Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /dedmatrix.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.47 kB
(* ====================================================================== *)
(* DEDMATRIX *)
(* ====================================================================== *)
(* ------------------------------------------------------------------------- *)
(* Deduce matrix for p,p1,...,pn from matrix for p',p1,...,pn,q0,...,qn *)
(* where qi = rem(p,pi) with p0 = p' *)
(* ------------------------------------------------------------------------- *)
let prove_nonconstant =
let nonconstant_tm = `nonconstant` in
fun pdiff_thm normal_thm ->
let thm = ONCE_REWRITE_RULE[GSYM pdiff_thm] normal_thm in
let ret = REWRITE_RULE[GSYM NORMAL_PDIFF] thm in
let f,_ = strip_comb (concl ret) in
if not (f = nonconstant_tm) then failwith "prove_nonconstant" else ret;;
let REMOVE_COLUMN1 mat_thm =
let mat_thm1 = MATCH_MP REMOVE_COL1 mat_thm in
REWRITE_RULE[MAP;HD;TL] mat_thm1;;
let APPENDIZE l n =
let lty = type_of l in
let ty = hd(snd(dest_type lty)) in
let app_tm = mk_const("APPEND",[ty,aty]) in
let l1,l2 = chop_list n (dest_list l) in
let app = mk_comb(mk_comb(app_tm,mk_list(l1,ty)),mk_list(l2,ty)) in
GSYM (REWRITE_CONV[APPEND] app);;
let REMOVE_INFINITIES thm =
let thm' = MATCH_MP INTERPMAT_TRIO thm in
let pts,_,sgns = dest_interpmat (concl thm') in
let p_thm = APPENDIZE pts (length (dest_list pts) - 2) in
let pts',_,sgns = dest_interpmat (concl thm') in
let s_thm = APPENDIZE sgns (length (dest_list sgns) - 5) in
let thm'' = MATCH_MP INTERPMAT_TRIO_TL (ONCE_REWRITE_RULE[p_thm;s_thm] thm') in
REWRITE_RULE[APPEND] thm'';;
let get_dirs =
let pos = `Pos` in
let neg = `Neg` in
fun lb_deriv ub_deriv ->
if lb_deriv = pos && ub_deriv = pos then INFIN_POS_POS
else if lb_deriv = pos && ub_deriv = neg then INFIN_POS_NEG
else if lb_deriv = neg && ub_deriv = pos then INFIN_NEG_POS
else if lb_deriv = neg && ub_deriv = neg then INFIN_NEG_NEG
else failwith "get_dirs: bad signs";;
let get_sing_dirs =
let pos = `Pos` in
let neg = `Neg` in
fun lb_deriv ub_deriv ->
if lb_deriv = pos && ub_deriv = pos then INFIN_SING_POS_POS
else if lb_deriv = pos && ub_deriv = neg then INFIN_SING_POS_NEG
else if lb_deriv = neg && ub_deriv = pos then INFIN_SING_NEG_POS
else if lb_deriv = neg && ub_deriv = neg then INFIN_SING_NEG_NEG
else failwith "get_dirs: bad signs";;
let aitvars,aitdiff,aitnorm,aitmat = ref [],ref TRUTH,ref TRUTH,ref TRUTH;;
(*
let vars,diff_thm,normal_thm,mat_thm = !aitvars,!aitdiff,!tnorm,!tmat
let vars,diff_thm,normal_thm,mat_thm = vars, pdiff_thm, normal_thm, mat_thm''
*)
let ADD_INFINITIES =
let real_app = `APPEND:real list -> real list -> real list` in
let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in
let imat = `interpmat` in
let pos = `Pos` in
let neg = `Neg` in
let sl_ty = `:sign list` in
let real_ty = `:real` in
fun vars diff_thm normal_thm mat_thm ->
aitvars := vars;
aitdiff := diff_thm;
aitnorm := normal_thm;
aitmat := mat_thm;
let nc_thm = prove_nonconstant diff_thm normal_thm in
let pts,pols,sgns = dest_interpmat (concl mat_thm) in
let polsl = dest_list pols in
let p::p'::_ = polsl in
let p_thm = ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p))) in
let p'_thm = ONCE_REWRITE_RULE[GSYM diff_thm] (ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p')))) in
let pols_thm = REWRITE_CONV[p_thm;p'_thm] pols in
let sgnsl = dest_list sgns in
let sgns_len = length sgnsl in
let thm1 =
if sgns_len = 1 then
let sgn = (hd(tl(dest_list (hd sgnsl)))) in
let mp_thm =
if sgn = pos then INFIN_NIL_POS
else if sgn = neg then INFIN_NIL_NEG
else failwith "bad sign in mat" in
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),REFL sgns) in
let mat_thm2 = EQ_MP mat_thm1 mat_thm in
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm
else if sgns_len = 3 then
let lb_deriv = hd (tl (dest_list (hd sgnsl))) in
let ub_deriv = hd (tl (dest_list (last sgnsl))) in
let mp_thm = get_sing_dirs lb_deriv ub_deriv in
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),REFL sgns) in
let mat_thm2 = EQ_MP mat_thm1 mat_thm in
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm
else
let s1,s2 = chop_list (sgns_len - 3) sgnsl in
let s3 = mk_list(s1,sl_ty) in
let s4 = mk_comb(mk_comb(sign_app,s3),mk_list(s2,sl_ty)) in
let sgns_thm = prove(mk_eq(sgns,s4),REWRITE_TAC[APPEND]) in
let mat_thm1 = MK_COMB(MK_COMB(AP_TERM imat (REFL pts), pols_thm),sgns_thm) in
let mat_thm2 = EQ_MP mat_thm1 mat_thm in
let lb_deriv = hd (tl (dest_list (hd sgnsl))) in
let ub_deriv = hd (tl (dest_list (last sgnsl))) in
let mp_thm = get_dirs lb_deriv ub_deriv in
MATCH_MP (MATCH_MP mp_thm mat_thm2) nc_thm in
let thm2 = REWRITE_RULE[APPEND;GSYM pols_thm] thm1 in
let c = concl thm2 in
let x,bod = dest_exists c in
let x' = new_var real_ty in
let bod1 = subst [x',x] bod in
let assume_thm1 = ASSUME bod1 in
let x2,bod2 = dest_exists bod1 in
let x'' = new_var real_ty in
let assume_thm2 = ASSUME (subst [x'',x2] bod2) in
assume_thm2,(x',thm2),(x'',assume_thm1);;
(*
print_timers()
print_times()
reset_timers()
*)
let tvars,tsgns,tdivs,tdiff,tnorm,tcont,tmat,tex = ref [],ref [],ref [], ref TRUTH,ref TRUTH, ref (fun x y -> x), ref TRUTH, ref [];;
(*
let vars,sgns,div_thms,pdiff_thm,normal_thm,cont,mat_thm,ex_thms = !tvars,!tsgns,!tdivs,!tdiff,!tnorm,!tcont,!tmat,!tex
DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont mat_thm ex_thms
*)
let DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont mat_thm ex_thms =
try
tvars := vars;
tsgns := sgns;
tdivs := div_thms;
tdiff := pdiff_thm;
tnorm := normal_thm;
tmat := mat_thm;
tex := ex_thms;
tcont := cont;
let start_time = Sys.time() in
let pts,pols,signll = dest_interpmat (concl mat_thm) in
let mat_thm' = INFERPSIGN vars sgns mat_thm div_thms in
let mat_thm'' = CONDENSE mat_thm' in
let mat_thm''',(v1,exthm1),(v2,exthm2) = ADD_INFINITIES vars pdiff_thm normal_thm mat_thm'' in
let mat_thm4,new_ex_pairs = INFERISIGN vars pdiff_thm mat_thm''' ((v1,exthm1)::(v2,exthm2)::ex_thms) in
let mat_thm5 = REMOVE_INFINITIES mat_thm4 in
let mat_thm6 = REMOVE_COLUMN1 mat_thm5 in
let mat_thm7 = CONDENSE mat_thm6 in
(* hack for changing renamed vars *)
let mat_thm8 = CONV_RULE (RATOR_CONV (RAND_CONV (LIST_CONV (ALPHA_CONV (hd vars))))) mat_thm7 in
let ex_pairs = [(v1,exthm1);(v2,exthm2)] @ new_ex_pairs in
let cont' mat_thm ex_thms = cont mat_thm (ex_thms @ ex_pairs) in
cont' mat_thm8 ex_thms
with (Isign (false_thm,ex_thms)) ->
raise (Isign (false_thm,ex_thms))
| Failure x -> failwith ("DEDMATRIX: " ^ x);;
(* {{{ Examples *)
(*
let NOT_NIL_CONV tm =
let h,t = dest_cons tm in
ISPECL [h;t] NOT_CONS_NIL;;
let NORMAL_CONV tm =
let normalize_thm = POLY_NORMALIZE_CONV (mk_comb (`normalize`,tm)) in
let nonnil_thm = NOT_NIL_CONV tm in
let conj_thm = CONJ normalize_thm nonnil_thm in
REWRITE_RULE[GSYM normal] conj_thm;;
let vars = [`x:real`];;
let cont a b = a;;
let sgns = [ARITH_RULE `&1 > &0`];;
let normal_thm = NORMAL_CONV `[&1; &2; &3]`;;
let pdiff_thm = POLY_DIFF_CONV `poly_diff [&1; &1; &1; &1]`;;
let ex_thms = [];;
let _,l1 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(&1 + x * (&2 + x * &3))`;;
let _,l2 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(&2 + x * (-- &3 + x * &1))`;;
let _,l3 = PDIVIDES vars sgns `(&1 + x * (&1 + x * (&1 + x * &1)))` `(-- &4 + x * (&0 + x * &1))`;;
let div_thms = [l1;l2;l3];;
let mat_thm = ASSUME
`interpmat [x1; x2; x3; x4; x5]
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1);
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5]
[[Pos; Pos; Pos; Neg; Neg; Neg];
[Pos; Pos; Zero; Zero; Neg; Neg];
[Pos; Pos; Neg; Pos; Neg; Neg];
[Pos; Zero; Neg; Pos; Neg; Zero];
[Pos; Pos; Neg; Pos; Neg; Pos];
[Pos; Pos; Zero; Pos; Zero; Pos];
[Pos; Pos; Neg; Pos; Pos; Pos];
[Pos; Zero; Neg; Pos; Zero; Pos];
[Pos; Neg; Neg; Pos; Pos; Pos];
[Pos; Zero; Zero; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos; Pos; Pos]]` ;;
time (DEDMATRIX vars sgns div_thms pdiff_thm normal_thm (fun x y -> x) mat_thm) []
*)
(* }}} *)
(* ---------------------------------------------------------------------- *)
(* Timing *)
(* ---------------------------------------------------------------------- *)
let REMOVE_COLUMN1 mat_thm =
let start_time = Sys.time() in
let res = REMOVE_COLUMN1 mat_thm in
remove_column1_timer +.= (Sys.time() -. start_time);
res;;
let ADD_INFINITIES vars pdiff_thm normal_thm mat_thm =
let start_time = Sys.time() in
let res = ADD_INFINITIES vars pdiff_thm normal_thm mat_thm in
add_infinities_timer +.= (Sys.time() -. start_time);
res;;
let REMOVE_INFINITIES thm =
let start_time = Sys.time() in
let res = REMOVE_INFINITIES thm in
remove_infinities_timer +.= (Sys.time() -. start_time);
res;;