Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ====================================================================== *) | |
(* CONDENSE *) | |
(* ====================================================================== *) | |
(* | |
let merge_interpsign ord_thm (thm1,thm2,thm3) = | |
let thm1' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm1) in | |
let thm2' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm2) in | |
let thm3' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm3) in | |
let set1,_,_ = dest_interpsign thm1 in | |
let _,s1 = dest_abs set1 in | |
let set3,_,_ = dest_interpsign thm3 in | |
let _,s3 = dest_abs set3 in | |
let gthm = | |
if is_conj s1 && is_conj s3 then gen_thm | |
else if is_conj s1 && not (is_conj s3) then gen_thm_noright | |
else if not (is_conj s1) && is_conj s3 then gen_thm_noleft | |
else gen_thm_noboth in | |
PURE_REWRITE_RULE[GSYM interpsign] (MATCH_MPL[gthm;ord_thm;thm1';thm2';thm3']);; | |
*) | |
(* {{{ Examples *) | |
(* | |
length thms | |
merge_interpsign ord_thm (hd thms) | |
let thm1,thm2,thm3 = hd thms | |
let ord_thm = ASSUME `x2 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x < x2) [&1; &2; &3] Pos`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Pos`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x2`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Pos`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x) [&1; &2; &3] Pos`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = TRUTH;; | |
let thm1 = ASSUME `interpsign (\x. x < x1) [&1; &2; &3] Pos`;; | |
let thm2 = ASSUME `interpsign (\x. x = x1) [&1; &2; &3] Pos`;; | |
let thm3 = ASSUME `interpsign (\x. x1 < x) [&1; &2; &3] Pos`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x2 /\ x2 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Pos`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Pos`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Neg`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Neg`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Neg`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Zero`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Zero`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Zero`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Nonzero`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Nonzero`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Nonzero`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
let ord_thm = ASSUME `x1 < x3`;; | |
let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Unknown`;; | |
let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Unknown`;; | |
let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Unknown`;; | |
merge_interpsign ord_thm (thm1,thm2,thm3);; | |
*) | |
(* }}} *) | |
(* | |
let rec merge_three l1 l2 l3 = | |
match l1 with | |
[] -> [] | |
| h::t -> (hd l1,hd l2,hd l3)::merge_three (tl l1) (tl l2) (tl l3);; | |
*) | |
(* {{{ Doc *) | |
(* | |
combine_interpsigns | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x1 < x /\ x < x2) | |
[Unknown; Pos; Pos; Neg] | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x = x2) | |
[Unknown; Pos; Pos; Neg]; | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x2 < x /\ x < x3) | |
[Unknown; Pos; Pos; Neg]; | |
--> | |
|- interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x1 < x /\ x < x3) | |
[Unknown; Pos; Pos; Neg]; | |
*) | |
(* }}} *) | |
(* | |
let combine_interpsigns ord_thm thm1 thm2 thm3 = | |
let _,_,s1 = dest_interpsigns thm1 in | |
let _,_,s2 = dest_interpsigns thm2 in | |
let _,_,s3 = dest_interpsigns thm3 in | |
if not (s1 = s2) || not (s1 = s3) then failwith "combine_interpsigns: signs not equal" else | |
try | |
let thms1 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm1) in | |
let thms2 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm2) in | |
let thms3 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm3) in | |
let thms = butlast (merge_three thms1 thms2 thms3) (* ignore the T at end *) in | |
let thms' = map (merge_interpsign ord_thm) thms in | |
mk_interpsigns thms' | |
with Failure s -> failwith ("combine_interpsigns: " ^ s);; | |
*) | |
(* {{{ Examples *) | |
(* | |
let thm = combine_interpsigns | |
let ord_thm,thm1,thm2,thm3 = ord_thm5 ,ci1 ,ci2 ,ci3 | |
let h1 = combine_interpsigns ord_thm int1 pt int2 in | |
let thm1,thm2,thm3 = int1,pt,int2 | |
let tmp = (ith 0 thms) | |
merge_interpsign ord_thm tmp | |
let thm1 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x1 < x /\ x < x2) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm2 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x = x2) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm3 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x2 < x /\ x < x3) | |
[Unknown; Pos; Pos; Neg]`;; | |
let ord_thm = ASSUME `x1 < x2 /\ x2 < x3` | |
combine_interpsigns ord_thm thm1 thm2 thm3;; | |
let thm1 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x < x5) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm2 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x = x5) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm3 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x5 < x /\ x < x6) | |
[Unknown; Pos; Pos; Neg]`;; | |
let ord_thm = ASSUME `x5 < x6`;; | |
combine_interpsigns ord_thm thm1 thm2 thm3;; | |
let thm1 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x < x6) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm2 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x = x6) | |
[Unknown; Pos; Pos; Neg]`;; | |
let thm3 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] | |
(\x. x6 < x) | |
[Unknown; Pos; Pos; Neg]`;; | |
let ord_thm = ASSUME `x5 < x6`;; | |
combine_interpsigns ord_thm thm1 thm2 thm3;; | |
*) | |
(* }}} *) | |
(* {{{ Doc *) | |
(* | |
get_bounds `\x. x < x1` `\x. x1 < x /\ x < x2` | |
--> | |
x1 < x2 | |
get_bounds `\x. x0 < x < x1` `\x. x1 < x /\ x < x2` | |
--> | |
x0 < x1 /\ x1 < x2 | |
get_bounds `\x. x < x1` `\x. x1 < x` | |
--> | |
T | |
*) | |
(* }}} *) | |
(* | |
let get_bounds set1 set2 = | |
let _,s1 = dest_abs set1 in | |
let _,s2 = dest_abs set2 in | |
let c1 = | |
if is_conj s1 then | |
let l,r = dest_conj s1 in | |
let l1,l2 = dest_binop rlt l in | |
let l3,l4 = dest_binop rlt r in | |
mk_binop rlt l1 l4 | |
else t_tm in | |
let c2 = | |
if is_conj s2 then | |
let l,r = dest_conj s2 in | |
let l1,l2 = dest_binop rlt l in | |
let l3,l4 = dest_binop rlt r in | |
mk_binop rlt l1 l4 | |
else t_tm in | |
if c1 = t_tm then c2 | |
else if c2 = t_tm then c1 | |
else mk_conj (c1,c2);; | |
*) | |
(* {{{ Examples *) | |
(* | |
get_bounds `\x. x < x1` `\x. x1 < x /\ x < x2` | |
get_bounds `\x. x0 < x /\ x < x1` `\x. x1 < x /\ x < x2` | |
get_bounds `\x. x < x1` `\x. x1 < x` | |
*) | |
(* }}} *) | |
(* {{{ Doc *) | |
(* collect_pts | |
|- interpsigns ... (\x. x < x1) ... | |
|- interpsigns ... (\x. x1 < x /\ x < x4) ... | |
|- interpsigns ... (\x. x4 < x /\ x < x7) ... | |
|- interpsigns ... (\x. x7 < x) ... | |
--> | |
[x1,x4,x7] | |
*) | |
(* }}} *) | |
(* | |
let rec collect_pts thms = | |
match thms with | |
[] -> [] | |
| h::t -> | |
let rest = collect_pts t in | |
let _,set,_ = dest_interpsigns h in | |
let x,b = dest_abs set in | |
let bds = | |
if b = t_tm then [] | |
else if is_conj b then | |
let l,r = dest_conj b in | |
[fst(dest_binop rlt l);snd(dest_binop rlt r)] | |
else | |
let _,l,r = get_binop b in | |
if x = l then [r] else [l] in | |
match rest with | |
[] -> bds | |
| h::t -> if not (h = (last bds)) then failwith "pts not in order" | |
else if length bds = 2 then hd bds::rest else rest;; | |
*) | |
(* {{{ Examples *) | |
(* | |
let thms = [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] | |
let h::t = [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] | |
collect_pts [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] | |
let t1 = ASSUME `interpsigns [[&1]] (\x. x < x1) [Pos]` | |
let t2 = ASSUME `interpsigns [[&1]] (\x. x1 < x /\ x < x4) [Pos]` | |
let t3 = ASSUME `interpsigns [[&1]] (\x. x4 < x /\ x < x7) [Pos]` | |
let t4 = ASSUME `interpsigns [[&1]] (\x. x7 < x) [Pos]` | |
collect_pts [t1;t2;t3;t4] | |
let t1 = ASSUME `interpsigns [[&1]] (\x. x0 < x /\ x < x1) [Pos]` | |
let t2 = ASSUME `interpsigns [[&1]] (\x. x1 < x /\ x < x4) [Pos]` | |
let t3 = ASSUME `interpsigns [[&1]] (\x. x4 < x /\ x < x7) [Pos]` | |
let t4 = ASSUME `interpsigns [[&1]] (\x. x7 < x) [Pos]` | |
collect_pts [t1;t2;t3;t4] | |
let t1 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x < x1) | |
[Unknown; Pos; Pos; Pos]`;; | |
let t2 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x = x1) | |
[Neg; Pos; Pos; Zero]`;; | |
let t3 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x1 < x /\ x < x4) | |
[Unknown; Pos; Pos; Neg]`;; | |
let t4 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x = x4) | |
[Pos; Pos; Zero; Neg]`;; | |
let t5 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x4 < x /\ x < x5) | |
[Unknown; Pos; Neg; Neg]`;; | |
let t6 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x = x5) | |
[Pos; Pos; Zero; Zero]`;; | |
let t7 = ASSUME | |
`interpsigns | |
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; | |
&1]] | |
(\x. x5 < x) | |
[Unknown; Pos; Pos; Pos]`;; | |
let thms = [t1;t2;t3;t4;t5;t6;t7] | |
collect_pts thms | |
*) | |
(* | |
combine_identical_lines | |
|- real_ordered_list [x1; x2; x3; x4; x5] | |
|- ALL2 | |
(interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) | |
(partition_line [x1; x2; x3; x4; x5]) | |
[[Unknown; Pos; Pos; Pos]; | |
x1 [Neg; Pos; Pos; Zero]; | |
[Unknown; Pos; Pos; Neg]; | |
x2 [Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
x3 [Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
x4 [Pos; Pos; Zero; Neg]; | |
[Unknown; Pos; Neg; Neg]; | |
x5 [Pos; Pos; Zero; Zero]; | |
[Unknown; Pos; Pos; Pos]] | |
--> | |
|- ALL2 | |
(interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) | |
(partition_line [x1; x4; x5]) | |
[[Unknown; Pos; Pos; Pos]; | |
x1 [Neg; Pos; Pos; Zero]; | |
[Unknown; Pos; Pos; Neg]; | |
x4 [Pos; Pos; Zero; Neg]; | |
[Unknown; Pos; Neg; Neg]; | |
x5 [Pos; Pos; Zero; Zero]; | |
[Unknown; Pos; Pos; Pos]] | |
*) | |
(* }}} *) | |
(* | |
let sublist i j l = | |
let _,r = chop_list i l in | |
let l2,r2 = chop_list (j-i+1) r in | |
l2;; | |
*) | |
(* {{{ Examples *) | |
(* | |
let i,j,l = 1,4,[1;2;3;4;5;6;7] | |
sublist 1 4 [1;2;3;4;5;6;7] | |
sublist 2 4 [1;2;3;4;5;6;7] | |
sublist 1 1 [1;2;3;4;5;6;7] | |
*) | |
(* }}} *) | |
(* | |
let rec combine ord_thms l = | |
let lem = REWRITE_RULE[AND_IMP_THM] REAL_LT_TRANS in | |
match l with | |
[int] -> [int] | |
| [int1;int2] -> [int1;int2] | |
| int1::pt::int2::rest -> | |
try | |
let _,set1,_ = dest_interpsigns int1 in | |
let _,set2,_ = dest_interpsigns int2 in | |
let ord_tm = get_bounds set1 set2 in | |
if ord_tm = t_tm then | |
let h1 = combine_interpsigns TRUTH int1 pt int2 in | |
combine ord_thms (h1::rest) | |
else | |
let lt,rt = | |
if is_conj ord_tm then | |
let c1,c2 = dest_conj ord_tm in | |
let l,_ = dest_binop rlt c1 in | |
let _,r = dest_binop rlt c2 in | |
l,r | |
else dest_binop rlt ord_tm in | |
let e1 = find (fun x -> lt = fst(dest_binop rlt (concl x))) ord_thms in | |
let i1 = index e1 ord_thms in | |
let e2 = find (fun x -> rt = snd(dest_binop rlt (concl x))) ord_thms in | |
let i2 = index e2 ord_thms in | |
let ord_thms' = sublist i1 i2 ord_thms in | |
let ord_thm = end_itlist (fun x y -> MATCH_MPL[lem;x;y]) ord_thms' in | |
let h1 = combine_interpsigns ord_thm int1 pt int2 in | |
combine ord_thms (h1::rest) | |
with | |
Failure "combine_interpsigns: signs not equal" -> | |
int1::pt::(combine ord_thms(int2::rest));; | |
*) | |
(* | |
let combine_identical_lines rol_thm all_thm = | |
let tmp,mat = dest_comb (concl all_thm) in | |
let _,line = dest_comb tmp in | |
let _,pts = dest_comb line in | |
let part_thm = PARTITION_LINE_CONV pts in | |
let thm' = REWRITE_RULE[ALL2;part_thm] all_thm in | |
let thms = CONJUNCTS thm' in | |
let ord_thms = rol_thms rol_thm in | |
let thms' = combine ord_thms thms in | |
let pts = collect_pts thms' in | |
let part_thm' = PARTITION_LINE_CONV (mk_list (pts,real_ty)) in | |
mk_all2_interpsigns part_thm' thms';; | |
*) | |
(* {{{ Examples *) | |
(* | |
#untrace combine | |
#trace combine | |
let int1::pt::int2::rest = snd (chop_list 6 thms) | |
let int1::pt::int2::rest = snd (chop_list 0 thms) | |
let int1::pt::int2::rest = snd (chop_list 2 thms) | |
let l = thms | |
let int1::pt::int2::rest = l | |
combine thms | |
let rol_thm = ASSUME `real_ordered_list [x1; x2; x3; x4; x5]` | |
let all_thm = ASSUME | |
`ALL2 | |
(interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) | |
(partition_line [x1; x2; x3; x4; x5]) | |
[[Unknown; Pos; Pos; Pos]; | |
[Neg; Pos; Pos; Zero]; | |
[Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
[Unknown; Pos; Pos; Neg]; | |
[Pos; Pos; Zero; Neg]; | |
[Unknown; Pos; Neg; Neg]; | |
[Pos; Pos; Zero; Zero]; | |
[Unknown; Pos; Pos; Pos]]`;; | |
let all_thm' = combine_identical_lines rol_thm all_thm | |
*) | |
(* }}} *) | |
(* {{{ Doc *) | |
(* | |
assumes l2 is a sublist of l1 | |
list_diff [1;2;3;4] [2;3] --> [1;4] | |
*) | |
(* }}} *) | |
(* | |
let rec list_diff l1 l2 = | |
match l1 with | |
[] -> if l2 = [] then [] else failwith "l2 not a sublist of l1" | |
| h::t -> | |
match l2 with | |
[] -> l1 | |
| h'::t' -> if h = h' then list_diff t t' | |
else h::list_diff t l2;; | |
*) | |
(* {{{ Examples *) | |
(* | |
list_diff [1;2;3;4] [2;3] | |
list_diff [1;2;3;4] [1;3;4] | |
*) | |
(* }}} *) | |
(* | |
let CONDENSE mat_thm = | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let pts = dest_list (snd (dest_comb (concl rol_thm))) in | |
let all_thm' = combine_identical_lines rol_thm all_thm in | |
let _,part,_ = dest_all2 (concl all_thm) in | |
let plist = dest_list (snd (dest_comb part)) in | |
let _,part',_ = dest_all2 (concl all_thm') in | |
let plist' = dest_list (snd (dest_comb part')) in | |
let rol_thm' = itlist ROL_REMOVE (list_diff plist plist') rol_thm in | |
let mat_thm' = mk_interpmat_thm rol_thm' all_thm' in | |
mat_thm';; | |
*) | |
(* ---------------------------------------------------------------------- *) | |
(* OPT *) | |
(* ---------------------------------------------------------------------- *) | |
let rec triple_index l = | |
match l with | |
[] -> failwith "triple_index" | |
| [x] -> failwith "triple_index" | |
| [x;y] -> failwith "triple_index" | |
| x::y::z::rest -> if x = y && y = z then 0 else 1 + triple_index (y::z::rest);; | |
let tmp = ref TRUTH;; | |
(* | |
let | |
tmp | |
let mat_thm = !tmp | |
let mat_thm = mat_thm' | |
*) | |
let rec CONDENSE = | |
let real_app = `APPEND:real list -> real list -> real list` in | |
let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in | |
let real_len = `LENGTH:real list -> num` in | |
let sign_len = `LENGTH:(sign list) list -> num` in | |
let num_mul = `( * ):num -> num -> num` in | |
let real_ty = `:real` in | |
let two = `2` in | |
let sl_ty = `:sign list` in | |
fun mat_thm -> | |
try | |
tmp := mat_thm; | |
let pts,_,sgns = dest_interpmat (concl mat_thm) in | |
let sgnl = dest_list sgns in | |
let ptl = dest_list pts in | |
let i = triple_index sgnl (* fail here if fully condensed *) in | |
if not (i mod 2 = 0) then failwith "misshifted matrix" else | |
if i = 0 then | |
if length ptl = 1 then MATCH_MP INTERPMAT_SING mat_thm | |
else CONDENSE (MATCH_MP INTERPMAT_TRIO mat_thm) else | |
let l,r = chop_list (i - 2) sgnl in | |
let sgn1,sgn2 = mk_list(l,sl_ty),mk_list(r,sl_ty) in | |
let sgns' = mk_comb(mk_comb(sign_app,sgn1),sgn2) in | |
let sgn_thm = prove(mk_eq(sgns,sgns'),REWRITE_TAC[APPEND]) in | |
let l',r' = chop_list (i / 2 - 1) ptl (* i always even *) in | |
let pt1,pt2 = mk_list(l',real_ty),mk_list(r',real_ty) in | |
let pts' = mk_comb(mk_comb(real_app,pt1),pt2) in | |
let pt_thm = prove(mk_eq(pts,pts'),REWRITE_TAC[APPEND]) in | |
let mat_thm' = ONCE_REWRITE_RULE[sgn_thm;pt_thm] mat_thm in | |
let len_thm = prove((mk_eq(mk_comb(sign_len,sgn1),mk_binop num_mul two (mk_comb(real_len,pt1)))),REWRITE_TAC[LENGTH] THEN ARITH_TAC) in | |
CONDENSE (REWRITE_RULE[APPEND] | |
(MATCH_MP (MATCH_MP INTERPMAT_TRIO_INNER mat_thm') len_thm)) | |
with | |
Failure "triple_index" -> mat_thm | |
| Failure x -> failwith ("CONDENSE: " ^ x);; | |
(* {{{ Examples *) | |
(* | |
let mat_thm = mat_thm' | |
CONDENSE mat_thm | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); | |
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] | |
[ | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Zero; Pos; Pos; Neg; Neg; Neg]; | |
[Neg; Pos; Pos; Neg; Neg; Neg] | |
]` | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); | |
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] | |
[[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Zero; Zero; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Zero]; | |
[Pos; Pos; Neg; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos; Zero; Pos]; | |
[Pos; Pos; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Neg; Pos; Pos; Pos]; | |
[Pos; Neg; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Zero; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos; Pos; Pos]]` | |
let mat_thm' = INFERPSIGN vars sgns mat_thm div_thms | |
CONDENSE mat_thm | |
*) | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Timing *) | |
(* ---------------------------------------------------------------------- *) | |
let CONDENSE mat_thm = | |
let start_time = Sys.time() in | |
let res = CONDENSE mat_thm in | |
condense_timer +.= (Sys.time() -. start_time); | |
res;; | |