Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /main_thms.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.05 kB
let empty_mat = prove_by_refinement(
`interpmat [] [] [[]]`,
(* {{{ Proof *)
[
REWRITE_TAC[interpmat;ROL_EMPTY;interpsigns;ALL2;partition_line];
]);;
(* }}} *)
let empty_sgns = [ARITH_RULE `&1 > &0`];;
let monic_isign_lem = prove(
`(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Pos ==> interpsign s p Pos) /\
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Pos ==> interpsign s p Neg) /\
(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Neg ==> interpsign s p Neg) /\
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Neg ==> interpsign s p Pos) /\
(!s c mp p. (!x. c * p x = mp x) ==> c > &0 ==> interpsign s mp Zero ==> interpsign s p Zero) /\
(!s c mp p. (!x. c * p x = mp x) ==> c < &0 ==> interpsign s mp Zero ==> interpsign s p Zero)`,
(* {{{ Proof *)
REWRITE_TAC[interpsign] THEN REPEAT STRIP_TAC THEN
POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (MATCH_MP y x))) THEN
POP_ASSUM MP_TAC THEN
POP_ASSUM (ASSUME_TAC o GSYM o (ISPEC `x:real`)) THEN
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt;REAL_ENTIRE] THEN
REAL_ARITH_TAC);;
(* }}} *)
let gtpos::ltpos::gtneg::ltneg::gtzero::ltzero::[] = CONJUNCTS monic_isign_lem;;
let main_lem000 = prove_by_refinement(
`!l n. (LENGTH l = SUC n) ==> 0 < LENGTH l`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[LENGTH];
ARITH_TAC;
ARITH_TAC;
]);;
(* }}} *)
let main_lem001 = prove_by_refinement(
`x <> &0 ==> (LAST l = x) ==> LAST l <> &0`,
[MESON_TAC[]]);;
let main_lem002 = prove_by_refinement(
`(x <> y ==> x <> y) /\
(x < y ==> x <> y) /\
(x > y ==> x <> y) /\
(~(x >= y) ==> x <> y) /\
(~(x <= y) ==> x <> y) /\
(~(x = y) ==> x <> y)`,
(* {{{ Proof *)
[
REWRITE_TAC[NEQ] THEN REAL_ARITH_TAC
]);;
(* }}} *)
let factor_pos_pos = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Pos ==>
(!x. x pow k * p x = q x) ==> interpsign s q Pos`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;real_gt];
DISJ2_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt];
]);;
(* }}} *)
let factor_pos_neg = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Neg ==>
(!x. x pow k * p x = q x) ==> interpsign s q Neg`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_LT;real_gt];
DISJ2_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt];
]);;
(* }}} *)
let factor_pos_zero = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Pos ==> interpsign s p Zero ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_LT;REAL_ENTIRE;real_gt];
]);;
(* }}} *)
let factor_zero_pos = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Pos ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;REAL_ENTIRE];
DISJ1_TAC;
ASM_MESON_TAC[POW_0;num_CASES;];
]);;
(* }}} *)
let factor_zero_neg = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Neg ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;REAL_ENTIRE];
DISJ1_TAC;
ASM_MESON_TAC[POW_0;num_CASES;];
]);;
(* }}} *)
let factor_zero_zero = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Zero ==> interpsign s p Zero ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REAL_ARITH_TAC;
]);;
(* }}} *)
let factor_neg_even_pos = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Pos ==> EVEN k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Pos`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt];
DISJ2_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT];
]);;
(* }}} *)
let factor_neg_even_neg = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Neg ==> EVEN k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Neg`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt];
DISJ2_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT];
]);;
(* }}} *)
let factor_neg_even_zero = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Zero ==> EVEN k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE];
]);;
(* }}} *)
let factor_neg_odd_pos = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Pos ==> ODD k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Neg`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE];
DISJ1_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT];
]);;
(* }}} *)
let factor_neg_odd_neg = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Neg ==> ODD k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Pos`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE];
DISJ1_TAC;
ASM_MESON_TAC[REAL_POW_LT;real_gt;PARITY_POW_LT];
]);;
(* }}} *)
let factor_neg_odd_zero = prove_by_refinement(
`interpsign s (\x. &0 + x * &1) Neg ==> interpsign s p Zero ==> ODD k ==> ~(k = 0) ==>
(!x. x pow k * p x = q x) ==> interpsign s q Zero`,
(* {{{ Proof *)
[
REWRITE_TAC[interpsign;REAL_ADD_LID;REAL_MUL_RID;];
REPEAT STRIP_TAC;
POP_ASSUM (fun x -> (RULE_ASSUM_TAC (fun y -> try MATCH_MP y x with _ -> y)));
POP_ASSUM (ASSUME_TAC o ISPEC rx o GSYM);
ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;REAL_ENTIRE];
]);;
(* }}} *)