Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ====================================================================== *) | |
(* Signs *) | |
(* ====================================================================== *) | |
(* ---------------------------------------------------------------------- *) | |
(* Datatype *) | |
(* ---------------------------------------------------------------------- *) | |
let sign_INDUCT,sign_RECURSION = define_type | |
"sign = Zero | Pos | Neg | Nonzero | Unknown";; | |
let SIGN_CASES = prove_by_refinement( | |
`!s. (s = Pos) \/ (s = Neg) \/ (s = Zero) \/ (s = Nonzero) \/ (s = Unknown)`, | |
(* {{{ Proof *) | |
[ | |
MATCH_MP_TAC sign_INDUCT; | |
REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let szero_tm,spos_tm,sneg_tm,snonz_tm,sunk_tm = `Zero`,`Pos`,`Neg`,`Nonzero`,`Unknown`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Intepretation of signs. *) | |
(* ------------------------------------------------------------------------- *) | |
(* An interpretation of the sign of a polynomial over a set. *) | |
let interpsign = new_recursive_definition sign_RECURSION | |
`(interpsign set ply Zero = (!x:real. set x ==> (ply x = &0))) /\ | |
(interpsign set ply Pos = (!x. set x ==> (ply x > &0))) /\ | |
(interpsign set ply Neg = (!x. set x ==> (ply x < &0))) /\ | |
(interpsign set ply Nonzero = (!x. set x ==> (ply x <> &0))) /\ | |
(interpsign set ply Unknown = (!x. set x ==> (ply x = ply x)))`;; | |
let interpsign_tm = `interpsign`;; | |
let dest_interpsign interpthm = | |
let int,[set;poly;sign] = strip_ncomb 3 (concl interpthm) in | |
if not (int = interpsign_tm) then | |
failwith "not an interpsign" | |
else | |
set,poly,sign;; | |
(* | |
let k0 = prove_by_refinement( | |
`interpsign (\x. x = &10) (\x. -- &10 + x * &1) Zero`,[ | |
REWRITE_TAC[interpsign;poly]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC | |
]);; | |
*) | |
(* A version for one set but multiple polynomials *) | |
let interpsigns = new_definition | |
`interpsigns polyl set signl = ALL2 (interpsign set) polyl signl`;; | |
let t0 = TAUT `a /\ T <=> a`;; | |
let interpsigns_thms interpthm = | |
let ret = map BETA_RULE( | |
CONJUNCTS (PURE_REWRITE_RULE[interpsign;interpsigns;ALL2;t0] interpthm)) in | |
ret;; | |
(* keep interpsign *) | |
let interpsigns_thms2 interpthm = | |
CONJUNCTS (PURE_REWRITE_RULE[interpsigns;ALL2;t0] interpthm);; | |
let interpsigns_tm = `interpsigns`;; | |
let dest_interpsigns interpthm = | |
let int,[polys;set;signs] = strip_ncomb 3 (concl interpthm) in | |
if not (int = interpsigns_tm) then | |
failwith "not an interpsigns" | |
else | |
polys,set,signs;; | |
let interp_sing = prove( | |
`interpsign set p s = interpsigns [p] set [s]`, | |
REWRITE_TAC[interpsigns;ALL2]);; | |
let interp_doub = prove( | |
`interpsigns [p1] set [s1] ==> interpsigns pl set sl ==> | |
interpsigns (CONS p1 pl) set (CONS s1 sl)`, | |
ASM_MESON_TAC[interpsigns;ALL2]);; | |
let mk_interpsigns thms = | |
let thms' = map (PURE_REWRITE_RULE[interp_sing]) thms in | |
end_itlist (fun t1 t2 -> MATCH_MPL [interp_doub;t1;t2]) thms';; | |
(* | |
let t0 = ASSUME `interpsign s1 p1 Zero`;; | |
let t1 = ASSUME `interpsign s1 p2 Pos`;; | |
let t2 = ASSUME `interpsign s1 p3 Neg`;; | |
mk_interpsigns [t0;t1;t2];; | |
map (PURE_REWRITE_RULE[interp_sing]) [t0;t1;t2];; | |
*) | |
(* | |
let k0 = prove_by_refinement( | |
`interpsigns [(\x. &1 + x * &1); (\x. &2 + x * &3)] (\x. x = (-- &1)) [Zero; Neg]`, | |
[ | |
REWRITE_TAC[interpsigns;ALL2;interpsign;poly]; | |
REAL_ARITH_TAC | |
]);; | |
*) | |
(* ---------------------------------------------------------------------- *) | |
(* Partition line *) | |
(* ---------------------------------------------------------------------- *) | |
let partition_line = new_recursive_definition list_RECURSION | |
`(partition_line [] = [(\x. T)]) /\ | |
(partition_line (CONS h t) = | |
if t = [] then [(\x. x < h); (\x. x = h); (\x. h < x)] else | |
APPEND [(\x. x < h); (\x. x = h); (\x. h < x /\ x < HD t)] | |
(TL (partition_line t)))`;; | |
(* | |
let ex0 = prove( | |
`partition_line [&1] = [(\x. x < &1); (\x. x = &1); (\x. &1 < x)]`, | |
REWRITE_TAC[partition_line]) | |
let ex1 = prove( | |
`partition_line [&1; &2] = | |
[(\x. x < &1); (\x. x = &1); (\x. &1 < x /\ x < &2); (\x. x = &2); (\x. &2 < x)]`, | |
REWRITE_TAC[partition_line;APPEND;COND_CLAUSES;NOT_CONS_NIL;TL;HD]);; | |
*) | |
let make_partition_list = | |
let lxt = `\x:real. T` | |
and htm = `h:real` | |
and h1tm = `h1:real` | |
and h2tm = `h2:real` | |
and x_lt_h = `(\x. x < h)` | |
and x_eq_h = `(\x:real. x = h)` | |
and h_lt_x = `(\x. h < x)` | |
and x_lt_h1 = `(\x. x < h1)` | |
and x_eq_h1 = `(\x:real. x = h1)` | |
and x_h1_h2 = `(\x. h1 < x /\ x < h2)` in | |
let rec make_partition_list ps = | |
match ps with | |
[] -> [lxt] | |
| [h] -> map (subst [h,htm]) [x_lt_h; x_eq_h;h_lt_x] | |
| h1::h2::t -> (map (subst [(h1,h1tm);(h2,h2tm)]) | |
[x_lt_h1; x_eq_h1;x_h1_h2]) @ tl (make_partition_list (h2::t)) in | |
make_partition_list;; | |
(* | |
make_partition_list [`&1`;`&2`] | |
*) | |
(* partition a line based on a list of points | |
this is just a compact representation of a list of terms | |
*) | |
let part_line_tm = `partition_line`;; | |
let real_bool_ty = `:real->bool`;; | |
let PARTITION_LINE_CONV pts = | |
let ptm = mk_comb (part_line_tm,pts) in | |
let ltm = mk_list ((make_partition_list (dest_list pts)),real_bool_ty) in | |
let tm = mk_eq (ptm,ltm) in | |
prove(tm,REWRITE_TAC [partition_line;APPEND;COND_CLAUSES;NOT_CONS_NIL;TL;HD]);; | |
(* | |
PARTITION_LINE_CONV `[]:real list` | |
PARTITION_LINE_CONV `[&1; &2]` | |
PARTITION_LINE_CONV `[&2; &1]` | |
PARTITION_LINE_CONV `[a:real; b]` | |
*) | |
(* an interpretation of a sign matrix | |
arguments are a list of points, a list of polynomials, and a sign matrix | |
the points form an ordered list (smallest first), | |
each zero of each polynomial must appear among the list of points | |
and finally, the sign matrix corresponds to the correct sign for the polynomial | |
in the region represented by the set. | |
*) | |
let interpmat = new_definition | |
`interpmat ptl polyl signll <=> | |
real_ordered_list ptl /\ | |
ALL2 (interpsigns polyl) (partition_line ptl) signll`;; | |
let interpmat_tm = `interpmat`;; | |
let dest_interpmat = | |
let imat_tm = interpmat_tm in | |
fun tm -> | |
let sc,args = strip_comb tm in | |
if not (sc = imat_tm) then failwith "dest_interpmat: not an interpmat term" else | |
let [ptl;polyl;signll] = args in | |
ptl,polyl,signll;; | |
let interpmat_thms thm = | |
let [rol_thm;interpsigns_thm] = CONJUNCTS (PURE_REWRITE_RULE[interpmat] thm) in | |
rol_thm,interpsigns_thm;; | |
let mk_interpmat_thm rol_thm = | |
fun all_thm -> | |
let ret = REWRITE_RULE[GSYM interpmat] (CONJ rol_thm all_thm) in | |
let l,_ = strip_comb (concl ret) in | |
if not (l = interpmat_tm) then failwith "mk_interpmat" else ret;; | |
(* | |
let rol_thm = rol_thm''' | |
let all_thm = all_thm'' | |
*) | |
(* {{{ Doc *) | |
(* | |
mk_all2_interpsigns | |
|- partition_line [x1; x2; x3; x4; x5] = | |
[(\x. x < x1); (\x. x = x1); (\x. x1 < x /\ x < x2); (\x. x = x2); | |
(\x. x2 < x /\ x < x3); (\x. x = x3); (\x. x3 < x /\ x < x4); (\x. x = x4); | |
(\x. x4 < x /\ x < x5); (\x. x = x5); (\x. x5 < x)] | |
[ | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x < x1) | |
[Unknown; Pos; Pos; Pos] | |
. | |
. | |
. | |
. | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x = x5) | |
[Pos; Pos; Zero; Zero] | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x5 < x) | |
[Unknown; Pos; Pos; Pos] | |
] | |
--> | |
|- ALL2 (interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) | |
(partition_line [x1;x2;x3;x4;x5]) | |
[[Unknown; Pos; Pos; Pos];...; [Pos; Pos; Zero; Zero]; [Unknown; Pos; Pos; Pos]] | |
*) | |
(* }}} *) | |
let all2_thm0 = GEN_ALL(EQT_ELIM(hd (CONJUNCTS ALL2)));; | |
let all2_thm = GEN_ALL (REWRITE_RULE[AND_IMP_THM] (fst (EQ_IMP_RULE (GSYM (last (CONJUNCTS ALL2))))));; | |
let mk_all2_interpsigns part_thm is_thms = | |
let is_tm = fst(dest_comb(fst (dest_comb (concl (hd is_thms))))) in | |
let all2_thm0' = ISPEC is_tm all2_thm0 in (* it`s having trouble matching *) | |
let ret = itlist (fun x -> fun y -> MATCH_MPL[all2_thm;x;y]) is_thms all2_thm0' in | |
REWRITE_RULE[GSYM part_thm] ret;; | |
let dest_all2 tm = | |
let a2,l = strip_comb tm in | |
if fst(dest_const a2) = "ALL2" then | |
let [a1;a2;a3] = l in | |
a1,a2,a3 | |
else | |
failwith "dest_all2: not an ALL2";; | |
(* ---------------------------------------------------------------------- *) | |
(* Sets *) | |
(* ---------------------------------------------------------------------- *) | |
let is_interval set = | |
try | |
let x,bod = dest_abs set in | |
if is_conj bod then | |
let l,r = dest_conj bod in | |
can (dest_binop rlt) l && can (dest_binop rlt) r | |
else can (dest_binop rlt) bod | |
with _ -> false;; | |
(* | |
is_interval `\x. &4 < x /\ x < &5`;; | |
is_interval `\x. x = &4`;; | |
*) | |
let is_point set = | |
try | |
let x,bod = dest_abs set in | |
if is_eq bod then true else false | |
with _ -> false;; | |
(* | |
is_point `\x. x = &5` | |
is_point `\x. x = y:real` | |
*) | |
(* ---------------------------------------------------------------------- *) | |
(* We generate new var names *) | |
(* ---------------------------------------------------------------------- *) | |
let new_var,reset_vars = | |
let id = ref 0 in | |
let pre = "x_" in | |
let new_var ty = | |
id := !id + 1; | |
mk_var (pre ^ (string_of_int !id),ty) in | |
let reset_vars () = | |
id := 0 in | |
new_var,reset_vars;; | |