Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ------------------------------------------------------------------------- *) | |
(* Evaluate a quantifier-free formula given a sign matrix row for its polys. *) | |
(* ------------------------------------------------------------------------- *) | |
(* | |
let rec testform pmat fm = | |
match fm with | |
Atom(R(a,[p;Fn("0",[])])) -> | |
let s = assoc p pmat in | |
if a = "=" then s = Zero | |
else if a = "<=" then s = Zero || s = Negative | |
else if a = ">=" then s = Zero || s = Positive | |
else if a = "<" then s = Negative | |
else if a = ">" then s = Positive | |
else failwith "testform: unknown literal" | |
| False -> false | |
| True -> true | |
| Not(p) -> not(testform pmat p) | |
| And(p,q) -> testform pmat p && testform pmat q | |
| Or(p,q) -> testform pmat p || testform pmat q | |
| Imp(p,q) -> not(testform pmat p) || testform pmat q | |
| Iff(p,q) -> (testform pmat p = testform pmat q) | |
| _ -> failwith "testform: non-propositional formula";; | |
The model version of testform takes a row of the sign matrix in the form | |
(p_1,s_1),(p_2,s_2),...,(p_n,s_n) | |
The corresponding argument of TESTFORM is a theorem representing | |
an `interpsigns` proposition. This is natural. The next argument, | |
the formula to be tested, is the same. | |
*) | |
(* ====================================================================== *) | |
(* Theorems *) | |
(* ====================================================================== *) | |
(* -------------------------------- T -------------------------------- *) | |
let t_thm = prove(`!set:real->bool. (!x. set x ==> T)`,MESON_TAC[]);; | |
(* -------------------------------- F --------------------------------- *) | |
let f_thm = prove(`!set:real->bool. ~(?x. set x /\ F)`,MESON_TAC[]);; | |
(* -------------------------------- ~ --------------------------------- *) | |
let neg_thm_p = prove( | |
`!P set. (!x. set x ==> P x) ==> (~ ?x. set x /\ ~ P x)`,MESON_TAC[]);; | |
let neg_thm_n = prove( | |
`!P set. (~ ?x. set x /\ P x) ==> (!x. set x ==> ~ P x)`,MESON_TAC[]);; | |
(* -------------------------------- /\ -------------------------------- *) | |
let and_thm_pp = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> Q x) ==> | |
(!x. set x ==> (P x /\ Q x))`,MESON_TAC[]);; | |
let and_thm_pn = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> | |
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);; | |
let and_thm_np = prove( | |
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(!x. set x ==> Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);; | |
let and_thm_nn = prove( | |
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);; | |
(* -------------------------------- \/ -------------------------------- *) | |
let or_thm_p = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> (P x \/ Q x))`, | |
MESON_TAC[]);; | |
let or_thm_q = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> Q x) ==> (!x. set x ==> (P x \/ Q x))`, | |
MESON_TAC[]);; | |
let or_thm_nn = | |
prove(`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x \/ Q x))`,MESON_TAC[]);; | |
(* ------------------------------- ==> -------------------------------- *) | |
let imp_thm_pp = | |
prove(`!P Q set. (?x. set x) ==> (!x. set x ==> Q x) ==> | |
(!x. set x ==> (P x ==> Q x))`,MESON_TAC[]);; | |
let imp_thm_pn = | |
prove(`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> | |
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x ==> Q x))`,MESON_TAC[]);; | |
let imp_thm_n = | |
prove(`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(!x. set x ==> (P x ==> Q x))`,MESON_TAC[]);; | |
(* -------------------------------- = --------------------------------- *) | |
let iff_thm_pp = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> Q x) ==> | |
(!x. set x ==> (P x <=> Q x))`,MESON_TAC[]);; | |
let iff_thm_pn = prove( | |
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> | |
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x <=> Q x))`,MESON_TAC[]);; | |
let iff_thm_np = prove( | |
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(!x. set x ==> Q x) ==> (~ ?x. set x /\ (P x <=> Q x))`,MESON_TAC[]);; | |
let iff_thm_nn = prove( | |
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==> | |
(~ ?x. set x /\ Q x) ==> (!x. set x ==> (P x <=> Q x))`,MESON_TAC[]);; | |
(* ---------------------------------------------------------------------- *) | |
(* Atoms *) | |
(* ---------------------------------------------------------------------- *) | |
(* --------------------------- ?x. p x < &0 --------------------------- *) | |
let eq_lt_thm = prove( | |
`!P set. (!x. set x ==> (P x = &0)) ==> ~ ?x. set x /\ P x < &0`, | |
MESON_TAC[REAL_LT_LE]);; | |
let gt_lt_thm = prove( | |
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ P x < &0`, | |
MESON_TAC[real_gt;REAL_LT_REFL;REAL_LT_TRANS]);; | |
(* --------------------------- ?x. p x = &0 --------------------------- *) | |
let lt_eq_thm = prove( | |
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x = &0)`, | |
MESON_TAC[REAL_LT_LE]);; | |
let gt_eq_thm = prove( | |
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ (P x = &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE]);; | |
(* --------------------------- ?x. p x > &0 --------------------------- *) | |
let eq_gt_thm = prove( | |
`!P set. (!x. set x ==> (P x = &0)) ==> ~ ?x. set x /\ (P x > &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE]);; | |
let lt_gt_thm = prove( | |
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x > &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS]);; | |
(* -------------------------- ?x. p x <= &0 --------------------------- *) | |
let lt_le_thm = prove( | |
`!P set. (!x. set x ==> (P x < &0)) ==> !x. set x ==> (P x <= &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS]);; | |
let eq_le_thm = prove( | |
`!P set. (!x. set x ==> (P x = &0)) ==> (!x. set x ==> (P x <= &0))`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_le]);; | |
let gt_le_thm = prove( | |
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ (P x <= &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_le]);; | |
(* -------------------------- ?x. p x >= &0 --------------------------- *) | |
let lt_ge_thm = prove( | |
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x >= &0)`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge]);; | |
let eq_ge_thm = prove( | |
`!P set. (!x. set x ==> (P x = &0)) ==> (!x. set x ==> (P x >= &0))`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge;real_le]);; | |
let gt_ge_thm = prove( | |
`!P set. (!x. set x ==> (P x > &0)) ==> (!x. set x ==> (P x >= &0))`, | |
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge;real_le]);; | |
(* let lookup_sign isigns_thm fm = *) | |
(* let asms,_ = dest_thm isigns_thm in *) | |
(* let *) | |
let NOT_EXISTS_CONJ_THM = prove_by_refinement( | |
`~(?x. P x /\ Q x) ==> (!x. P x ==> ~Q x)`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let testform_itlem = prove_by_refinement( | |
`(!x. P x ==> ~Q x) ==> (!x. P2 x ==> ~Q x) ==> (!x. P x \/ P2 x ==> ~ Q x)`, | |
(* {{{ Proof *) | |
[MESON_TAC[]]);; | |
(* }}} *) | |