Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ====================================================================== *) | |
(* DEDMATRIX *) | |
(* ====================================================================== *) | |
(* ------------------------------------------------------------------------- *) | |
(* Deduce matrix for p,p1,...,pn from matrix for p',p1,...,pn,q0,...,qn *) | |
(* where qi = rem(p,pi) with p0 = p' *) | |
(* ------------------------------------------------------------------------- *) | |
let prove_nonconstant = | |
let nonconstant_tm = `nonconstant` in | |
fun pdiff_thm normal_thm -> | |
let thm = ONCE_REWRITE_RULE[GSYM pdiff_thm] normal_thm in | |
let ret = REWRITE_RULE[GSYM NORMAL_PDIFF] thm in | |
let f,_ = strip_comb (concl ret) in | |
if not (f = nonconstant_tm) then failwith "prove_nonconstant" else ret;; | |
let REMOVE_COLUMN1 mat_thm = | |
let mat_thm1 = MATCH_MP REMOVE_COL1 mat_thm in | |
REWRITE_RULE[MAP;HD;TL] mat_thm1;; | |
let APPENDIZE l n = | |
let lty = type_of l in | |
let ty = hd(snd(dest_type lty)) in | |
let app_tm = mk_const("APPEND",[ty,aty]) in | |
let l1,l2 = chop_list n (dest_list l) in | |
let app = mk_comb(mk_comb(app_tm,mk_list(l1,ty)),mk_list(l2,ty)) in | |
GSYM (REWRITE_CONV[APPEND] app);; | |
let REMOVE_INFINITIES thm = | |
let thm' = MATCH_MP INTERPMAT_TRIO thm in | |
let pts,_,sgns = dest_interpmat (concl thm') in | |
let p_thm = APPENDIZE pts (length (dest_list pts) - 2) in | |
let pts',_,sgns = dest_interpmat (concl thm') in | |
let s_thm = APPENDIZE sgns (length (dest_list sgns) - 5) in | |
let thm'' = MATCH_MP INTERPMAT_TRIO_TL (ONCE_REWRITE_RULE[p_thm;s_thm] thm') in | |
REWRITE_RULE[APPEND] thm'';; | |
let get_dirs = | |
let pos = `Pos` in | |
let neg = `Neg` in | |
fun lb_deriv ub_deriv -> | |
if lb_deriv = pos && ub_deriv = pos then INFIN_POS_POS | |
else if lb_deriv = pos && ub_deriv = neg then INFIN_POS_NEG | |
else if lb_deriv = neg && ub_deriv = pos then INFIN_NEG_POS | |
else if lb_deriv = neg && ub_deriv = neg then INFIN_NEG_NEG | |
else failwith "get_dirs: bad signs";; | |
let get_sing_dirs = | |
let pos = `Pos` in | |
let neg = `Neg` in | |
fun lb_deriv ub_deriv -> | |
if lb_deriv = pos && ub_deriv = pos then INFIN_SING_POS_POS | |
else if lb_deriv = pos && ub_deriv = neg then INFIN_SING_POS_NEG | |
else if lb_deriv = neg && ub_deriv = pos then INFIN_SING_NEG_POS | |
else if lb_deriv = neg && ub_deriv = neg then INFIN_SING_NEG_NEG | |
else failwith "get_dirs: bad signs";; | |
let aitvars,aitdiff,aitnorm,aitmat = ref [],ref TRUTH,ref TRUTH,ref TRUTH;; | |
(* | |
let vars,diff_thm,normal_thm,mat_thm = !aitvars,!aitdiff,!tnorm,!tmat | |
let vars,diff_thm,normal_thm,mat_thm = vars, pdiff_thm, normal_thm, mat_thm'' | |
*) | |
let ADD_INFINITIES = | |
let real_app = `APPEND:real list -> real list -> real list` in | |
let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in | |
let imat = `interpmat` in | |
let pos = `Pos` in | |
let neg = `Neg` in | |
let sl_ty = `:sign list` in | |
let real_ty = `:real` in | |
fun vars diff_thm normal_thm mat_thm -> | |
aitvars := vars; | |
aitdiff := diff_thm; | |
aitnorm := normal_thm; | |
aitmat := mat_thm; | |
let nc_thm = prove_nonconstant diff_thm normal_thm in | |
let pts,pols,sgns = dest_interpmat (concl mat_thm) in | |
let polsl = dest_list pols in | |
let p::p'::_ = polsl in | |
let p_thm = ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p))) in | |
let p'_thm = ONCE_REWRITE_RULE[GSYM diff_thm] (ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p')))) in | |
let pols_thm = REWRITE_CONV[p_thm;p'_thm] pols in | |
let sgnsl = dest_list sgns in | |
let sgns_len = length sgnsl in | |
let thm1 = | |
if sgns_len = 1 then | |
let sgn = (hd(tl(dest_list (hd sgnsl)))) in | |
let mp_thm = | |
if sgn = pos then INFIN_NIL_POS | |
else if sgn = neg then INFIN_NIL_NEG | |
else failwith "bad sign in mat" in | |
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),REFL sgns) in | |
let mat_thm2 = EQ_MP mat_thm1 mat_thm in | |
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm | |
else if sgns_len = 3 then | |
let lb_deriv = hd (tl (dest_list (hd sgnsl))) in | |
let ub_deriv = hd (tl (dest_list (last sgnsl))) in | |
let mp_thm = get_sing_dirs lb_deriv ub_deriv in | |
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),REFL sgns) in | |
let mat_thm2 = EQ_MP mat_thm1 mat_thm in | |
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm | |
else | |
let s1,s2 = chop_list (sgns_len - 3) sgnsl in | |
let s3 = mk_list(s1,sl_ty) in | |
let s4 = mk_comb(mk_comb(sign_app,s3),mk_list(s2,sl_ty)) in | |
let sgns_thm = prove(mk_eq(sgns,s4),REWRITE_TAC[APPEND]) in | |
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),sgns_thm) in | |
let mat_thm2 = EQ_MP mat_thm1 mat_thm in | |
let lb_deriv = hd (tl (dest_list (hd sgnsl))) in | |
let ub_deriv = hd (tl (dest_list (last sgnsl))) in | |
let mp_thm = get_dirs lb_deriv ub_deriv in | |
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm in | |
let thm2 = REWRITE_RULE[APPEND;GSYM pols_thm] thm1 in | |
let c = concl thm2 in | |
let x,bod = dest_exists c in | |
let x' = new_var real_ty in | |
let bod1 = subst [x',x] bod in | |
let assume_thm1 = ASSUME bod1 in | |
let x2,bod2 = dest_exists bod1 in | |
let x'' = new_var real_ty in | |
let assume_thm2 = ASSUME (subst [x'',x2] bod2) in | |
assume_thm2,(x',thm2),(x'',assume_thm1);; | |
(* | |
print_timers() | |
print_times() | |
reset_timers() | |
*) | |
let tvars,tsgns,tdivs,tdiff,tnorm,tcont,tmat,tex = ref [],ref [],ref [], ref TRUTH,ref TRUTH, ref (fun x y -> x), ref TRUTH, ref [];; | |
(* | |
let vars,sgns,div_thms,pdiff_thm,normal_thm,cont,mat_thm,ex_thms = !tvars,!tsgns,!tdivs,!tdiff,!tnorm,!tcont,!tmat,!tex | |
DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont mat_thm ex_thms | |
*) | |
let DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont mat_thm ex_thms = | |
try | |
tvars := vars; | |
tsgns := sgns; | |
tdivs := div_thms; | |
tdiff := pdiff_thm; | |
tnorm := normal_thm; | |
tmat := mat_thm; | |
tex := ex_thms; | |
tcont := cont; | |
let start_time = Sys.time() in | |
let pts,pols,signll = dest_interpmat (concl mat_thm) in | |
let mat_thm' = INFERPSIGN vars sgns mat_thm div_thms in | |
let mat_thm'' = CONDENSE mat_thm' in | |
let mat_thm''',(v1,exthm1),(v2,exthm2) = ADD_INFINITIES vars pdiff_thm normal_thm mat_thm'' in | |
let mat_thm4,new_ex_pairs = INFERISIGN vars pdiff_thm mat_thm''' ((v1,exthm1)::(v2,exthm2)::ex_thms) in | |
let mat_thm5 = REMOVE_INFINITIES mat_thm4 in | |
let mat_thm6 = REMOVE_COLUMN1 mat_thm5 in | |
let mat_thm7 = CONDENSE mat_thm6 in | |
(* hack for changing renamed vars *) | |
let mat_thm8 = CONV_RULE (RATOR_CONV (RAND_CONV (LIST_CONV (ALPHA_CONV (hd vars))))) mat_thm7 in | |
let ex_pairs = [(v1,exthm1);(v2,exthm2)] @ new_ex_pairs in | |
let cont' mat_thm ex_thms = cont mat_thm (ex_thms @ ex_pairs) in | |
cont' mat_thm8 ex_thms | |
with (Isign (false_thm,ex_thms)) -> | |
raise (Isign (false_thm,ex_thms)) | |
| Failure x -> failwith ("DEDMATRIX: " ^ x);; | |
(* {{{ Examples *) | |
(* | |
let NOT_NIL_CONV tm = | |
let h,t = dest_cons tm in | |
ISPECL [h;t] NOT_CONS_NIL;; | |
let NORMAL_CONV tm = | |
let normalize_thm = POLY_NORMALIZE_CONV (mk_comb (`normalize`,tm)) in | |
let nonnil_thm = NOT_NIL_CONV tm in | |
let conj_thm = CONJ normalize_thm nonnil_thm in | |
REWRITE_RULE[GSYM normal] conj_thm;; | |
let vars = [`x:real`];; | |
let cont a b = a;; | |
let sgns = [ARITH_RULE `&1 > &0`];; | |
let normal_thm = NORMAL_CONV `[&1; &2; &3]`;; | |
let pdiff_thm = POLY_DIFF_CONV `poly_diff [&1; &1; &1; &1]`;; | |
let ex_thms = [];; | |
let _,l1 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(&1 + x * (&2 + x * &3))`;; | |
let _,l2 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(&2 + x * (-- &3 + x * &1))`;; | |
let _,l3 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(-- &4 + x * (&0 + x * &1))`;; | |
let div_thms = [l1;l2;l3];; | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); | |
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] | |
[[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Zero; Zero; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Neg]; | |
[Pos; Zero; Neg; Pos; Neg; Zero]; | |
[Pos; Pos; Neg; Pos; Neg; Pos]; | |
[Pos; Pos; Zero; Pos; Zero; Pos]; | |
[Pos; Pos; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Neg; Pos; Zero; Pos]; | |
[Pos; Neg; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Zero; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos; Pos; Pos]]` ;; | |
time (DEDMATRIX vars sgns div_thms pdiff_thm normal_thm (fun x y -> x) mat_thm) [] | |
*) | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Timing *) | |
(* ---------------------------------------------------------------------- *) | |
let REMOVE_COLUMN1 mat_thm = | |
let start_time = Sys.time() in | |
let res = REMOVE_COLUMN1 mat_thm in | |
remove_column1_timer +.= (Sys.time() -. start_time); | |
res;; | |
let ADD_INFINITIES vars pdiff_thm normal_thm mat_thm = | |
let start_time = Sys.time() in | |
let res = ADD_INFINITIES vars pdiff_thm normal_thm mat_thm in | |
add_infinities_timer +.= (Sys.time() -. start_time); | |
res;; | |
let REMOVE_INFINITIES thm = | |
let start_time = Sys.time() in | |
let res = REMOVE_INFINITIES thm in | |
remove_infinities_timer +.= (Sys.time() -. start_time); | |
res;; | |