and | |
A7: a*(v-u)=b*(v1-u1) by A2,A3,A4,ANALOAF:def 1; | |
a*(Orte(x,y,v)-Orte(x,y,u)) = a*(Orte(x,y,v-u)) by A1,Th11 | |
.= Orte(x,y,b*(v1-u1)) by A1,A7,Th12 | |
.= b*(Orte(x,y,v1-u1)) by A1,Th12 | |
.=b*(Orte(x,y,v1)-Orte(x,y,u1)) by A1,Th11; | |
hence thesis by A5,A6,ANALOAF:def 1; | |
end; | |
hence thesis by ANALOAF:9; | |
end; | |
theorem Th17: | |
Gen x,y implies (u,v // u1,v1 implies | |
Ortm(x,y,u),Ortm(x,y,v) // Ortm(x,y,u1),Ortm(x,y,v1)) | |
proof | |
assume | |
A1: Gen x,y; | |
assume | |
A2: u,v // u1,v1; | |
now | |
assume | |
A3: u<>v; | |
now | |
assume u1<>v1; | |
then consider a,b such that | |
A4: 0<a and | |
A5: 0<b and | |
A6: a*(v-u)=b*(v1-u1) by A2,A3,ANALOAF:def 1; | |
a*(Ortm(x,y,v)-Ortm(x,y,u)) = a*(Ortm(x,y,v-u)) by A1,Th5 | |
.= Ortm(x,y,b*(v1-u1)) by A1,A6,Th2 | |
.= b*(Ortm(x,y,v1-u1)) by A1,Th2 | |
.=b*(Ortm(x,y,v1)-Ortm(x,y,u1)) by A1,Th5; | |
hence thesis by A4,A5,ANALOAF:def 1; | |
end; | |
hence thesis by ANALOAF:9; | |
end; | |
hence thesis by ANALOAF:9; | |
end; | |
theorem Th18: | |
Gen x,y implies (u,u1,v,v1 are_COrte_wrt x,y implies | |
v,v1,u1,u are_COrte_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
assume u,u1,v,v1 are_COrte_wrt x,y; | |
then Orte(x,y,u),Orte(x,y,u1) // v,v1; | |
then v,v1 // Orte(x,y,u),Orte(x,y,u1) by ANALOAF:12; | |
then Orte(x,y,v),Orte(x,y,v1) // | |
Orte(x,y,Orte(x,y,u)),Orte(x,y,Orte(x,y,u1)) by A1,Th16; | |
then Orte(x,y,v),Orte(x,y,v1) // -u,Orte(x,y,Orte(x,y,u1)) by A1,Th14; | |
then Orte(x,y,v),Orte(x,y,v1) // -u,-u1 by A1,Th14; | |
then | |
A2: -u,-u1 // Orte(x,y,v),Orte(x,y,v1) by ANALOAF:12; | |
-u1-(-u)=u+(-u1) by RLVECT_1:17 | |
.=u-u1; | |
then | |
A3: -u,-u1 // u1,u by ANALOAF:15; | |
A4: -u<>-u1 implies thesis by A2,A3,ANALOAF:11; | |
now | |
assume -u=-u1; | |
then u=-(-u1) by RLVECT_1:17 | |
.= u1 by RLVECT_1:17; | |
then Orte(x,y,v),Orte(x,y,v1) // u1,u by ANALOAF:9; | |
hence thesis; | |
end; | |
hence thesis by A4; | |
end; | |
theorem Th19: | |
Gen x,y implies (u,u1,v,v1 are_COrtm_wrt x,y implies | |
v,v1,u,u1 are_COrtm_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
assume u,u1,v,v1 are_COrtm_wrt x,y; | |
then Ortm(x,y,u),Ortm(x,y,u1) // v,v1; | |
then v,v1 // Ortm(x,y,u),Ortm(x,y,u1) by ANALOAF:12; | |
then Ortm(x,y,v),Ortm(x,y,v1) // | |
Ortm(x,y,Ortm(x,y,u)),Ortm(x,y,Ortm(x,y,u1)) by A1,Th17; | |
then Ortm(x,y,v),Ortm(x,y,v1) // u,Ortm(x,y,Ortm(x,y,u1)) by A1,Th7; | |
then Ortm(x,y,v),Ortm(x,y,v1) // u,u1 by A1,Th7; | |
hence thesis; | |
end; | |
theorem Th20: | |
u,u,v,w are_COrte_wrt x,y | |
by ANALOAF:9; | |
theorem | |
u,u,v,w are_COrtm_wrt x,y | |
by ANALOAF:9; | |
theorem | |
u,v,w,w are_COrte_wrt x,y | |
by ANALOAF:9; | |
theorem | |
u,v,w,w are_COrtm_wrt x,y | |
by ANALOAF:9; | |
theorem Th24: | |
Gen x,y implies u,v,Orte(x,y,u),Orte(x,y,v) are_Ort_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
set w = Orte(x,y,v) - Orte(x,y,u); | |
A2: w = Orte(x,y,v-u) by A1,Th11 | |
.= pr2(x,y,v-u)*x + (-pr1(x,y,v-u))*y; | |
PProJ(x,y,v-u,w) = pr1(x,y,v-u)*pr1(x,y,w) + pr2(x,y,v-u)*pr2(x,y,w) | |
by GEOMTRAP:def 6 | |
.= pr1(x,y,v-u)*pr2(x,y,v-u) + pr2(x,y,v-u)*pr2(x,y,w) | |
by A1,A2,Lm6 | |
.= pr1(x,y,v-u)*pr2(x,y,v-u) + (-pr1(x,y,v-u))*pr2(x,y,v-u) by A1,A2,Lm6 | |
.= 0; | |
then v-u,w are_Ort_wrt x,y by A1,GEOMTRAP:32; | |
hence thesis by ANALMETR:def 3; | |
end; | |
theorem | |
u,v,Orte(x,y,u),Orte(x,y,v) are_COrte_wrt x,y by ANALOAF:8; | |
theorem | |
u,v,Ortm(x,y,u),Ortm(x,y,v) are_COrtm_wrt x,y by ANALOAF:8; | |
theorem | |
Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 & | |
u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
A2: u,v // u1,v1 implies ex u2,v2 st u2<>v2 & | |
u2,v2,u,v are_COrte_wrt x,y & u2,v2,u1,v1 are_COrte_wrt x,y | |
proof | |
assume | |
A3: u,v // u1,v1; | |
A4: now | |
assume that | |
A5: u=v and | |
A6: u1=v1; | |
take u2=0.V,v2=x; | |
A7: Orte(x,y,u2),Orte(x,y,v2) // u,v by A5,ANALOAF:9; | |
Orte(x,y,u2),Orte(x,y,v2) // u1,v1 by A6,ANALOAF:9; | |
then | |
A8: u2,v2,u1,v1 are_COrte_wrt x,y; | |
A9: u2,v2,u,v are_COrte_wrt x,y by A7; | |
u2<>v2 by A1,Lm4; | |
hence thesis by A8,A9; | |
end; | |
A10: now | |
assume | |
A11: u<>v; | |
consider u2 such that | |
A12: Orte(x,y,u2)=u by A1,Th15; | |
consider v2 such that | |
A13: Orte(x,y,v2)=v by A1,Th15; | |
Orte(x,y,u2),Orte(x,y,v2) // u,v by A12,A13,ANALOAF:8; | |
then | |
A14: u2,v2,u,v are_COrte_wrt x,y; | |
u2,v2,u1,v1 are_COrte_wrt x,y by A3,A12,A13; | |
hence thesis by A11,A12,A13,A14; | |
end; | |
now | |
assume | |
A15: u1<>v1; | |
consider u2 such that | |
A16: Orte(x,y,u2)=u1 by A1,Th15; | |
consider v2 such that | |
A17: Orte(x,y,v2)=v1 by A1,Th15; | |
Orte(x,y,u2),Orte(x,y,v2) // u1,v1 by A16,A17,ANALOAF:8; | |
then | |
A18: u2,v2,u1,v1 are_COrte_wrt x,y; | |
Orte(x,y,u2),Orte(x,y,v2) // u,v by A3,A16,A17,ANALOAF:12; | |
then u2,v2,u,v are_COrte_wrt x,y; | |
hence thesis by A15,A16,A17,A18; | |
end; | |
hence thesis by A4,A10; | |
end; | |
(ex u2,v2 st u2<>v2 & u2,v2,u,v are_COrte_wrt x,y & | |
u2,v2,u1,v1 are_COrte_wrt x,y) implies u,v // u1,v1 | |
by A1,Th13,ANALOAF:11; | |
hence thesis by A2; | |
end; | |
theorem | |
Gen x,y implies (u,v // u1,v1 iff ex u2,v2 st u2<>v2 & | |
u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
A2: u,v // u1,v1 implies ex u2,v2 st u2<>v2 & | |
u2,v2,u,v are_COrtm_wrt x,y & u2,v2,u1,v1 are_COrtm_wrt x,y | |
proof | |
assume | |
A3: u,v // u1,v1; | |
A4: now | |
assume that | |
A5: u=v and | |
A6: u1=v1; | |
take u2=0.V,v2=x; | |
A7: Ortm(x,y,u2),Ortm(x,y,v2) // u,v by A5,ANALOAF:9; | |
Ortm(x,y,u2),Ortm(x,y,v2) // u1,v1 by A6,ANALOAF:9; | |
then | |
A8: u2,v2,u1,v1 are_COrtm_wrt x,y; | |
A9: u2,v2,u,v are_COrtm_wrt x,y by A7; | |
u2<>v2 by A1,Lm4; | |
hence thesis by A8,A9; | |
end; | |
A10: now | |
assume | |
A11: u<>v; | |
consider u2 such that | |
A12: Ortm(x,y,u2)=u by A1,Th8; | |
consider v2 such that | |
A13: Ortm(x,y,v2)=v by A1,Th8; | |
Ortm(x,y,u2),Ortm(x,y,v2) // u,v by A12,A13,ANALOAF:8; | |
then | |
A14: u2,v2,u,v are_COrtm_wrt x,y; | |
u2,v2,u1,v1 are_COrtm_wrt x,y by A3,A12,A13; | |
hence thesis by A11,A12,A13,A14; | |
end; | |
now | |
assume | |
A15: u1<>v1; | |
consider u2 such that | |
A16: Ortm(x,y,u2)=u1 by A1,Th8; | |
consider v2 such that | |
A17: Ortm(x,y,v2)=v1 by A1,Th8; | |
Ortm(x,y,u2),Ortm(x,y,v2) // u1,v1 by A16,A17,ANALOAF:8; | |
then | |
A18: u2,v2,u1,v1 are_COrtm_wrt x,y; | |
Ortm(x,y,u2),Ortm(x,y,v2) // u,v by A3,A16,A17,ANALOAF:12; | |
then u2,v2,u,v are_COrtm_wrt x,y; | |
hence thesis by A15,A16,A17,A18; | |
end; | |
hence thesis by A4,A10; | |
end; | |
(ex u2,v2 st u2<>v2 & u2,v2,u,v are_COrtm_wrt x,y & | |
u2,v2,u1,v1 are_COrtm_wrt x,y) implies u,v // u1,v1 | |
by A1,Th6,ANALOAF:11; | |
hence thesis by A2; | |
end; | |
theorem | |
Gen x,y implies (u,v,u1,v1 are_Ort_wrt x,y iff | |
u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
A2: now | |
assume u=v; | |
then v-u=0.V by RLVECT_1:15; | |
then v-u,v1-u1 are_Ort_wrt x,y by A1,ANALMETR:5; | |
hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def 3; | |
end; | |
now | |
assume | |
A3: u<>v; | |
set u2=Orte(x,y,u),v2=Orte(x,y,v); | |
A4: v-u<>0.V by A3,RLVECT_1:21; | |
u,v,u2,v2 are_Ort_wrt x,y by A1,Th24; | |
then | |
A5: v-u,v2-u2 are_Ort_wrt x,y by ANALMETR:def 3; | |
A6: now | |
assume u,v,u1,v1 are_Ort_wrt x,y; | |
then v-u,v1-u1 are_Ort_wrt x,y by ANALMETR:def 3; | |
then ex a,b st | |
a*(v2-u2)=b*(v1-u1) & (a<>0 or b<>0) by A1,A4,A5,ANALMETR:9; | |
then u2,v2 // u1,v1 or u2,v2 // v1,u1 by ANALMETR:14; | |
hence u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y; | |
end; | |
now | |
assume u,v,u1,v1 are_COrte_wrt x,y or u,v,v1,u1 are_COrte_wrt x,y; | |
then u2,v2 // u1,v1 or u2,v2 // v1,u1; | |
then consider a,b such that | |
A7: a*(v2-u2)=b*(v1-u1) and | |
A8: a<>0 or b<>0 by ANALMETR:14; | |
A9: now | |
assume | |
A10: b=0; | |
then 0.V = a*(v2-u2) by A7,RLVECT_1:10; | |
then v2-u2=0.V by A8,A10,RLVECT_1:11; | |
then v2=u2 by RLVECT_1:21; | |
then u=v by A1,Th13; | |
then v-u=0.V by RLVECT_1:15; | |
then v-u,v1-u1 are_Ort_wrt x,y by A1,ANALMETR:5; | |
hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def 3; | |
end; | |
now | |
assume | |
A11: b<>0; | |
((b")*a)*(v2-u2)=(b")*(b*(v1-u1)) by A7,RLVECT_1:def 7; | |
then ((b")*a)*(v2-u2)=((b")*b)*(v1-u1) by RLVECT_1:def 7; | |
then ((b")*a)*(v2-u2)=1*(v1-u1) by A11,XCMPLX_0:def 7; | |
then v1-u1=((b")*a)*(v2-u2) by RLVECT_1:def 8; | |
then v-u,v1-u1 are_Ort_wrt x,y by A5,ANALMETR:7; | |
hence u,v,u1,v1 are_Ort_wrt x,y by ANALMETR:def 3; | |
end; | |
hence u,v,u1,v1 are_Ort_wrt x,y by A9; | |
end; | |
hence thesis by A6; | |
end; | |
hence thesis by A2,Th20; | |
end; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,u1 are_COrte_wrt x,y | |
implies u=v or u1=v1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,v,u1,v1 are_COrte_wrt x,y and | |
A3: u,v,v1,u1 are_COrte_wrt x,y; | |
assume that | |
A4: u<>v and | |
A5: u1<>v1; | |
A6: Orte(x,y,u),Orte(x,y,v) // u1,v1 by A2; | |
A7: Orte(x,y,u),Orte(x,y,v) // v1,u1 by A3; | |
Orte(x,y,u) <> Orte(x,y,v) by A1,A4,Th13; | |
hence contradiction by A5,A6,A7,ANALOAF:10,11; | |
end; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,u1 are_COrtm_wrt x,y | |
implies u=v or u1=v1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,v,u1,v1 are_COrtm_wrt x,y and | |
A3: u,v,v1,u1 are_COrtm_wrt x,y; | |
assume that | |
A4: u<>v and | |
A5: u1<>v1; | |
A6: Ortm(x,y,u),Ortm(x,y,v) // u1,v1 by A2; | |
A7: Ortm(x,y,u),Ortm(x,y,v) // v1,u1 by A3; | |
Ortm(x,y,u) <> Ortm(x,y,v) by A1,A4,Th6; | |
hence contradiction by A5,A6,A7,ANALOAF:10,11; | |
end; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,u1,w are_COrte_wrt x,y | |
implies u,v,v1,w are_COrte_wrt x,y or u,v,w,v1 are_COrte_wrt x,y | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: u,v,u1,v1 are_COrte_wrt x,y and | |
A3: u,v,u1,w are_COrte_wrt x,y; | |
A4: Orte(x,y,u),Orte(x,y,v) // u1,v1 by A2; | |
A5: Orte(x,y,u),Orte(x,y,v) // u1,w by A3; | |
now | |
assume | |
A6: u<>v; | |
now | |
assume that | |
A7: u1<>v1 and | |
A8: u1<>w; | |
A9: u1,v1 // u1,w by A1,A4,A5,A6,Th13,ANALOAF:11; | |
A10: now | |
assume | |
A11: u1,v1 // v1,w; | |
u1,v1 // Orte(x,y,u),Orte(x,y,v) by A4,ANALOAF:12; | |
then Orte(x,y,u),Orte(x,y,v) // v1,w by A7,A11,ANALOAF:11; | |
hence thesis; | |
end; | |
now | |
assume | |
A12: u1,w // w,v1; | |
u1,w // Orte(x,y,u),Orte(x,y,v) by A5,ANALOAF:12; | |
then Orte(x,y,u),Orte(x,y,v) // w,v1 by A8,A12,ANALOAF:11; | |
hence thesis; | |
end; | |
hence thesis by A9,A10,ANALOAF:14; | |
end; | |
hence thesis by A2,A3; | |
end; | |
hence thesis by Th20; | |
end; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,u1,w are_COrtm_wrt x,y | |
implies u,v,v1,w are_COrtm_wrt x,y or u,v,w,v1 are_COrtm_wrt x,y | |
proof | |
assume that | |
A1: Gen x,y and | |
A2: u,v,u1,v1 are_COrtm_wrt x,y and | |
A3: u,v,u1,w are_COrtm_wrt x,y; | |
A4: Ortm(x,y,u),Ortm(x,y,v) // u1,v1 by A2; | |
A5: Ortm(x,y,u),Ortm(x,y,v) // u1,w by A3; | |
A6: now | |
assume that | |
A7: u<>v and | |
A8: u1<>v1; | |
u1,v1 // u1,w by A1,A4,A5,A7,Th6,ANALOAF:11; | |
then | |
A9: u1,v1 // v1,w or u1,w // w,v1 by ANALOAF:14; | |
now | |
assume | |
A10: u1<>w; | |
A11: u1,v1 // Ortm(x,y,u),Ortm(x,y,v) by A4,ANALOAF:12; | |
u1,w // Ortm(x,y,u),Ortm(x,y,v) by A5,ANALOAF:12; | |
then Ortm(x,y,u),Ortm(x,y,v) // v1,w or | |
Ortm(x,y,u),Ortm(x,y,v) // w,v1 by A8,A9,A10,A11,ANALOAF:11; | |
hence thesis; | |
end; | |
hence thesis by A2; | |
end; | |
u=v implies thesis by ANALOAF:9; | |
hence thesis by A3,A6; | |
end; | |
theorem | |
u,v,u1,v1 are_COrte_wrt x,y implies v,u,v1,u1 are_COrte_wrt x,y | |
by ANALOAF:12; | |
theorem | |
u,v,u1,v1 are_COrtm_wrt x,y implies v,u,v1,u1 are_COrtm_wrt x,y | |
by ANALOAF:12; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrte_wrt x,y & u,v,v1,w are_COrte_wrt x,y | |
implies u,v,u1,w are_COrte_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,v,u1,v1 are_COrte_wrt x,y and | |
A3: u,v,v1,w are_COrte_wrt x,y; | |
A4: Orte(x,y,u),Orte(x,y,v) // u1,v1 by A2; | |
A5: Orte(x,y,u),Orte(x,y,v) // v1,w by A3; | |
A6: u1,v1 // Orte(x,y,u),Orte(x,y,v) by A4,ANALOAF:12; | |
A7: now | |
assume u<>v; | |
then u1,v1 // v1,w by A1,A4,A5,Th13,ANALOAF:11; | |
then | |
A8: u1,v1 // u1,w by ANALOAF:13; | |
u1<>v1 implies thesis by A6,A8,ANALOAF:11; | |
hence thesis by A3; | |
end; | |
u=v implies thesis by ANALOAF:9; | |
hence thesis by A7; | |
end; | |
theorem | |
Gen x,y & u,v,u1,v1 are_COrtm_wrt x,y & u,v,v1,w are_COrtm_wrt x,y | |
implies u,v,u1,w are_COrtm_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,v,u1,v1 are_COrtm_wrt x,y and | |
A3: u,v,v1,w are_COrtm_wrt x,y; | |
A4: Ortm(x,y,u),Ortm(x,y,v) // u1,v1 by A2; | |
A5: Ortm(x,y,u),Ortm(x,y,v) // v1,w by A3; | |
A6: u1,v1 // Ortm(x,y,u),Ortm(x,y,v) by A4,ANALOAF:12; | |
A7: now | |
assume u<>v; | |
then u1,v1 // v1,w by A1,A4,A5,Th6,ANALOAF:11; | |
then | |
A8: u1,v1 // u1,w by ANALOAF:13; | |
u1<>v1 implies thesis by A6,A8,ANALOAF:11; | |
hence thesis by A3; | |
end; | |
u=v implies thesis by ANALOAF:9; | |
hence thesis by A7; | |
end; | |
theorem | |
Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrte_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
let u,v,w; | |
A2: now | |
assume | |
A3: u=v; | |
take u1=w+x; | |
Orte(x,y,w),Orte(x,y,u1) // u,v by A3,ANALOAF:9; | |
then | |
A4: w,u1,u,v are_COrte_wrt x,y; | |
now | |
assume w=u1; | |
then x=0.V by RLVECT_1:9; | |
hence contradiction by A1,Lm4; | |
end; | |
hence thesis by A4; | |
end; | |
now | |
assume | |
A5: u<>v; | |
consider u2 such that | |
A6: Orte(x,y,u2)=u by A1,Th15; | |
consider v2 such that | |
A7: Orte(x,y,v2)=v by A1,Th15; | |
take u1= (v2+w)-u2; | |
u2,v2 // w,u1 by ANALOAF:16; | |
then w,u1 // u2,v2 by ANALOAF:12; | |
then Orte(x,y,w),Orte(x,y,u1) // Orte(x,y,u2),Orte(x,y,v2) by A1,Th16; | |
then | |
A8: w,u1,u,v are_COrte_wrt x,y by A6,A7; | |
now | |
assume w=u1; | |
then w= w+(v2-u2) by RLVECT_1:def 3; | |
then v2-u2=0.V by RLVECT_1:9; | |
hence contradiction by A5,A6,A7,RLVECT_1:21; | |
end; | |
hence thesis by A8; | |
end; | |
hence thesis by A2; | |
end; | |
theorem | |
Gen x,y implies for u,v,w ex u1 st w<>u1 & w,u1,u,v are_COrtm_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
let u,v,w; | |
A2: now | |
assume | |
A3: u=v; | |
take u1=w+x; | |
Ortm(x,y,w),Ortm(x,y,u1) // u,v by A3,ANALOAF:9; | |
then | |
A4: w,u1,u,v are_COrtm_wrt x,y; | |
now | |
assume w=u1; | |
then x=0.V by RLVECT_1:9; | |
hence contradiction by A1,Lm4; | |
end; | |
hence thesis by A4; | |
end; | |
now | |
assume | |
A5: u<>v; | |
consider u2 such that | |
A6: Ortm(x,y,u2)=u by A1,Th8; | |
consider v2 such that | |
A7: Ortm(x,y,v2)=v by A1,Th8; | |
take u1= (v2+w)-u2; | |
u2,v2 // w,u1 by ANALOAF:16; | |
then w,u1 // u2,v2 by ANALOAF:12; | |
then Ortm(x,y,w),Ortm(x,y,u1) // Ortm(x,y,u2),Ortm(x,y,v2) by A1,Th17; | |
then | |
A8: w,u1,u,v are_COrtm_wrt x,y by A6,A7; | |
now | |
assume w=u1; | |
then w= w+(v2-u2) by RLVECT_1:def 3; | |
then v2-u2=0.V by RLVECT_1:9; | |
hence contradiction by A5,A6,A7,RLVECT_1:21; | |
end; | |
hence thesis by A8; | |
end; | |
hence thesis by A2; | |
end; | |
theorem Th40: | |
Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrte_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
let u,v,w; | |
A2: now | |
assume | |
A3: u=v; | |
take u1=w+x; | |
Orte(x,y,u),Orte(x,y,v) // w,u1 by A3,ANALOAF:9; | |
then | |
A4: u,v,w,u1 are_COrte_wrt x,y; | |
now | |
assume w=u1; | |
then x=0.V by RLVECT_1:9; | |
hence contradiction by A1,Lm4; | |
end; | |
hence thesis by A4; | |
end; | |
now | |
assume | |
A5: u<>v; | |
consider u2 such that | |
A6: Orte(x,y,u2)=u by A1,Th15; | |
consider v2 such that | |
A7: Orte(x,y,v2)=v by A1,Th15; | |
take u1= (u2+w)-v2; | |
v2,u2 // w,u1 by ANALOAF:16; | |
then Orte(x,y,v2),Orte(x,y,u2) // Orte(x,y,w),Orte(x,y,u1) by A1,Th16; | |
then Orte(x,y,w),Orte(x,y,u1) // v,u by A6,A7,ANALOAF:12; | |
then Orte(x,y,u1),Orte(x,y,w) // u,v by ANALOAF:12; | |
then | |
A8: u1,w,u,v are_COrte_wrt x,y; | |
now | |
assume w=u1; | |
then w= w+(u2-v2) by RLVECT_1:def 3; | |
then u2-v2=0.V by RLVECT_1:9; | |
hence contradiction by A5,A6,A7,RLVECT_1:21; | |
end; | |
hence thesis by A1,A8,Th18; | |
end; | |
hence thesis by A2; | |
end; | |
theorem Th41: | |
Gen x,y implies for u,v,w ex u1 st w<>u1 & u,v,w,u1 are_COrtm_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
let u,v,w; | |
A2: now | |
assume | |
A3: u=v; | |
take u1=w+x; | |
Ortm(x,y,w),Ortm(x,y,u1) // u,v by A3,ANALOAF:9; | |
then | |
A4: w,u1,u,v are_COrtm_wrt x,y; | |
w<>u1 | |
proof | |
assume w=u1; | |
then x=0.V by RLVECT_1:9; | |
hence contradiction by A1,Lm4; | |
end; | |
hence thesis by A1,A4,Th19; | |
end; | |
now | |
assume | |
A5: u<>v; | |
consider u2 such that | |
A6: Ortm(x,y,u2)=u by A1,Th8; | |
consider v2 such that | |
A7: Ortm(x,y,v2)=v by A1,Th8; | |
take u1= (v2+w)-u2; | |
u2,v2 // w,u1 by ANALOAF:16; | |
then w,u1 // u2,v2 by ANALOAF:12; | |
then Ortm(x,y,w),Ortm(x,y,u1) // Ortm(x,y,u2),Ortm(x,y,v2) by A1,Th17; | |
then | |
A8: w,u1,u,v are_COrtm_wrt x,y by A6,A7; | |
w<>u1 | |
proof | |
assume w=u1; | |
then w= w+(v2-u2) by RLVECT_1:def 3; | |
then v2-u2=0.V by RLVECT_1:9; | |
hence contradiction by A5,A6,A7,RLVECT_1:21; | |
end; | |
hence thesis by A1,A8,Th19; | |
end; | |
hence thesis by A2; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & w,w1,v,v1 are_COrte_wrt x,y & | |
w,w1,u2,v2 are_COrte_wrt x,y implies | |
w=w1 or v=v1 or u,u1,u2,v2 are_COrte_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrte_wrt x,y and | |
A3: w,w1,v,v1 are_COrte_wrt x,y and | |
A4: w,w1,u2,v2 are_COrte_wrt x,y; | |
Orte(x,y,u),Orte(x,y,u1) // v,v1 by A2; | |
then | |
A5: v,v1 // Orte(x,y,u),Orte(x,y,u1) by ANALOAF:12; | |
Orte(x,y,w),Orte(x,y,w1) // v,v1 by A3; | |
then | |
A6: v,v1 // Orte(x,y,w),Orte(x,y,w1) by ANALOAF:12; | |
A7: Orte(x,y,w),Orte(x,y,w1) // u2,v2 by A4; | |
now | |
assume that | |
A8: w<>w1 and | |
A9: v<>v1; | |
Orte(x,y,w),Orte(x,y,w1) // Orte(x,y,u),Orte(x,y,u1) | |
by A5,A6,A9,ANALOAF:11; | |
then Orte(x,y,u),Orte(x,y,u1) // u2,v2 by A1,A7,A8,Th13,ANALOAF:11; | |
hence u,u1,u2,v2 are_COrte_wrt x,y; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & w,w1,v,v1 are_COrtm_wrt x,y & | |
w,w1,u2,v2 are_COrtm_wrt x,y implies | |
w=w1 or v=v1 or u,u1,u2,v2 are_COrtm_wrt x,y | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrtm_wrt x,y and | |
A3: w,w1,v,v1 are_COrtm_wrt x,y and | |
A4: w,w1,u2,v2 are_COrtm_wrt x,y; | |
Ortm(x,y,u),Ortm(x,y,u1) // v,v1 by A2; | |
then | |
A5: v,v1 // Ortm(x,y,u),Ortm(x,y,u1) by ANALOAF:12; | |
Ortm(x,y,w),Ortm(x,y,w1) // v,v1 by A3; | |
then | |
A6: v,v1 // Ortm(x,y,w),Ortm(x,y,w1) by ANALOAF:12; | |
A7: Ortm(x,y,w),Ortm(x,y,w1) // u2,v2 by A4; | |
now | |
assume that | |
A8: w<>w1 and | |
A9: v<>v1; | |
Ortm(x,y,w),Ortm(x,y,w1) // Ortm(x,y,u),Ortm(x,y,u1) | |
by A5,A6,A9,ANALOAF:11; | |
then Ortm(x,y,u),Ortm(x,y,u1) // u2,v2 by A1,A7,A8,Th6,ANALOAF:11; | |
hence u,u1,u2,v2 are_COrtm_wrt x,y; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y | |
& u2,v2,w,w1 are_COrte_wrt x,y implies | |
u,u1,u2,v2 are_COrte_wrt x,y or v=v1 or w=w1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrte_wrt x,y and | |
A3: v,v1,w,w1 are_COrte_wrt x,y and | |
A4: u2,v2,w,w1 are_COrte_wrt x,y; | |
v,v1,u1,u are_COrte_wrt x,y by A1,A2,Th18; | |
then | |
A5: Orte(x,y,v),Orte(x,y,v1) // u1,u; | |
Orte(x,y,v),Orte(x,y,v1) // w,w1 by A3; | |
then | |
A6: w,w1 // Orte(x,y,v),Orte(x,y,v1) by ANALOAF:12; | |
Orte(x,y,u2),Orte(x,y,v2) // w,w1 by A4; | |
then | |
A7: w,w1 // Orte(x,y,u2),Orte(x,y,v2) by ANALOAF:12; | |
now | |
assume that | |
A8: w<>w1 and | |
A9: v<>v1; | |
Orte(x,y,v),Orte(x,y,v1) // Orte(x,y,u2),Orte(x,y,v2) | |
by A6,A7,A8,ANALOAF:11; | |
then Orte(x,y,u2),Orte(x,y,v2) // u1,u by A1,A5,A9,Th13,ANALOAF:11; | |
then Orte(x,y,v2),Orte(x,y,u2) // u,u1 by ANALOAF:12; | |
then v2,u2,u,u1 are_COrte_wrt x,y; | |
hence thesis by A1,Th18; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y | |
& u2,v2,w,w1 are_COrtm_wrt x,y implies | |
u,u1,u2,v2 are_COrtm_wrt x,y or v=v1 or w=w1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrtm_wrt x,y and | |
A3: v,v1,w,w1 are_COrtm_wrt x,y and | |
A4: u2,v2,w,w1 are_COrtm_wrt x,y; | |
Ortm(x,y,u),Ortm(x,y,u1) // v,v1 by A2; | |
then | |
A5: v,v1 // Ortm(x,y,u),Ortm(x,y,u1) by ANALOAF:12; | |
w,w1,v,v1 are_COrtm_wrt x,y by A1,A3,Th19; | |
then Ortm(x,y,w),Ortm(x,y,w1) // v,v1; | |
then | |
A6: v,v1 // Ortm(x,y,w),Ortm(x,y,w1) by ANALOAF:12; | |
w,w1,u2,v2 are_COrtm_wrt x,y by A1,A4,Th19; | |
then | |
A7: Ortm(x,y,w),Ortm(x,y,w1) // u2,v2; | |
now | |
assume that | |
A8: w<>w1 and | |
A9: v<>v1; | |
Ortm(x,y,w),Ortm(x,y,w1) // Ortm(x,y,u),Ortm(x,y,u1) | |
by A5,A6,A9,ANALOAF:11; | |
then Ortm(x,y,u),Ortm(x,y,u1) // u2,v2 by A1,A7,A8,Th6,ANALOAF:11; | |
hence thesis; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrte_wrt x,y & v,v1,w,w1 are_COrte_wrt x,y | |
& u,u1,u2,v2 are_COrte_wrt x,y implies | |
u2,v2,w,w1 are_COrte_wrt x,y or v=v1 or u=u1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrte_wrt x,y and | |
A3: v,v1,w,w1 are_COrte_wrt x,y and | |
A4: u,u1,u2,v2 are_COrte_wrt x,y; | |
A5: Orte(x,y,u),Orte(x,y,u1) // v,v1 by A2; | |
A6: Orte(x,y,v),Orte(x,y,v1) // w,w1 by A3; | |
A7: Orte(x,y,u),Orte(x,y,u1) // u2,v2 by A4; | |
now | |
assume that | |
A8: u<>u1 and | |
A9: v<>v1; | |
v,v1 // u2,v2 by A1,A5,A7,A8,Th13,ANALOAF:11; | |
then Orte(x,y,v),Orte(x,y,v1) // Orte(x,y,u2),Orte(x,y,v2) by A1,Th16; | |
then Orte(x,y,u2),Orte(x,y,v2) // w,w1 by A1,A6,A9,Th13,ANALOAF:11; | |
hence thesis; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y & u,u1,v,v1 are_COrtm_wrt x,y & v,v1,w,w1 are_COrtm_wrt x,y | |
& u,u1,u2,v2 are_COrtm_wrt x,y implies | |
u2,v2,w,w1 are_COrtm_wrt x,y or v=v1 or u=u1 | |
proof | |
assume | |
A1: Gen x,y; | |
assume that | |
A2: u,u1,v,v1 are_COrtm_wrt x,y and | |
A3: v,v1,w,w1 are_COrtm_wrt x,y and | |
A4: u,u1,u2,v2 are_COrtm_wrt x,y; | |
A5: Ortm(x,y,u),Ortm(x,y,u1) // v,v1 by A2; | |
A6: Ortm(x,y,v),Ortm(x,y,v1) // w,w1 by A3; | |
A7: Ortm(x,y,u),Ortm(x,y,u1) // u2,v2 by A4; | |
now | |
assume that | |
A8: u<>u1 and | |
A9: v<>v1; | |
v,v1 // u2,v2 by A1,A5,A7,A8,Th6,ANALOAF:11; | |
then Ortm(x,y,v),Ortm(x,y,v1) // Ortm(x,y,u2),Ortm(x,y,v2) by A1,Th17; | |
then Ortm(x,y,u2),Ortm(x,y,v2) // w,w1 by A1,A6,A9,Th6,ANALOAF:11; | |
hence thesis; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y implies for v,w,u1,v1,w1 holds not v,v1,w,u1 are_COrte_wrt x,y & | |
not v,v1,u1,w are_COrte_wrt x,y & u1,w1,u1,w are_COrte_wrt x,y | |
implies ex u2 st | |
(v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y) & | |
(u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
let v,w,u1,v1,w1; | |
consider u such that | |
A2: v<>u and | |
A3: v,v1,v,u are_COrte_wrt x,y by A1,Th40; | |
assume that | |
A4: not v,v1,w,u1 are_COrte_wrt x,y and | |
A5: not v,v1,u1,w are_COrte_wrt x,y and | |
A6: u1,w1,u1,w are_COrte_wrt x,y; | |
A7: not Orte(x,y,v),Orte(x,y,v1) // w,u1 by A4; | |
A8: Orte(x,y,v),Orte(x,y,v1) // v,u by A3; | |
A9: Orte(x,y,u1),Orte(x,y,w1) // u1,w by A6; | |
A10: not Orte(x,y,v),Orte(x,y,v1) // u1,w by A5; | |
A11: v,u // Orte(x,y,v),Orte(x,y,v1) by A8,ANALOAF:12; | |
A12: u1,w // Orte(x,y,u1),Orte(x,y,w1) by A9,ANALOAF:12; | |
A13: u1<>w by A7,ANALOAF:9; | |
A14: not v,u // u1,w by A2,A10,A11,ANALOAF:11; | |
A15: not v,u // w,u1 by A2,A7,A11,ANALOAF:11; | |
Gen x,y implies ex u,v st for w ex a,b st a*u + b*v=w | |
proof | |
assume | |
A16: Gen x,y; | |
take x,y; | |
thus thesis by A16,ANALMETR:def 1; | |
end; | |
then consider u2 such that | |
A17: v,u // v,u2 or v,u // u2,v and | |
A18: u1,w // u1,u2 or u1,w // u2,u1 by A1,A14,A15,ANALOAF:21; | |
Orte(x,y,v),Orte(x,y,v1) // v,u2 or Orte(x,y,v),Orte(x,y,v1) // u2,v | |
by A2,A11,A17,ANALOAF:11; | |
then | |
A19: v,v1,v,u2 are_COrte_wrt x,y or v,v1,u2,v are_COrte_wrt x,y; | |
Orte(x,y,u1),Orte(x,y,w1) // u1,u2 or Orte(x,y,u1),Orte(x,y,w1) // u2,u1 | |
by A12,A13,A18,ANALOAF:11; | |
then u1,w1,u1,u2 are_COrte_wrt x,y or u1,w1,u2,u1 are_COrte_wrt x,y; | |
hence thesis by A19; | |
end; | |
theorem | |
Gen x,y implies ex u,v,w st (u,v,u,w are_COrte_wrt x,y & | |
for v1,w1 st v1,w1,u,v are_COrte_wrt x,y holds | |
(not v1,w1,u,w are_COrte_wrt x,y & not v1,w1,w,u are_COrte_wrt x,y | |
or v1=w1)) | |
proof | |
assume | |
A1: Gen x,y; | |
Gen x,y implies ex u,v st u<>v | |
proof | |
assume | |
A2: Gen x,y; | |
take x,0.V; | |
thus thesis by A2,Lm4; | |
end; | |
then consider u,v such that | |
A3: u<>v by A1; | |
take u,v; | |
consider w such that | |
A4: w<>u and | |
A5: u,v,u,w are_COrte_wrt x,y by A1,Th40; | |
take w; | |
thus u,v,u,w are_COrte_wrt x,y by A5; | |
A6: Orte(x,y,u),Orte(x,y,v) // u,w by A5; | |
let v1,w1; | |
assume v1,w1,u,v are_COrte_wrt x,y; | |
then | |
A7: Orte(x,y,v1),Orte(x,y,w1) // u,v; | |
now | |
assume | |
A8: v1<>w1; | |
assume v1,w1,u,w are_COrte_wrt x,y or v1,w1,w,u are_COrte_wrt x,y; | |
then Orte(x,y,v1),Orte(x,y,w1) // u,w or | |
Orte(x,y,v1),Orte(x,y,w1) // w,u; | |
then u,v // u,w or u,v // w,u by A1,A7,A8,Th13,ANALOAF:11; | |
then Orte(x,y,u),Orte(x,y,v) // Orte(x,y,u),Orte(x,y,w) or | |
Orte(x,y,u),Orte(x,y,v) // Orte(x,y,w),Orte(x,y,u) by A1,Th16; | |
then u,w // Orte(x,y,u),Orte(x,y,w) or u,w // Orte(x,y,w),Orte(x,y,u) | |
by A1,A3,A6,Th13,ANALOAF:11; | |
then consider a,b such that | |
A9: a*(w-u)=b*(Orte(x,y,w)-Orte(x,y,u)) and | |
A10: a<>0 or b<>0 by ANALMETR:14; | |
take a,b; | |
a*(w-u)=b*Orte(x,y,w-u) by A1,A9,Th11; | |
then | |
A11: a*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)=b*Orte(x,y,w-u) by A1,Lm5; | |
A12: now | |
assume | |
A13: a<>0; | |
A14: pr2(x,y,w-u)<>0 | |
proof | |
assume | |
A15: not thesis; | |
then a*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
(b*0)*x + (b*(-pr1(x,y,w-u)))*y by A11,Lm2; | |
then (a*pr1(x,y,w-u))*x + (a*pr2(x,y,w-u))*y= | |
(b*0)*x + (b*(-pr1(x,y,w-u)))*y by Lm2; | |
then a*pr1(x,y,w-u)=0 by A1,Lm3; | |
then pr1(x,y,w-u)=0 by A13,XCMPLX_1:6; | |
then w-u=0*x + 0*y by A1,A15,Lm5 | |
.=0.V + 0*y by RLVECT_1:10 | |
.=0.V + 0.V by RLVECT_1:10 | |
.=0.V by RLVECT_1:4; | |
hence thesis by A4,RLVECT_1:21; | |
end; | |
(a"*a)*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
a"*(b*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y)) by A11,RLVECT_1:def 7; | |
then (a"*a)*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
(a"*b)*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by RLVECT_1:def 7; | |
then 1*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
(a"*b)*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by A13,XCMPLX_0:def 7; | |
then pr1(x,y,w-u)*x + pr2(x,y,w-u)*y= | |
(a"*b)*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by RLVECT_1:def 8; | |
then | |
A16: pr1(x,y,w-u)*x + pr2(x,y,w-u)*y= | |
(a"*b)*pr2(x,y,w-u)*x + (a"*b)*(-pr1(x,y,w-u))*y by Lm2; | |
then pr1(x,y,w-u)=(a"*b)*pr2(x,y,w-u) by A1,Lm3; | |
then | |
A17: pr2(x,y,w-u)=-((a"*b)*((a"*b)*pr2(x,y,w-u))) by A1,A16,Lm3; | |
-(pr2(x,y,w-u)"*pr2(x,y,w-u)) = (pr2(x,y,w-u)"*-pr2(x,y,w-u)) | |
.= pr2(x,y,w-u)"*((a"*b)*((a"*b)*pr2(x,y,w-u))) by A17; | |
then -1=pr2(x,y,w-u)"*pr2(x,y,w-u)*((a"*b)*(a"*b)) by A14,XCMPLX_0:def 7; | |
then -1=1*((a"*b)*(a"*b)) by A14,XCMPLX_0:def 7; | |
hence thesis by XREAL_1:63; | |
end; | |
now | |
assume | |
A18: b<>0; | |
A19: pr2(x,y,w-u)<>0 | |
proof | |
assume | |
A20: not thesis; | |
then a*(pr1(x,y,w-u)*x + 0*y)= | |
(b*0)*x + (b*(-pr1(x,y,w-u)))*y by A11,Lm2; | |
then (a*pr1(x,y,w-u))*x + (a*0)*y= | |
(b*0)*x + (b*(-pr1(x,y,w-u)))*y by Lm2; | |
then b*(-pr1(x,y,w-u))=0 by A1,Lm3; | |
then -pr1(x,y,w-u)=0 by A18,XCMPLX_1:6; | |
then w-u=0*x + (-0)*y by A1,A20,Lm5 | |
.=0.V + 0*y by RLVECT_1:10 | |
.=0.V + 0.V by RLVECT_1:10 | |
.=0.V by RLVECT_1:4; | |
hence thesis by A4,RLVECT_1:21; | |
end; | |
b"*(a*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y))= | |
(b"*b)*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by A11,RLVECT_1:def 7; | |
then (b"*a)*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
(b"*b)*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by RLVECT_1:def 7; | |
then (b"*a)*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
1*(pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y) by A18,XCMPLX_0:def 7; | |
then (b"*a)*(pr1(x,y,w-u)*x + pr2(x,y,w-u)*y)= | |
pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y by RLVECT_1:def 8; | |
then | |
A21: (b"*a)*pr1(x,y,w-u)*x + (b"*a)*pr2(x,y,w-u)*y= | |
pr2(x,y,w-u)*x + (-pr1(x,y,w-u))*y by Lm2; | |
then (b"*a)*pr2(x,y,w-u)=-pr1(x,y,w-u) by A1,Lm3; | |
then | |
A22: pr2(x,y,w-u)=(b"*a)*(-((b"*a)*pr2(x,y,w-u))) by A1,A21,Lm3; | |
-(pr2(x,y,w-u)"*pr2(x,y,w-u)) = (pr2(x,y,w-u)"*-pr2(x,y,w-u)) | |
.= pr2(x,y,w-u)"*((b"*a)*((b"*a)*pr2(x,y,w-u))) by A22; | |
then -1=pr2(x,y,w-u)"*pr2(x,y,w-u)*((b"*a)*(b"*a)) by A19,XCMPLX_0:def 7; | |
then -1=1*((b"*a)*(b"*a)) by A19,XCMPLX_0:def 7; | |
hence thesis by XREAL_1:63; | |
end; | |
hence thesis by A10,A12; | |
end; | |
hence thesis; | |
end; | |
theorem | |
Gen x,y implies for v,w,u1,v1,w1 holds not v,v1,w,u1 are_COrtm_wrt x,y & | |
not v,v1,u1,w are_COrtm_wrt x,y & u1,w1,u1,w are_COrtm_wrt x,y | |
implies ex u2 st | |
(v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y) & | |
(u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y) | |
proof | |
assume | |
A1: Gen x,y; | |
let v,w,u1,v1,w1; | |
consider u such that | |
A2: v<>u and | |
A3: v,v1,v,u are_COrtm_wrt x,y by A1,Th41; | |
assume that | |
A4: not v,v1,w,u1 are_COrtm_wrt x,y and | |
A5: not v,v1,u1,w are_COrtm_wrt x,y and | |
A6: u1,w1,u1,w are_COrtm_wrt x,y; | |
A7: not Ortm(x,y,v),Ortm(x,y,v1) // w,u1 by A4; | |
A8: Ortm(x,y,v),Ortm(x,y,v1) // v,u by A3; | |
A9: Ortm(x,y,u1),Ortm(x,y,w1) // u1,w by A6; | |
A10: not Ortm(x,y,v),Ortm(x,y,v1) // u1,w by A5; | |
A11: v,u // Ortm(x,y,v),Ortm(x,y,v1) by A8,ANALOAF:12; | |
A12: u1,w // Ortm(x,y,u1),Ortm(x,y,w1) by A9,ANALOAF:12; | |
A13: u1<>w by A7,ANALOAF:9; | |
A14: not v,u // u1,w by A2,A10,A11,ANALOAF:11; | |
A15: not v,u // w,u1 by A2,A7,A11,ANALOAF:11; | |
Gen x,y implies ex u,v st for w ex a,b st a*u + b*v=w | |
proof | |
assume | |
A16: Gen x,y; | |
take x,y; | |
thus thesis by A16,ANALMETR:def 1; | |
end; | |
then consider u2 such that | |
A17: v,u // v,u2 or v,u // u2,v and | |
A18: u1,w // u1,u2 or u1,w // u2,u1 by A1,A14,A15,ANALOAF:21; | |
Ortm(x,y,v),Ortm(x,y,v1) // v,u2 or Ortm(x,y,v),Ortm(x,y,v1) // u2,v | |
by A2,A11,A17,ANALOAF:11; | |
then | |
A19: v,v1,v,u2 are_COrtm_wrt x,y or v,v1,u2,v are_COrtm_wrt x,y; | |
Ortm(x,y,u1),Ortm(x,y,w1) // u1,u2 or Ortm(x,y,u1),Ortm(x,y,w1) // u2,u1 | |
by A12,A13,A18,ANALOAF:11; | |
then u1,w1,u1,u2 are_COrtm_wrt x,y or u1,w1,u2,u1 are_COrtm_wrt x,y; | |
hence thesis by A19; | |
end; | |
theorem | |
Gen x,y implies ex u,v,w st (u,v,u,w are_COrtm_wrt x,y & | |
for v1,w1 holds (v1,w1,u,v are_COrtm_wrt x,y implies | |
(not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y | |
or v1=w1))) | |
proof | |
assume | |
A1: Gen x,y; | |
take u=0*x+0*y,v=1*x+1*y,w=1*x+(-1)*y; | |
A2: pr1(x,y,u)=0 by A1,Lm6; | |
A3: pr2(x,y,u)=0 by A1,Lm6; | |
A4: pr1(x,y,v)=1 by A1,Lm6; | |
pr2(x,y,v)=1 by A1,Lm6; | |
then | |
A5: Ortm(x,y,u),Ortm(x,y,v) // u,w by A2,A3,A4,ANALOAF:8; | |
for v1,w1 holds (v1,w1,u,v are_COrtm_wrt x,y implies | |
(not v1,w1,u,w are_COrtm_wrt x,y & not v1,w1,w,u are_COrtm_wrt x,y | |
or v1=w1)) | |
proof | |
let v1,w1; | |
assume v1,w1,u,v are_COrtm_wrt x,y; | |
then | |
A6: Ortm(x,y,v1),Ortm(x,y,w1) // u,v; | |
now | |
assume | |
A7: v1<>w1; | |
assume v1,w1,u,w are_COrtm_wrt x,y or v1,w1,w,u are_COrtm_wrt x,y; | |
then Ortm(x,y,v1),Ortm(x,y,w1) // u,w or | |
Ortm(x,y,v1),Ortm(x,y,w1) // w,u; | |
then u,v // u,w or u,v // w,u by A1,A6,A7,Th6,ANALOAF:11; | |
then consider a,b such that | |
A8: a*(v-u)=b*(w-u) and | |
A9: a<>0 or b<>0 by ANALMETR:14; | |
take a,b; | |
u=0.V+0*y by RLVECT_1:10 | |
.=0.V+0.V by RLVECT_1:10 | |
.=0.V by RLVECT_1:4; | |
then a*v=b*(w-0.V) by A8,RLVECT_1:13; | |
then | |
A10: a*v=b*w by RLVECT_1:13; | |
A11: now | |
assume | |
A12: a<>0; | |
a"*a*v=a"*(b*w) by A10,RLVECT_1:def 7; | |
then a"*a*v=a"*b*w by RLVECT_1:def 7; | |
then 1*v=a"*b*w by A12,XCMPLX_0:def 7; | |
then 1*v=a"*b*1*x+a"*b*(-1)*y by Lm2; | |
then | |
A13: 1*1*x+1*1*y=a"*b*1*x+a"*b*(-1)*y by Lm2; | |
then a*1=a*(a"*(b*1)) by A1,Lm3; | |
then | |
A14: a*1=a*a"*(b*1); | |
1=a"*b*(-1) by A1,A13,Lm3; | |
then 1=a"*a*(-1) by A12,A14,XCMPLX_0:def 7; | |
hence thesis by A12,XCMPLX_0:def 7; | |
end; | |
now | |
assume | |
A15: b<>0; | |
b"*a*v=b"*(b*w) by A10,RLVECT_1:def 7; | |
then b"*a*v=b"*b*w by RLVECT_1:def 7; | |
then b"*a*v=1*w by A15,XCMPLX_0:def 7; | |
then b"*a*1*x+b"*a*1*y=1*w by Lm2; | |
then | |
A16: b"*a*1*x+b"*a*1*y=1*1*x+1*(-1)*y by Lm2; | |
then b*1=b*(b"*(a*1)) by A1,Lm3; | |
then | |
A17: b*1=b*b"*(a*1); | |
-1=b"*a*1 by A1,A16,Lm3; | |
then -1=b"*b*1 by A15,A17,XCMPLX_0:def 7; | |
hence thesis by A15,XCMPLX_0:def 7; | |
end; | |
hence thesis by A9,A11; | |
end; | |
hence thesis; | |
end; | |
hence thesis by A5; | |
end; | |
reserve uu,vv for object; | |
definition | |
let V; | |
let x,y; | |
func CORTE(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means | |
:Def5: | |
[uu,vv] in it iff | |
ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y; | |
existence | |
proof | |
set VV = [:the carrier of V,the carrier of V :]; | |
defpred P[object,object] means ex u1,u2,v1,v2 st $1=[u1,u2] & | |
$2=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y; | |
consider P being Relation of VV,VV such that | |
A1: for uu,vv being object holds | |
([uu,vv] in P iff uu in VV & vv in VV & P[uu,vv]) from RELSET_1:sch 1; | |
take P; | |
let uu,vv; | |
thus [uu,vv] in P implies ex u1,u2,v1,v2 st | |
uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y by A1; | |
assume | |
A2: ex | |
u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrte_wrt x,y; | |
then | |
A3: uu in VV by ZFMISC_1:def 2; | |
vv in VV by A2,ZFMISC_1:def 2; | |
hence thesis by A1,A2,A3; | |
end; | |
uniqueness | |
proof | |
let P,Q be Relation of [:the carrier of V,the carrier of V:] such that | |
A4: [uu,vv] in P iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrte_wrt x,y and | |
A5: [uu,vv] in Q iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrte_wrt x,y; | |
for uu,vv being object holds [uu,vv] in P iff [uu,vv] in Q | |
proof | |
let uu,vv be object; | |
[uu,vv] in P iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrte_wrt x,y by A4; | |
hence thesis by A5; | |
end; | |
hence thesis by RELAT_1:def 2; | |
end; | |
end; | |
definition | |
let V; | |
let x,y; | |
func CORTM(V,x,y) -> Relation of [:the carrier of V,the carrier of V:] means | |
:Def6: | |
[uu,vv] in it iff | |
ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y; | |
existence | |
proof | |
set VV = [:the carrier of V,the carrier of V :]; | |
defpred P[object,object] means ex u1,u2,v1,v2 st $1=[u1,u2] & | |
$2=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y; | |
consider P being Relation of VV,VV such that | |
A1: for uu,vv being object holds | |
([uu,vv] in P iff uu in VV & vv in VV & P[uu,vv]) from RELSET_1:sch 1; | |
take P; | |
let uu,vv; | |
thus [uu,vv] in P implies ex u1,u2,v1,v2 st | |
uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y by A1; | |
assume | |
A2: ex | |
u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & u1,u2,v1,v2 are_COrtm_wrt x,y; | |
then | |
A3: uu in VV by ZFMISC_1:def 2; | |
vv in VV by A2,ZFMISC_1:def 2; | |
hence thesis by A1,A2,A3; | |
end; | |
uniqueness | |
proof | |
let P,Q be Relation of [:the carrier of V,the carrier of V:] such that | |
A4: [uu,vv] in P iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrtm_wrt x,y and | |
A5: [uu,vv] in Q iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrtm_wrt x,y; | |
for uu,vv being object holds [uu,vv] in P iff [uu,vv] in Q | |
proof | |
let uu,vv be object; | |
[uu,vv] in P iff ex u1,u2,v1,v2 st uu=[u1,u2] & vv=[v1,v2] & | |
u1,u2,v1,v2 are_COrtm_wrt x,y by A4; | |
hence thesis by A5; | |
end; | |
hence thesis by RELAT_1:def 2; | |
end; | |
end; | |
definition | |
let V; | |
let x,y; | |
func CESpace(V,x,y) -> strict OrtStr equals | |
OrtStr(# the carrier of V,CORTE(V,x,y) #); | |
correctness; | |
end; | |
registration | |
let V; | |
let x,y; | |
cluster CESpace(V,x,y) -> non empty; | |
coherence; | |
end; | |
definition | |
let V; | |
let x,y; | |
func CMSpace(V,x,y) -> strict OrtStr equals | |
OrtStr(# the carrier of V,CORTM(V,x,y) #); | |
correctness; | |
end; | |
registration | |
let V; | |
let x,y; | |
cluster CMSpace(V,x,y) -> non empty; | |
coherence; | |
end; | |
theorem | |
uu is Element of CESpace(V,x,y) iff uu is VECTOR of V; | |
theorem | |
uu is Element of CMSpace(V,x,y) iff uu is VECTOR of V; | |
reserve p,q,r,s for Element of CESpace(V,x,y); | |
theorem | |
u=p & v=q & u1=r & v1=s implies | |
(p,q _|_ r,s iff u,v,u1,v1 are_COrte_wrt x,y ) | |
proof | |
assume that | |
A1: u=p and | |
A2: v=q and | |
A3: u1=r and | |
A4: v1=s; | |
A5: p,q _|_ r,s implies u,v,u1,v1 are_COrte_wrt x,y | |
proof | |
assume p,q _|_ r,s; | |
then [[p,q],[r,s]] in the orthogonality of CESpace(V,x,y) | |
by ANALMETR:def 5; | |
then consider u19,u29,v19,v29 being VECTOR of V such that | |
A6: [u,v]=[u19,u29] and | |
A7: [u1,v1]=[v19,v29] and | |
A8: u19,u29,v19,v29 are_COrte_wrt x,y by A1,A2,A3,A4,Def5; | |
A9: u=u19 by A6,XTUPLE_0:1; | |
A10: v=u29 by A6,XTUPLE_0:1; | |
u1=v19 by A7,XTUPLE_0:1; | |
hence thesis by A7,A8,A9,A10,XTUPLE_0:1; | |
end; | |
u,v,u1,v1 are_COrte_wrt x,y implies p,q _|_ r,s | |
proof | |
assume u,v,u1,v1 are_COrte_wrt x,y; | |
then [[u,v],[u1,v1]] in the orthogonality of | |
OrtStr(# the carrier of V,CORTE(V,x,y) #) by Def5; | |
hence thesis by A1,A2,A3,A4,ANALMETR:def 5; | |
end; | |
hence thesis by A5; | |
end; | |
reserve p,q,r,s for Element of CMSpace(V,x,y); | |
theorem | |
u=p & v=q & u1=r & v1=s implies | |
(p,q _|_ r,s iff u,v,u1,v1 are_COrtm_wrt x,y ) | |
proof | |
assume that | |
A1: u=p and | |
A2: v=q and | |
A3: u1=r and | |
A4: v1=s; | |
A5: p,q _|_ r,s implies u,v,u1,v1 are_COrtm_wrt x,y | |
proof | |
assume p,q _|_ r,s; | |
then [[p,q],[r,s]] in the orthogonality of CMSpace(V,x,y) | |
by ANALMETR:def 5; | |
then consider u19,u29,v19,v29 being VECTOR of V such that | |
A6: [u,v]=[u19,u29] and | |
A7: [u1,v1]=[v19,v29] and | |
A8: u19,u29,v19,v29 are_COrtm_wrt x,y by A1,A2,A3,A4,Def6; | |
A9: u=u19 by A6,XTUPLE_0:1; | |
A10: v=u29 by A6,XTUPLE_0:1; | |
u1=v19 by A7,XTUPLE_0:1; | |
hence thesis by A7,A8,A9,A10,XTUPLE_0:1; | |
end; | |
u,v,u1,v1 are_COrtm_wrt x,y implies p,q _|_ r,s | |
proof | |
assume u,v,u1,v1 are_COrtm_wrt x,y; | |
then [[u,v],[u1,v1]] in the orthogonality of | |
OrtStr (# the carrier of V,CORTM(V,x,y) #) by Def6; | |
hence thesis by A1,A2,A3,A4,ANALMETR:def 5; | |
end; | |
hence thesis by A5; | |
end; | |