Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let EVEN_DIV_LEM = prove_by_refinement( | |
`!set p q c d a n. | |
(!x. a pow n * p x = c x * q x + d x) ==> | |
a <> &0 ==> | |
EVEN n ==> | |
((interpsign set q Zero) ==> | |
(interpsign set d Neg) ==> | |
(interpsign set p Neg)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set d Pos) ==> | |
(interpsign set p Pos)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set d Zero) ==> | |
(interpsign set p Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign]; | |
REPEAT STRIP_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `&0 < a pow n`; | |
ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; | |
STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `&0 < a pow n`; | |
ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; | |
STRIP_TAC; | |
CLAIM `a pow n * p x > &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `&0 < a pow n`; | |
ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; | |
STRIP_TAC; | |
CLAIM `a pow n * p x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_LT_IMP_NZ]; | |
]);; | |
(* }}} *) | |
let GT_DIV_LEM = prove_by_refinement( | |
`!set p q c d a n. | |
(!x. a pow n * p x = c x * q x + d x) ==> | |
a > &0 ==> | |
((interpsign set q Zero) ==> | |
(interpsign set d Neg) ==> | |
(interpsign set p Neg)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set d Pos) ==> | |
(interpsign set p Pos)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set d Zero) ==> | |
(interpsign set p Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign]; | |
REPEAT_N 9 STRIP_TAC; | |
CLAIM `a pow n > &0`; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt;]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x > &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
]);; | |
(* }}} *) | |
let NEG_ODD_LEM = prove_by_refinement( | |
`!set p q c d a n. | |
(!x. a pow n * p x = c x * q x + d x) ==> | |
a < &0 ==> | |
ODD n ==> | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. -- d x) Neg) ==> | |
(interpsign set p Neg)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. -- d x) Pos) ==> | |
(interpsign set p Pos)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. -- d x) Zero) ==> | |
(interpsign set p Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;POLY_NEG]; | |
REPEAT_N 10 STRIP_TAC; | |
CLAIM `a pow n < &0`; | |
ASM_MESON_TAC[PARITY_POW_LT;real_gt;]; | |
STRIP_TAC; | |
REAL_SIMP_TAC; | |
REPEAT STRIP_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x > &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `a pow n * p x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
]);; | |
(* }}} *) | |
let NEQ_ODD_LEM = prove_by_refinement( | |
`!set p q c d a n. | |
(!x. a pow n * p x = c x * q x + d x) ==> | |
a <> &0 ==> | |
ODD n ==> | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. a * d x) Neg) ==> | |
(interpsign set p Neg)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. a * d x) Pos) ==> | |
(interpsign set p Pos)) /\ | |
((interpsign set q Zero) ==> | |
(interpsign set (\x. a * d x) Zero) ==> | |
(interpsign set p Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;POLY_CMUL]; | |
REPEAT_N 10 STRIP_TAC; | |
CLAIM `a < &0 \/ a > &0 \/ (a = &0)`; | |
REAL_ARITH_TAC; | |
REWRITE_ASSUMS[NEQ]; | |
ASM_REWRITE_TAC[]; | |
LABEL_ALL_TAC; | |
STRIP_TAC; | |
(* save *) | |
CLAIM `a pow n < &0`; | |
ASM_MESON_TAC[PARITY_POW_LT]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x > &0`; | |
POP_ASSUM MP_TAC; | |
ASM_REWRITE_TAC[real_gt;REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < a pow n * p x`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x < &0`; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x = &0`; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
STRIP_TAC; | |
CLAIM `a pow n * p x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
(* save *) | |
CLAIM `a pow n > &0`; | |
ASM_MESON_TAC[EVEN_ODD_POW;NEQ;real_gt]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x < &0`; | |
POP_ASSUM MP_TAC; | |
ASM_REWRITE_TAC[real_gt;REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x > &0`; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
CLAIM `a pow n * p x < &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `a pow n * p x > &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; | |
REPEAT STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); | |
POP_ASSUM MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); | |
STRIP_TAC; | |
CLAIM `d x = &0`; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
STRIP_TAC; | |
CLAIM `a pow n * p x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
]);; | |
(* }}} *) | |
let NEQ_MULT_LT_LEM = prove_by_refinement( | |
`!a q d d' set. | |
a < &0 ==> | |
((interpsign set d Neg) ==> | |
(interpsign set (\x. a * d x) Pos)) /\ | |
((interpsign set d Pos) ==> | |
(interpsign set (\x. a * d x) Neg)) /\ | |
((interpsign set d Zero) ==> | |
(interpsign set (\x. a * d x) Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;POLY_NEG]; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[REAL_MUL_GT;real_gt]; | |
ASM_MESON_TAC[REAL_MUL_LT;real_gt]; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; | |
]);; | |
(* }}} *) | |
let NEQ_MULT_GT_LEM = prove_by_refinement( | |
`!a q d d' set. | |
a > &0 ==> | |
((interpsign set d Neg) ==> | |
(interpsign set (\x. a * d x) Neg)) /\ | |
((interpsign set d Pos) ==> | |
(interpsign set (\x. a * d x) Pos)) /\ | |
((interpsign set d Zero) ==> | |
(interpsign set (\x. a * d x) Zero))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[interpsign;POLY_NEG] THEN | |
MESON_TAC[REAL_MUL_LT;REAL_ENTIRE;REAL_NOT_EQ;REAL_MUL_GT;real_gt]; | |
]);; | |
(* }}} *) | |
let unknown_thm = prove( | |
`!set p. (interpsign set p Unknown)`, | |
MESON_TAC[interpsign]);; | |
let ips_gt_nz_thm = prove_by_refinement( | |
`!x. x > &0 ==> x <> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NEQ]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let ips_lt_nz_thm = prove_by_refinement( | |
`!x. x < &0 ==> x <> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NEQ]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |