Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Proof that Tarski's axioms for geometry hold in Euclidean space. *) | |
(* ========================================================================= *) | |
needs "Multivariate/convex.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 1 (reflexivity for equidistance). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_1_EUCLIDEAN = prove | |
(`!a b:real^2. dist(a,b) = dist(b,a)`, | |
NORM_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 2 (transitivity for equidistance). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_2_EUCLIDEAN = prove | |
(`!a b p q r s. | |
dist(a,b) = dist(p,q) /\ dist(a,b) = dist(r,s) | |
==> dist(p,q) = dist(r,s)`, | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 3 (identity for equidistance). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_3_EUCLIDEAN = prove | |
(`!a b c. dist(a,b) = dist(c,c) ==> a = b`, | |
NORM_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 4 (segment construction). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_4_EUCLIDEAN = prove | |
(`!a q b c:real^2. ?x:real^2. between a (q,x) /\ dist(a,x) = dist(b,c)`, | |
GEOM_ORIGIN_TAC `a:real^2` THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[DIST_0] THEN ASM_CASES_TAC `q:real^2 = vec 0` THENL | |
[ASM_SIMP_TAC[BETWEEN_REFL; VECTOR_CHOOSE_SIZE; DIST_POS_LE]; | |
EXISTS_TAC `--(dist(b:real^2,c) / norm(q) % q):real^2` THEN | |
REWRITE_TAC[between; DIST_0] THEN | |
REWRITE_TAC[dist; NORM_MUL; NORM_NEG; REAL_ABS_DIV; REAL_ABS_NORM; | |
VECTOR_ARITH `q - --(a % q) = (&1 + a) % q`] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(REAL_RING `a = &1 + b ==> a * q = q + b * q`) THEN | |
SIMP_TAC[REAL_ABS_REFL; REAL_POS; REAL_LE_ADD; REAL_LE_DIV; NORM_POS_LE]; | |
ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 5 (five-segments axiom). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_5_EUCLIDEAN = prove | |
(`!a b c x:real^2 a' b' c' x':real^2. | |
~(a = b) /\ | |
dist(a,b) = dist(a',b') /\ | |
dist(a,c) = dist(a',c') /\ | |
dist(b,c) = dist(b',c') /\ | |
between b (a,x) /\ between b' (a',x') /\ dist(b,x) = dist(b',x') | |
==> dist(c,x) = dist(c',x')`, | |
let lemma = prove | |
(`!a b x y:real^N. | |
~(b = a) /\ between b (a,x) /\ between b (a,y) /\ dist(b,x) = dist(b,y) | |
==> x = y`, | |
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE | |
[IMP_CONJ] BETWEEN_EXISTS_EXTENSION))) THEN ASM_SIMP_TAC[] THEN | |
REPEAT STRIP_TAC THEN UNDISCH_TAC `dist(b:real^N,x) = dist(b,y)` THEN | |
ASM_REWRITE_TAC[NORM_ARITH `dist(b:real^N,b + x) = norm x`; NORM_MUL] THEN | |
ASM_SIMP_TAC[REAL_EQ_MUL_RCANCEL; NORM_EQ_0; real_abs; VECTOR_SUB_EQ]) in | |
REPEAT STRIP_TAC THEN MP_TAC(ISPECL | |
[`a:real^2`; `b:real^2`; `c:real^2`; `a':real^2`; `b':real^2`; `c':real^2`] | |
RIGID_TRANSFORMATION_BETWEEN_3) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[DIST_EQ_0; DIST_SYM]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:real^2` | |
(X_CHOOSE_THEN `f:real^2->real^2` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))) THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN SUBST_ALL_TAC) THEN | |
SUBGOAL_THEN `x' = k + (f:real^2->real^2) x` SUBST1_TAC THENL | |
[MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC | |
[`k + (f:real^2->real^2) a`; `k + (f:real^2->real^2) b`]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[NORM_ARITH `dist(a + x:real^N,a + y) = dist(x,y)`; | |
BETWEEN_TRANSLATION; VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN | |
ASM_MESON_TAC[BETWEEN_TRANSLATION; orthogonal_transformation; | |
NORM_ARITH `dist(a + x:real^N,a + y) = dist(x,y)`; | |
ORTHOGONAL_TRANSFORMATION_ISOMETRY; BETWEEN_LINEAR_IMAGE_EQ; | |
DIST_EQ_0; ORTHOGONAL_TRANSFORMATION_INJECTIVE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 6 (identity for between-ness). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_6_EUCLIDEAN = prove | |
(`!a b. between b (a,a) ==> a = b`, | |
SIMP_TAC[BETWEEN_REFL_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 7 (Pasch's axiom). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_7_EUCLIDEAN = prove | |
(`!a b c p q:real^2. | |
between p (a,c) /\ between q (b,c) | |
==> ?x. between x (p,b) /\ between x (q,a)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `q:real^2 = c` THENL | |
[ASM_MESON_TAC[BETWEEN_REFL; BETWEEN_SYM]; POP_ASSUM MP_TAC] THEN | |
ASM_CASES_TAC `p:real^2 = a /\ b:real^2 = q` THENL | |
[ASM_MESON_TAC[BETWEEN_REFL; BETWEEN_SYM]; POP_ASSUM MP_TAC] THEN | |
GEOM_ORIGIN_TAC `a:real^2` THEN GEOM_NORMALIZE_TAC `q:real^2` THEN | |
CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[BETWEEN_REFL_EQ] THEN | |
REWRITE_TAC[UNWIND_THM2; between; DIST_0] THEN NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
GEOM_BASIS_MULTIPLE_TAC 1 `q:real^2` THEN SIMP_TAC | |
[NORM_MUL; NORM_BASIS; real_abs; DIMINDEX_2; ARITH; REAL_MUL_RID] THEN | |
GEN_TAC THEN REPEAT(DISCH_THEN(K ALL_TAC)) THEN SIMP_TAC[VECTOR_MUL_LID] THEN | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[BETWEEN_SYM] THEN DISCH_TAC THEN | |
DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC o | |
REWRITE_RULE[BETWEEN_IN_SEGMENT; IN_SEGMENT]) | |
(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] BETWEEN_EXISTS_EXTENSION))) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
SUBGOAL_THEN `&0 < &1 - d + e` ASSUME_TAC THENL | |
[ASM_CASES_TAC `d = &1 /\ e = &0` THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (is_eq o concl))) THEN | |
ASM_REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_MUL_RZERO] THEN | |
ASM_REWRITE_TAC[VECTOR_ADD_RID; IMP_IMP]; | |
EXISTS_TAC `(&1 - d + e - d * e) / (&1 - d + e) % basis 1:real^2` THEN | |
CONJ_TAC THENL | |
[EXISTS_TAC `e / (&1 - d + e)` THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN | |
REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN | |
SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; BASIS_COMPONENT; VEC_COMPONENT; | |
ARITH; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; | |
VECTOR_SUB_COMPONENT] THEN | |
UNDISCH_TAC `&0 < &1 - d + e` THEN CONV_TAC REAL_FIELD; | |
EXISTS_TAC `(&1 - d + e - d * e) / (&1 - d + e)` THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN | |
SUBGOAL_THEN `&0 <= (&1 - d) * (&1 + e) /\ &0 <= d * e` MP_TAC THENL | |
[CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL; ALL_TAC] THEN | |
ASM_REAL_ARITH_TAC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 8 (lower 2-dimensional axiom). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_8_EUCLIDEAN = prove | |
(`?a b c:real^2. ~between b (a,c) /\ ~between c (b,a) /\ ~between a (c,b)`, | |
REWRITE_TAC[GSYM DE_MORGAN_THM] THEN ONCE_REWRITE_TAC[BETWEEN_SYM] THEN | |
REWRITE_TAC[GSYM COLLINEAR_BETWEEN_CASES; COLLINEAR_3_2D] THEN | |
MAP_EVERY EXISTS_TAC | |
[`vec 0:real^2`; `basis 1:real^2`; `basis 2:real^2`] THEN | |
SIMP_TAC[BASIS_COMPONENT; VEC_COMPONENT; DIMINDEX_2; ARITH] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 9 (upper 2-dimensional axiom). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_9_EUCLIDEAN = prove | |
(`!p q a b c:real^2. | |
~(p = q) /\ | |
dist(a,p) = dist(a,q) /\ dist(b,p) = dist(b,q) /\ dist(c,p) = dist(c,q) | |
==> between b (a,c) \/ between c (b,a) \/ between a (c,b)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[BETWEEN_SYM] THEN | |
REWRITE_TAC[GSYM COLLINEAR_BETWEEN_CASES] THEN | |
REWRITE_TAC[dist; NORM_EQ; NORM_ARITH | |
`~(p = q) <=> ~(norm(p - q) = &0)`] THEN | |
ONCE_REWRITE_TAC[REAL_RING `~(x = &0) <=> ~(x pow 2 = &0)`] THEN | |
REWRITE_TAC[NORM_POW_2; COLLINEAR_3_2D] THEN | |
REWRITE_TAC[DOT_2; VECTOR_SUB_COMPONENT] THEN | |
CONV_TAC REAL_FIELD);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 10 (Euclidean axiom). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_10_EUCLIDEAN = prove | |
(`!a b c d t:real^N. | |
between d (a,t) /\ between d (b,c) /\ ~(a = d) | |
==> ?x y. between b (a,x) /\ between c (a,y) /\ between t (x,y)`, | |
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`vec 0:real^N`; `d:real^N`; `t:real^N`] | |
BETWEEN_EXISTS_EXTENSION) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; VECTOR_ARITH | |
`d + u % (d - vec 0):real^N = (&1 + u) % d`] THEN | |
X_GEN_TAC `u:real` THEN STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`(&1 + u) % b:real^N`; `(&1 + u) % c:real^N`] THEN | |
ASM_REWRITE_TAC[between; dist; GSYM VECTOR_SUB_LDISTRIB] THEN | |
ASM_REWRITE_TAC[VECTOR_SUB_LZERO; NORM_NEG; | |
VECTOR_ARITH `b - (&1 + u) % b:real^N = --(u % b)`] THEN | |
ASM_SIMP_TAC[NORM_MUL; REAL_LE_ADD; REAL_POS; real_abs] THEN | |
REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; REAL_EQ_MUL_LCANCEL] THEN | |
ASM_REWRITE_TAC[GSYM dist; GSYM between] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom 11 (Continuity). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_AXIOM_11_EUCLIDEAN = prove | |
(`!X Y:real^2->bool. | |
(?a. !x y. x IN X /\ y IN Y ==> between x (a,y)) | |
==> (?b. !x y. x IN X /\ y IN Y ==> between b (x,y))`, | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN GEOM_ORIGIN_TAC `a:real^2` THEN | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `!x:real^2. x IN X ==> x = vec 0` THENL | |
[ASM_MESON_TAC[BETWEEN_REFL]; POP_ASSUM MP_TAC] THEN | |
ASM_CASES_TAC `Y:real^2->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN | |
SUBGOAL_THEN `?c:real^2. c IN Y` (CHOOSE_THEN MP_TAC) THENL | |
[ASM SET_TAC[]; REPEAT(POP_ASSUM MP_TAC)] THEN | |
GEOM_BASIS_MULTIPLE_TAC 1 `c:real^2` THEN | |
X_GEN_TAC `c:real` THEN DISCH_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:real^2` STRIP_ASSUME_TAC) THEN | |
DISCH_THEN(LABEL_TAC "*") THEN | |
SUBGOAL_THEN `X SUBSET IMAGE (\c. c % basis 1:real^2) {c | &0 <= c} /\ | |
Y SUBSET IMAGE (\c. c % basis 1:real^2) {c | &0 <= c}` | |
MP_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN | |
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL | |
[X_GEN_TAC `x:real^2` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL | |
[`x:real^2`; `c % basis 1:real^2`]) THEN | |
ASM_REWRITE_TAC[BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[VECTOR_MUL_ASSOC; REAL_LE_MUL]; | |
DISCH_THEN(MP_TAC o SPEC `z:real^2`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN | |
UNDISCH_TAC `~(z:real^2 = vec 0)` THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; DE_MORGAN_THM] THEN | |
STRIP_TAC THEN X_GEN_TAC `y:real^2` THEN DISCH_TAC THEN | |
REMOVE_THEN "*" (MP_TAC o SPECL [`z:real^2`; `y:real^2`]) THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_ASSOC] THEN | |
REWRITE_TAC[BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID; IN_ELIM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN | |
ASM_CASES_TAC `u = &0` THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_EQ_0] THEN | |
STRIP_TAC THEN EXISTS_TAC `inv(u) * d:real` THEN | |
ASM_REWRITE_TAC[GSYM VECTOR_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; VECTOR_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_LID]]; | |
REWRITE_TAC[SUBSET_IMAGE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `s:real->bool` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `t:real->bool` STRIP_ASSUME_TAC)) THEN | |
REMOVE_THEN "*" MP_TAC THEN | |
ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
DISCH_THEN(fun th -> | |
EXISTS_TAC `sup s % basis 1 :real^2` THEN MP_TAC th) THEN | |
REWRITE_TAC[between; dist; NORM_ARITH `norm(vec 0 - x) = norm x`] THEN | |
REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; NORM_MUL] THEN | |
SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL; REAL_MUL_RID] THEN | |
ASM_SIMP_TAC[REAL_ARITH | |
`&0 <= x /\ &0 <= y ==> (abs y = abs x + abs(x - y) <=> x <= y)`] THEN | |
DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN | |
X_GEN_TAC `y:real` THEN DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH | |
`x <= s /\ s <= y ==> abs(x - y) = abs(x - s) + abs(s - y)`) THEN | |
MP_TAC(SPEC `s:real->bool` SUP) THEN | |
ASM_MESON_TAC[IMAGE_EQ_EMPTY; MEMBER_NOT_EMPTY]]);; | |