Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let empty_mat = prove_by_refinement( | |
`interpmat [] [] [[]]`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpmat;ROL_EMPTY;interpsigns;ALL2;partition_line]; | |
]);; | |
(* }}} *) | |
let empty_sgns = [ARITH_RULE `&1 > &0`];; | |
let monic_isign_lem = prove( | |
`(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Pos ==> interpsign s p Pos) /\ | |
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Pos ==> interpsign s p Neg) /\ | |
(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Neg ==> interpsign s p Neg) /\ | |
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Neg ==> interpsign s p Pos) /\ | |
(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Zero ==> interpsign s p Zero) /\ | |
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Zero ==> interpsign s p Zero)`, | |
(* {{{ Proof *) | |
REWRITE_TAC[interpsign] THEN REPEAT STRIP_TAC THEN | |
POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (MATCH_MP y x))) THEN | |
POP_ASSUM MP_TAC THEN | |
POP_ASSUM (ASSUME_TAC o GSYM o (ISPEC `x:real`)) THEN | |
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt;REAL_ENTIRE] THEN | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let gtpos::ltpos::gtneg::ltneg::gtzero::ltzero::[] = CONJUNCTS monic_isign_lem;; | |
let main_lem000 = prove_by_refinement( | |
`!l n. (LENGTH l = SUC n) ==> 0 < LENGTH l`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let main_lem001 = prove_by_refinement( | |
`x <> &0 ==> (LAST l = x) ==> LAST l <> &0`, | |
[MESON_TAC[]]);; | |
let main_lem002 = prove_by_refinement( | |
`(x <> y ==> x <> y) /\ | |
(x < y ==> x <> y) /\ | |
(x > y ==> x <> y) /\ | |
(~(x >= y) ==> x <> y) /\ | |
(~(x <= y) ==> x <> y) /\ | |
(~(x = y) ==> x <> y)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NEQ] THEN REAL_ARITH_TAC | |
]);; | |
(* }}} *) | |
let factor_pos_pos = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Pos ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Pos`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;real_gt]; | |
DISJ2_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt]; | |
]);; | |
(* }}} *) | |
let factor_pos_neg = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Neg ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Neg`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_LT;real_gt]; | |
DISJ2_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt]; | |
]);; | |
(* }}} *) | |
let factor_pos_zero = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Zero ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_LT;REAL_ENTIRE;real_gt]; | |
]);; | |
(* }}} *) | |
let factor_zero_pos = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Pos ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;REAL_ENTIRE]; | |
DISJ1_TAC; | |
ASM_MESON_TAC[POW_0;num_CASES;]; | |
]);; | |
(* }}} *) | |
let factor_zero_neg = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Neg ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;REAL_ENTIRE]; | |
DISJ1_TAC; | |
ASM_MESON_TAC[POW_0;num_CASES;]; | |
]);; | |
(* }}} *) | |
let factor_zero_zero = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Zero ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let factor_neg_even_pos = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Pos ==> EVEN k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Pos`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt]; | |
DISJ2_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT]; | |
]);; | |
(* }}} *) | |
let factor_neg_even_neg = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Neg ==> EVEN k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Neg`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt]; | |
DISJ2_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT]; | |
]);; | |
(* }}} *) | |
let factor_neg_even_zero = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Zero ==> EVEN k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE]; | |
]);; | |
(* }}} *) | |
let factor_neg_odd_pos = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Pos ==> ODD k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Neg`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE]; | |
DISJ1_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT]; | |
]);; | |
(* }}} *) | |
let factor_neg_odd_neg = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Neg ==> ODD k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Pos`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE]; | |
DISJ1_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT]; | |
]);; | |
(* }}} *) | |
let factor_neg_odd_zero = prove_by_refinement( | |
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Zero ==> ODD k ==> ~(k = 0) ==> | |
(!x. x pow k * p x = q x) ==> interpsign s q Zero`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y))); | |
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM); | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE]; | |
]);; | |
(* }}} *) | |