Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /testform_thms.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.2 kB
(* ------------------------------------------------------------------------- *)
(* Evaluate a quantifier-free formula given a sign matrix row for its polys. *)
(* ------------------------------------------------------------------------- *)
(*
let rec testform pmat fm =
match fm with
Atom(R(a,[p;Fn("0",[])])) ->
let s = assoc p pmat in
if a = "=" then s = Zero
else if a = "<=" then s = Zero || s = Negative
else if a = ">=" then s = Zero || s = Positive
else if a = "<" then s = Negative
else if a = ">" then s = Positive
else failwith "testform: unknown literal"
| False -> false
| True -> true
| Not(p) -> not(testform pmat p)
| And(p,q) -> testform pmat p && testform pmat q
| Or(p,q) -> testform pmat p || testform pmat q
| Imp(p,q) -> not(testform pmat p) || testform pmat q
| Iff(p,q) -> (testform pmat p = testform pmat q)
| _ -> failwith "testform: non-propositional formula";;
The model version of testform takes a row of the sign matrix in the form
(p_1,s_1),(p_2,s_2),...,(p_n,s_n)
The corresponding argument of TESTFORM is a theorem representing
an `interpsigns` proposition. This is natural. The next argument,
the formula to be tested, is the same.
*)
(* ====================================================================== *)
(* Theorems *)
(* ====================================================================== *)
(* -------------------------------- T -------------------------------- *)
let t_thm = prove(`!set:real->bool. (!x. set x ==> T)`,MESON_TAC[]);;
(* -------------------------------- F --------------------------------- *)
let f_thm = prove(`!set:real->bool. ~(?x. set x /\ F)`,MESON_TAC[]);;
(* -------------------------------- ~ --------------------------------- *)
let neg_thm_p = prove(
`!P set. (!x. set x ==> P x) ==> (~ ?x. set x /\ ~ P x)`,MESON_TAC[]);;
let neg_thm_n = prove(
`!P set. (~ ?x. set x /\ P x) ==> (!x. set x ==> ~ P x)`,MESON_TAC[]);;
(* -------------------------------- /\ -------------------------------- *)
let and_thm_pp = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> Q x) ==>
(!x. set x ==> (P x /\ Q x))`,MESON_TAC[]);;
let and_thm_pn = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==>
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);;
let and_thm_np = prove(
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(!x. set x ==> Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);;
let and_thm_nn = prove(
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ P x /\ Q x)`,MESON_TAC[]);;
(* -------------------------------- \/ -------------------------------- *)
let or_thm_p = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> (P x \/ Q x))`,
MESON_TAC[]);;
let or_thm_q = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> Q x) ==> (!x. set x ==> (P x \/ Q x))`,
MESON_TAC[]);;
let or_thm_nn =
prove(`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x \/ Q x))`,MESON_TAC[]);;
(* ------------------------------- ==> -------------------------------- *)
let imp_thm_pp =
prove(`!P Q set. (?x. set x) ==> (!x. set x ==> Q x) ==>
(!x. set x ==> (P x ==> Q x))`,MESON_TAC[]);;
let imp_thm_pn =
prove(`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==>
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x ==> Q x))`,MESON_TAC[]);;
let imp_thm_n =
prove(`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(!x. set x ==> (P x ==> Q x))`,MESON_TAC[]);;
(* -------------------------------- = --------------------------------- *)
let iff_thm_pp = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==> (!x. set x ==> Q x) ==>
(!x. set x ==> (P x <=> Q x))`,MESON_TAC[]);;
let iff_thm_pn = prove(
`!P Q set. (?x. set x) ==> (!x. set x ==> P x) ==>
(~ ?x. set x /\ Q x) ==> (~ ?x. set x /\ (P x <=> Q x))`,MESON_TAC[]);;
let iff_thm_np = prove(
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(!x. set x ==> Q x) ==> (~ ?x. set x /\ (P x <=> Q x))`,MESON_TAC[]);;
let iff_thm_nn = prove(
`!P Q set. (?x. set x) ==> (~ ?x. set x /\ P x) ==>
(~ ?x. set x /\ Q x) ==> (!x. set x ==> (P x <=> Q x))`,MESON_TAC[]);;
(* ---------------------------------------------------------------------- *)
(* Atoms *)
(* ---------------------------------------------------------------------- *)
(* --------------------------- ?x. p x < &0 --------------------------- *)
let eq_lt_thm = prove(
`!P set. (!x. set x ==> (P x = &0)) ==> ~ ?x. set x /\ P x < &0`,
MESON_TAC[REAL_LT_LE]);;
let gt_lt_thm = prove(
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ P x < &0`,
MESON_TAC[real_gt;REAL_LT_REFL;REAL_LT_TRANS]);;
(* --------------------------- ?x. p x = &0 --------------------------- *)
let lt_eq_thm = prove(
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x = &0)`,
MESON_TAC[REAL_LT_LE]);;
let gt_eq_thm = prove(
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ (P x = &0)`,
MESON_TAC[real_gt;REAL_LT_LE]);;
(* --------------------------- ?x. p x > &0 --------------------------- *)
let eq_gt_thm = prove(
`!P set. (!x. set x ==> (P x = &0)) ==> ~ ?x. set x /\ (P x > &0)`,
MESON_TAC[real_gt;REAL_LT_LE]);;
let lt_gt_thm = prove(
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x > &0)`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS]);;
(* -------------------------- ?x. p x <= &0 --------------------------- *)
let lt_le_thm = prove(
`!P set. (!x. set x ==> (P x < &0)) ==> !x. set x ==> (P x <= &0)`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS]);;
let eq_le_thm = prove(
`!P set. (!x. set x ==> (P x = &0)) ==> (!x. set x ==> (P x <= &0))`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_le]);;
let gt_le_thm = prove(
`!P set. (!x. set x ==> (P x > &0)) ==> ~ ?x. set x /\ (P x <= &0)`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_le]);;
(* -------------------------- ?x. p x >= &0 --------------------------- *)
let lt_ge_thm = prove(
`!P set. (!x. set x ==> (P x < &0)) ==> ~ ?x. set x /\ (P x >= &0)`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge]);;
let eq_ge_thm = prove(
`!P set. (!x. set x ==> (P x = &0)) ==> (!x. set x ==> (P x >= &0))`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge;real_le]);;
let gt_ge_thm = prove(
`!P set. (!x. set x ==> (P x > &0)) ==> (!x. set x ==> (P x >= &0))`,
MESON_TAC[real_gt;REAL_LT_LE;REAL_LT_TRANS;real_ge;real_le]);;
(* let lookup_sign isigns_thm fm = *)
(* let asms,_ = dest_thm isigns_thm in *)
(* let *)
let NOT_EXISTS_CONJ_THM = prove_by_refinement(
`~(?x. P x /\ Q x) ==> (!x. P x ==> ~Q x)`,
(* {{{ Proof *)
[
MESON_TAC[];
]);;
(* }}} *)
let testform_itlem = prove_by_refinement(
`(!x. P x ==> ~Q x) ==> (!x. P2 x ==> ~Q x) ==> (!x. P x \/ P2 x ==> ~ Q x)`,
(* {{{ Proof *)
[MESON_TAC[]]);;
(* }}} *)