Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
232 kB
(* ========================================================================= *)
(* Determinant and trace of a square matrix. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* ========================================================================= *)
needs "Multivariate/vectors.ml";;
needs "Library/permutations.ml";;
needs "Library/floor.ml";;
needs "Library/products.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Trace of a matrix (this is relatively easy). *)
(* ------------------------------------------------------------------------- *)
let trace = new_definition
`(trace:real^N^N->real) A = sum(1..dimindex(:N)) (\i. A$i$i)`;;
let TRACE_0 = prove
(`trace(mat 0) = &0`,
SIMP_TAC[trace; mat; LAMBDA_BETA; SUM_0]);;
let TRACE_I = prove
(`trace(mat 1 :real^N^N) = &(dimindex(:N))`,
SIMP_TAC[trace; mat; LAMBDA_BETA; SUM_CONST_NUMSEG; REAL_MUL_RID] THEN
AP_TERM_TAC THEN ARITH_TAC);;
let TRACE_ADD = prove
(`!A B:real^N^N. trace(A + B) = trace(A) + trace(B)`,
SIMP_TAC[trace; matrix_add; SUM_ADD_NUMSEG; LAMBDA_BETA]);;
let TRACE_SUB = prove
(`!A B:real^N^N. trace(A - B) = trace(A) - trace(B)`,
SIMP_TAC[trace; matrix_sub; SUM_SUB_NUMSEG; LAMBDA_BETA]);;
let TRACE_CMUL = prove
(`!c A:real^N^N. trace(c %% A) = c * trace A`,
REWRITE_TAC[trace; MATRIX_CMUL_COMPONENT; SUM_LMUL]);;
let TRACE_NEG = prove
(`!A:real^N^N. trace(--A) = --(trace A)`,
REWRITE_TAC[trace; MATRIX_NEG_COMPONENT; SUM_NEG]);;
let TRACE_MUL_SYM = prove
(`!A B:real^N^M. trace(A ** B) = trace(B ** A)`,
REPEAT GEN_TAC THEN SIMP_TAC[trace; matrix_mul; LAMBDA_BETA] THEN
GEN_REWRITE_TAC RAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[REAL_MUL_SYM]);;
let TRACE_TRANSP = prove
(`!A:real^N^N. trace(transp A) = trace A`,
SIMP_TAC[trace; transp; LAMBDA_BETA]);;
let TRACE_SIMILAR = prove
(`!A:real^N^N U:real^N^N.
invertible U ==> trace(matrix_inv U ** A ** U) = trace A`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[TRACE_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM MATRIX_MUL_ASSOC; MATRIX_INV; MATRIX_MUL_RID]);;
let TRACE_MUL_CYCLIC = prove
(`!A:real^P^M B C:real^M^N. trace(A ** B ** C) = trace(B ** C ** A)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MATRIX_MUL_ASSOC] THEN
GEN_REWRITE_TAC RAND_CONV [TRACE_MUL_SYM] THEN
REWRITE_TAC[MATRIX_MUL_ASSOC]);;
(* ------------------------------------------------------------------------- *)
(* Definition of determinant. *)
(* ------------------------------------------------------------------------- *)
let det = new_definition
`det(A:real^N^N) =
sum { p | p permutes 1..dimindex(:N) }
(\p. sign(p) * product (1..dimindex(:N)) (\i. A$i$(p i)))`;;
(* ------------------------------------------------------------------------- *)
(* A few general lemmas we need below. *)
(* ------------------------------------------------------------------------- *)
let IN_DIMINDEX_SWAP = prove
(`!m n j. 1 <= m /\ m <= dimindex(:N) /\
1 <= n /\ n <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N)
==> 1 <= swap(m,n) j /\ swap(m,n) j <= dimindex(:N)`,
REWRITE_TAC[swap] THEN ARITH_TAC);;
let LAMBDA_BETA_PERM = prove
(`!p i. p permutes 1..dimindex(:N) /\ 1 <= i /\ i <= dimindex(:N)
==> ((lambda) g :A^N) $ p(i) = g(p i)`,
ASM_MESON_TAC[LAMBDA_BETA; PERMUTES_IN_IMAGE; IN_NUMSEG]);;
let PRODUCT_PERMUTE = prove
(`!f p s. p permutes s ==> product s f = product s (f o p)`,
REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN
REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_PERMUTE_NUMSEG = prove
(`!f p m n. p permutes m..n ==> product(m..n) f = product(m..n) (f o p)`,
MESON_TAC[PRODUCT_PERMUTE; FINITE_NUMSEG]);;
let REAL_MUL_SUM = prove
(`!s t f g.
FINITE s /\ FINITE t
==> sum s f * sum t g = sum s (\i. sum t (\j. f(i) * g(j)))`,
SIMP_TAC[SUM_LMUL] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN SIMP_TAC[SUM_LMUL]);;
let REAL_MUL_SUM_NUMSEG = prove
(`!m n p q. sum(m..n) f * sum(p..q) g =
sum(m..n) (\i. sum(p..q) (\j. f(i) * g(j)))`,
SIMP_TAC[REAL_MUL_SUM; FINITE_NUMSEG]);;
(* ------------------------------------------------------------------------- *)
(* Basic determinant properties. *)
(* ------------------------------------------------------------------------- *)
let DET_CMUL = prove
(`!A:real^N^N c. det(c %% A) = c pow dimindex(:N) * det A`,
REPEAT GEN_TAC THEN
SIMP_TAC[det; MATRIX_CMUL_COMPONENT; PRODUCT_MUL; FINITE_NUMSEG] THEN
SIMP_TAC[PRODUCT_CONST_NUMSEG_1; GSYM SUM_LMUL] THEN
REWRITE_TAC[REAL_MUL_AC]);;
let DET_NEG = prove
(`!A:real^N^N. det(--A) = --(&1) pow dimindex(:N) * det A`,
REWRITE_TAC[MATRIX_NEG_MINUS1; DET_CMUL]);;
let DET_TRANSP = prove
(`!A:real^N^N. det(transp A) = det A`,
GEN_TAC THEN REWRITE_TAC[det] THEN
GEN_REWRITE_TAC LAND_CONV [SUM_PERMUTATIONS_INVERSE] THEN
MATCH_MP_TAC SUM_EQ THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN X_GEN_TAC `p:num->num` THEN
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN BINOP_TAC THENL
[ASM_MESON_TAC[SIGN_INVERSE; PERMUTATION_PERMUTES; FINITE_NUMSEG];
ALL_TAC] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[GSYM(MATCH_MP PERMUTES_IMAGE th)]) THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`product(1..dimindex(:N))
((\i. (transp A:real^N^N)$i$inverse p(i)) o p)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC PRODUCT_IMAGE THEN
ASM_MESON_TAC[FINITE_NUMSEG; PERMUTES_INJECTIVE; PERMUTES_INVERSE];
MATCH_MP_TAC PRODUCT_EQ THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
SIMP_TAC[transp; LAMBDA_BETA; o_THM] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
SIMP_TAC[FUN_EQ_THM; I_THM; o_THM] THEN STRIP_TAC THEN
ASM_SIMP_TAC[PERMUTES_IN_NUMSEG; LAMBDA_BETA_PERM; LAMBDA_BETA]]);;
let DET_LOWERTRIANGULAR = prove
(`!A:real^N^N.
(!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ i < j ==> A$i$j = &0)
==> det(A) = product(1..dimindex(:N)) (\i. A$i$i)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[det] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum {I}
(\p. sign p * product(1..dimindex(:N)) (\i. (A:real^N^N)$i$p(i)))` THEN
CONJ_TAC THENL
[ALL_TAC; REWRITE_TAC[SUM_SING; SIGN_I; REAL_MUL_LID; I_THM]] THEN
MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[IN_SING; FINITE_RULES; SUBSET; IN_ELIM_THM; PERMUTES_I] THEN
X_GEN_TAC `p:num->num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[PRODUCT_EQ_0_NUMSEG; REAL_ENTIRE; SIGN_NZ] THEN
MP_TAC(SPECL [`p:num->num`; `1..dimindex(:N)`] PERMUTES_NUMSET_LE) THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG; NOT_LT]);;
let DET_UPPERTRIANGULAR = prove
(`!A:real^N^N.
(!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ j < i ==> A$i$j = &0)
==> det(A) = product(1..dimindex(:N)) (\i. A$i$i)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[det] THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum {I}
(\p. sign p * product(1..dimindex(:N)) (\i. (A:real^N^N)$i$p(i)))` THEN
CONJ_TAC THENL
[ALL_TAC; REWRITE_TAC[SUM_SING; SIGN_I; REAL_MUL_LID; I_THM]] THEN
MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[IN_SING; FINITE_RULES; SUBSET; IN_ELIM_THM; PERMUTES_I] THEN
X_GEN_TAC `p:num->num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[PRODUCT_EQ_0_NUMSEG; REAL_ENTIRE; SIGN_NZ] THEN
MP_TAC(SPECL [`p:num->num`; `1..dimindex(:N)`] PERMUTES_NUMSET_GE) THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG; NOT_LT]);;
let DET_I = prove
(`det(mat 1 :real^N^N) = &1`,
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `product(1..dimindex(:N)) (\i. (mat 1:real^N^N)$i$i)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC DET_LOWERTRIANGULAR;
MATCH_MP_TAC PRODUCT_EQ_1_NUMSEG] THEN
SIMP_TAC[mat; LAMBDA_BETA] THEN MESON_TAC[LT_REFL]);;
let DET_0 = prove
(`det(mat 0 :real^N^N) = &0`,
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `product(1..dimindex(:N)) (\i. (mat 0:real^N^N)$i$i)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC DET_LOWERTRIANGULAR;
REWRITE_TAC[PRODUCT_EQ_0_NUMSEG] THEN EXISTS_TAC `1`] THEN
SIMP_TAC[mat; LAMBDA_BETA; COND_ID; DIMINDEX_GE_1; LE_REFL]);;
let DET_PERMUTE_ROWS = prove
(`!A:real^N^N p.
p permutes 1..dimindex(:N)
==> det(lambda i. A$p(i)) = sign(p) * det(A)`,
REWRITE_TAC[det] THEN SIMP_TAC[LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN
SIMP_TAC[GSYM SUM_LMUL; FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV
[MATCH_MP SUM_PERMUTATIONS_COMPOSE_R th]) THEN
MATCH_MP_TAC SUM_EQ THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN X_GEN_TAC `q:num->num` THEN
REWRITE_TAC[IN_ELIM_THM; REAL_MUL_ASSOC] THEN DISCH_TAC THEN BINOP_TAC THENL
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_MESON_TAC[SIGN_COMPOSE; PERMUTATION_PERMUTES; FINITE_NUMSEG];
ALL_TAC] THEN
MP_TAC(MATCH_MP PERMUTES_INVERSE (ASSUME `p permutes 1..dimindex(:N)`)) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV
[MATCH_MP PRODUCT_PERMUTE_NUMSEG th]) THEN
MATCH_MP_TAC PRODUCT_EQ THEN REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
ASM_MESON_TAC[PERMUTES_INVERSES]);;
let DET_PERMUTE_COLUMNS = prove
(`!A:real^N^N p.
p permutes 1..dimindex(:N)
==> det((lambda i j. A$i$p(j)):real^N^N) = sign(p) * det(A)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV) [GSYM DET_TRANSP] THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC
[GSYM(MATCH_MP DET_PERMUTE_ROWS th)]) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM DET_TRANSP] THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; LAMBDA_BETA_PERM]);;
let DET_IDENTICAL_ROWS = prove
(`!A:real^N^N i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j) /\
row i A = row j A
==> det A = &0`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`A:real^N^N`; `swap(i:num,j:num)`] DET_PERMUTE_ROWS) THEN
ASM_SIMP_TAC[PERMUTES_SWAP; IN_NUMSEG; SIGN_SWAP] THEN
MATCH_MP_TAC(REAL_ARITH `a = b ==> b = -- &1 * a ==> a = &0`) THEN
AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN
SIMP_TAC[row; CART_EQ; LAMBDA_BETA] THEN
REWRITE_TAC[swap] THEN ASM_MESON_TAC[]);;
let DET_IDENTICAL_COLUMNS = prove
(`!A:real^N^N i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j) /\
column i A = column j A
==> det A = &0`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM DET_TRANSP] THEN
MATCH_MP_TAC DET_IDENTICAL_ROWS THEN ASM_MESON_TAC[ROW_TRANSP]);;
let DET_ZERO_ROW = prove
(`!A:real^N^N i.
1 <= i /\ i <= dimindex(:N) /\ row i A = vec 0 ==> det A = &0`,
SIMP_TAC[det; row; CART_EQ; LAMBDA_BETA; VEC_COMPONENT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_0 THEN
REWRITE_TAC[IN_ELIM_THM; REAL_ENTIRE; SIGN_NZ] THEN REPEAT STRIP_TAC THEN
SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG] THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]);;
let DET_ZERO_COLUMN = prove
(`!A:real^N^N i.
1 <= i /\ i <= dimindex(:N) /\ column i A = vec 0 ==> det A = &0`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM DET_TRANSP] THEN
MATCH_MP_TAC DET_ZERO_ROW THEN ASM_MESON_TAC[ROW_TRANSP]);;
let DET_ROW_ADD = prove
(`!a b c k.
1 <= k /\ k <= dimindex(:N)
==> det((lambda i. if i = k then a + b else c i):real^N^N) =
det((lambda i. if i = k then a else c i):real^N^N) +
det((lambda i. if i = k then b else c i):real^N^N)`,
SIMP_TAC[det; LAMBDA_BETA; GSYM SUM_ADD;
FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
X_GEN_TAC `p:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_TAC THEN REWRITE_TAC[GSYM REAL_ADD_LDISTRIB] THEN AP_TERM_TAC THEN
SUBGOAL_THEN `1..dimindex(:N) = k INSERT ((1..dimindex(:N)) DELETE k)`
SUBST1_TAC THENL [ASM_MESON_TAC[INSERT_DELETE; IN_NUMSEG]; ALL_TAC] THEN
SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG; IN_DELETE] THEN
MATCH_MP_TAC(REAL_RING
`c = a + b /\ y = x:real /\ z = x ==> c * x = a * y + b * z`) THEN
REWRITE_TAC[VECTOR_ADD_COMPONENT] THEN
CONJ_TAC THEN MATCH_MP_TAC PRODUCT_EQ THEN
SIMP_TAC[IN_DELETE; FINITE_DELETE; FINITE_NUMSEG]);;
let DET_ROW_MUL = prove
(`!a b c k.
1 <= k /\ k <= dimindex(:N)
==> det((lambda i. if i = k then c % a else b i):real^N^N) =
c * det((lambda i. if i = k then a else b i):real^N^N)`,
SIMP_TAC[det; LAMBDA_BETA; GSYM SUM_LMUL;
FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
X_GEN_TAC `p:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
SUBGOAL_THEN `1..dimindex(:N) = k INSERT ((1..dimindex(:N)) DELETE k)`
SUBST1_TAC THENL [ASM_MESON_TAC[INSERT_DELETE; IN_NUMSEG]; ALL_TAC] THEN
SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG; IN_DELETE] THEN
MATCH_MP_TAC(REAL_RING
`cp = c * p /\ p1 = p2:real ==> s * cp * p1 = c * s * p * p2`) THEN
REWRITE_TAC[VECTOR_MUL_COMPONENT] THEN MATCH_MP_TAC PRODUCT_EQ THEN
SIMP_TAC[IN_DELETE; FINITE_DELETE; FINITE_NUMSEG]);;
let DET_ROW_OPERATION = prove
(`!A:real^N^N i.
1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j)
==> det(lambda k. if k = i then row i A + c % row j A else row k A) =
det A`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DET_ROW_ADD; DET_ROW_MUL] THEN
MATCH_MP_TAC(REAL_RING `a = b /\ d = &0 ==> a + c * d = b`) THEN
CONJ_TAC THENL
[AP_TERM_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; CART_EQ] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[row; LAMBDA_BETA; CART_EQ];
MATCH_MP_TAC DET_IDENTICAL_ROWS THEN
MAP_EVERY EXISTS_TAC [`i:num`; `j:num`] THEN
ASM_SIMP_TAC[row; LAMBDA_BETA; CART_EQ]]);;
let DET_ROW_SPAN = prove
(`!A:real^N^N i x.
1 <= i /\ i <= dimindex(:N) /\
x IN span {row j A | 1 <= j /\ j <= dimindex(:N) /\ ~(j = i)}
==> det(lambda k. if k = i then row i A + x else row k A) =
det A`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN
MATCH_MP_TAC SPAN_INDUCT_ALT THEN CONJ_TAC THENL
[AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; VECTOR_ADD_RID] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[row; LAMBDA_BETA];
ALL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `j:num`) (SUBST_ALL_TAC o SYM)) THEN
ONCE_REWRITE_TAC[VECTOR_ARITH
`a + c % x + y:real^N = (a + y) + c % x`] THEN
ABBREV_TAC `z = row i (A:real^N^N) + y` THEN
ASM_SIMP_TAC[DET_ROW_MUL; DET_ROW_ADD] THEN
MATCH_MP_TAC(REAL_RING `d = &0 ==> a + c * d = a`) THEN
MATCH_MP_TAC DET_IDENTICAL_ROWS THEN
MAP_EVERY EXISTS_TAC [`i:num`; `j:num`] THEN
ASM_SIMP_TAC[row; LAMBDA_BETA; CART_EQ]);;
(* ------------------------------------------------------------------------- *)
(* May as well do this, though it's a bit unsatisfactory since it ignores *)
(* exact duplicates by considering the rows/columns as a set. *)
(* ------------------------------------------------------------------------- *)
let DET_DEPENDENT_ROWS = prove
(`!A:real^N^N. dependent(rows A) ==> det A = &0`,
GEN_TAC THEN
REWRITE_TAC[dependent; rows; IN_ELIM_THM; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `i:num` THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_CASES_TAC
`?i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j) /\
row i (A:real^N^N) = row j A`
THENL [ASM_MESON_TAC[DET_IDENTICAL_ROWS]; ALL_TAC] THEN
MP_TAC(SPECL [`A:real^N^N`; `i:num`; `--(row i (A:real^N^N))`]
DET_ROW_SPAN) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SPAN_NEG THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
MATCH_MP_TAC(TAUT `a = b ==> a ==> b`) THEN
REWRITE_TAC[IN] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DET_ZERO_ROW THEN
EXISTS_TAC `i:num` THEN
ASM_SIMP_TAC[row; LAMBDA_BETA; CART_EQ; VECTOR_ADD_COMPONENT;
VECTOR_NEG_COMPONENT; VEC_COMPONENT] THEN
REAL_ARITH_TAC]);;
let DET_DEPENDENT_COLUMNS = prove
(`!A:real^N^N. dependent(columns A) ==> det A = &0`,
MESON_TAC[DET_DEPENDENT_ROWS; ROWS_TRANSP; DET_TRANSP]);;
(* ------------------------------------------------------------------------- *)
(* Multilinearity and the multiplication formula. *)
(* ------------------------------------------------------------------------- *)
let DET_LINEAR_ROW_VSUM = prove
(`!a c s k.
FINITE s /\ 1 <= k /\ k <= dimindex(:N)
==> det((lambda i. if i = k then vsum s a else c i):real^N^N) =
sum s
(\j. det((lambda i. if i = k then a(j) else c i):real^N^N))`,
GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[VSUM_CLAUSES; SUM_CLAUSES; DET_ROW_ADD] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC DET_ZERO_ROW THEN EXISTS_TAC `k:num` THEN
ASM_SIMP_TAC[row; LAMBDA_BETA; CART_EQ; VEC_COMPONENT]);;
let BOUNDED_FUNCTIONS_BIJECTIONS_1 = prove
(`!p. p IN {(y,g) | y IN s /\
g IN {f | (!i. 1 <= i /\ i <= k ==> f i IN s) /\
(!i. ~(1 <= i /\ i <= k) ==> f i = i)}}
==> (\(y,g) i. if i = SUC k then y else g(i)) p IN
{f | (!i. 1 <= i /\ i <= SUC k ==> f i IN s) /\
(!i. ~(1 <= i /\ i <= SUC k) ==> f i = i)} /\
(\h. h(SUC k),(\i. if i = SUC k then i else h(i)))
((\(y,g) i. if i = SUC k then y else g(i)) p) = p`,
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN
MAP_EVERY X_GEN_TAC [`y:num`; `h:num->num`] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[LE];
ASM_MESON_TAC[LE; ARITH_RULE `~(1 <= i /\ i <= SUC k) ==> ~(i = SUC k)`];
REWRITE_TAC[PAIR_EQ; FUN_EQ_THM] THEN
ASM_MESON_TAC[ARITH_RULE `~(SUC k <= k)`]]);;
let BOUNDED_FUNCTIONS_BIJECTIONS_2 = prove
(`!h. h IN {f | (!i. 1 <= i /\ i <= SUC k ==> f i IN s) /\
(!i. ~(1 <= i /\ i <= SUC k) ==> f i = i)}
==> (\h. h(SUC k),(\i. if i = SUC k then i else h(i))) h IN
{(y,g) | y IN s /\
g IN {f | (!i. 1 <= i /\ i <= k ==> f i IN s) /\
(!i. ~(1 <= i /\ i <= k) ==> f i = i)}} /\
(\(y,g) i. if i = SUC k then y else g(i))
((\h. h(SUC k),(\i. if i = SUC k then i else h(i))) h) = h`,
REWRITE_TAC[IN_ELIM_PAIR_THM] THEN
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN
X_GEN_TAC `h:num->num` THEN REPEAT STRIP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ARITH_TAC;
ASM_MESON_TAC[ARITH_RULE `i <= k ==> i <= SUC k /\ ~(i = SUC k)`];
ASM_MESON_TAC[ARITH_RULE `i <= SUC k /\ ~(i = SUC k) ==> i <= k`];
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[LE_REFL]]);;
let FINITE_BOUNDED_FUNCTIONS = prove
(`!s k. FINITE s
==> FINITE {f | (!i. 1 <= i /\ i <= k ==> f(i) IN s) /\
(!i. ~(1 <= i /\ i <= k) ==> f(i) = i)}`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THENL
[REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`] THEN
SIMP_TAC[GSYM FUN_EQ_THM; SET_RULE `{x | x = y} = {y}`; FINITE_RULES];
ALL_TAC] THEN
UNDISCH_TAC `FINITE(s:num->bool)` THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
DISCH_THEN(MP_TAC o MATCH_MP FINITE_PRODUCT) THEN
DISCH_THEN(MP_TAC o ISPEC `\(y:num,g) i. if i = SUC k then y else g(i)` o
MATCH_MP FINITE_IMAGE) THEN
MATCH_MP_TAC(TAUT `a = b ==> a ==> b`) THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN
X_GEN_TAC `h:num->num` THEN EQ_TAC THENL
[STRIP_TAC THEN ASM_SIMP_TAC[BOUNDED_FUNCTIONS_BIJECTIONS_1]; ALL_TAC] THEN
DISCH_TAC THEN EXISTS_TAC
`(\h. h(SUC k),(\i. if i = SUC k then i else h(i))) h` THEN
PURE_ONCE_REWRITE_TAC[CONJ_SYM] THEN CONV_TAC (RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC BOUNDED_FUNCTIONS_BIJECTIONS_2 THEN ASM_REWRITE_TAC[]);;
let DET_LINEAR_ROWS_VSUM_LEMMA = prove
(`!s k a c.
FINITE s /\ k <= dimindex(:N)
==> det((lambda i. if i <= k then vsum s (a i) else c i):real^N^N) =
sum {f | (!i. 1 <= i /\ i <= k ==> f(i) IN s) /\
!i. ~(1 <= i /\ i <= k) ==> f(i) = i}
(\f. det((lambda i. if i <= k then a i (f i) else c i)
:real^N^N))`,
let lemma = prove
(`(lambda i. if i <= 0 then x(i) else y(i)) = (lambda i. y i)`,
SIMP_TAC[CART_EQ; ARITH; LAMBDA_BETA; ARITH_RULE
`1 <= k ==> ~(k <= 0)`]) in
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THENL
[REWRITE_TAC[lemma; LE_0] THEN GEN_TAC THEN
REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`] THEN
REWRITE_TAC[GSYM FUN_EQ_THM; SET_RULE `{x | x = y} = {y}`] THEN
REWRITE_TAC[SUM_SING];
ALL_TAC] THEN
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
ASM_SIMP_TAC[ARITH_RULE `SUC k <= n ==> k <= n`] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [LE] THEN
REWRITE_TAC[TAUT
`(if a \/ b then c else d) = (if a then c else if b then c else d)`] THEN
ASM_SIMP_TAC[DET_LINEAR_ROW_VSUM; ARITH_RULE `1 <= SUC k`] THEN
ONCE_REWRITE_TAC[TAUT
`(if a then b else if c then d else e) =
(if c then (if a then b else d) else (if a then b else e))`] THEN
ASM_SIMP_TAC[ARITH_RULE `i <= k ==> ~(i = SUC k)`] THEN
ASM_SIMP_TAC[SUM_SUM_PRODUCT; FINITE_BOUNDED_FUNCTIONS] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
EXISTS_TAC `\(y:num,g) i. if i = SUC k then y else g(i)` THEN
EXISTS_TAC `\h. h(SUC k),(\i. if i = SUC k then i else h(i))` THEN
CONJ_TAC THENL [ACCEPT_TAC BOUNDED_FUNCTIONS_BIJECTIONS_2; ALL_TAC] THEN
X_GEN_TAC `p:num#(num->num)` THEN
DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP BOUNDED_FUNCTIONS_BIJECTIONS_1) THEN
ASM_REWRITE_TAC[] THEN
SPEC_TAC(`p:num#(num->num)`,`q:num#(num->num)`) THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MAP_EVERY X_GEN_TAC [`y:num`; `g:num->num`] THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_MESON_TAC[LE; ARITH_RULE `~(SUC k <= k)`]);;
let DET_LINEAR_ROWS_VSUM = prove
(`!s a.
FINITE s
==> det((lambda i. vsum s (a i)):real^N^N) =
sum {f | (!i. 1 <= i /\ i <= dimindex(:N) ==> f(i) IN s) /\
!i. ~(1 <= i /\ i <= dimindex(:N)) ==> f(i) = i}
(\f. det((lambda i. a i (f i)):real^N^N))`,
let lemma = prove
(`(lambda i. if i <= dimindex(:N) then x(i) else y(i)):real^N^N =
(lambda i. x(i))`,
SIMP_TAC[CART_EQ; LAMBDA_BETA]) in
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`s:num->bool`; `dimindex(:N)`] DET_LINEAR_ROWS_VSUM_LEMMA) THEN
ASM_REWRITE_TAC[LE_REFL; lemma] THEN SIMP_TAC[]);;
let MATRIX_MUL_VSUM_ALT = prove
(`!A:real^N^N B:real^N^N. A ** B =
lambda i. vsum (1..dimindex(:N)) (\k. A$i$k % B$k)`,
SIMP_TAC[matrix_mul; CART_EQ; LAMBDA_BETA; VECTOR_MUL_COMPONENT;
VSUM_COMPONENT]);;
let DET_ROWS_MUL = prove
(`!a c. det((lambda i. c(i) % a(i)):real^N^N) =
product(1..dimindex(:N)) (\i. c(i)) *
det((lambda i. a(i)):real^N^N)`,
REPEAT GEN_TAC THEN SIMP_TAC[det; LAMBDA_BETA] THEN
SIMP_TAC[GSYM SUM_LMUL; FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
X_GEN_TAC `p:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC(REAL_RING `b = c * d ==> s * b = c * s * d`) THEN
SIMP_TAC[GSYM PRODUCT_MUL_NUMSEG] THEN
MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG; VECTOR_MUL_COMPONENT]);;
let DET_MUL = prove
(`!A B:real^N^N. det(A ** B) = det(A) * det(B)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MATRIX_MUL_VSUM_ALT] THEN
SIMP_TAC[DET_LINEAR_ROWS_VSUM; FINITE_NUMSEG] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum {p | p permutes 1..dimindex(:N)}
(\f. det (lambda i. (A:real^N^N)$i$f i % (B:real^N^N)$f i))` THEN
CONJ_TAC THENL
[REWRITE_TAC[DET_ROWS_MUL] THEN
MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN CONJ_TAC THENL
[MESON_TAC[permutes; IN_NUMSEG]; ALL_TAC] THEN
X_GEN_TAC `f:num->num` THEN REWRITE_TAC[permutes; IN_NUMSEG] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN
MATCH_MP_TAC DET_IDENTICAL_ROWS THEN
MP_TAC(ISPECL [`1..dimindex(:N)`; `f:num->num`]
SURJECTIVE_IFF_INJECTIVE) THEN
ASM_REWRITE_TAC[SUBSET; IN_NUMSEG; FINITE_NUMSEG; FORALL_IN_IMAGE] THEN
MATCH_MP_TAC(TAUT `(~b ==> c) /\ (b ==> ~a) ==> (a <=> b) ==> c`) THEN
CONJ_TAC THENL
[REWRITE_TAC[NOT_FORALL_THM] THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; row; NOT_IMP];
ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `!x y. (f:num->num)(x) = f(y) ==> x = y` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN
ASM_CASES_TAC `1 <= x /\ x <= dimindex(:N)` THEN
ASM_CASES_TAC `1 <= y /\ y <= dimindex(:N)` THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[det; REAL_MUL_SUM; FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
X_GEN_TAC `p:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV
[MATCH_MP SUM_PERMUTATIONS_COMPOSE_R (MATCH_MP PERMUTES_INVERSE th)]) THEN
MATCH_MP_TAC SUM_EQ THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
X_GEN_TAC `q:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
REWRITE_TAC[o_THM] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC
`(p * x) * (q * y) = (p * q) * (x * y)`] THEN
BINOP_TAC THENL
[SUBGOAL_THEN `sign(q o inverse p) = sign(p:num->num) * sign(q:num->num)`
(fun t -> SIMP_TAC[REAL_MUL_ASSOC; SIGN_IDEMPOTENT; REAL_MUL_LID; t]) THEN
ASM_MESON_TAC[SIGN_COMPOSE; PERMUTES_INVERSE; PERMUTATION_PERMUTES;
FINITE_NUMSEG; SIGN_INVERSE; REAL_MUL_SYM];
ALL_TAC] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
[MATCH_MP PRODUCT_PERMUTE_NUMSEG (ASSUME `p permutes 1..dimindex(:N)`)] THEN
SIMP_TAC[GSYM PRODUCT_MUL; FINITE_NUMSEG] THEN
MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN
ASM_SIMP_TAC[LAMBDA_BETA; LAMBDA_BETA_PERM; o_THM] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `(A:real^N^N)$i$p(i) * (B:real^N^N)$p(i)$q(i)` THEN CONJ_TAC THENL
[ASM_MESON_TAC[VECTOR_MUL_COMPONENT; PERMUTES_IN_IMAGE; IN_NUMSEG];
ASM_MESON_TAC[PERMUTES_INVERSES]]);;
let DET_LINEAR_ROWS = prove
(`!f:real^N->real^N A:real^N^N.
linear f ==> det(lambda i. f(A$i)) = det(matrix f) * det A`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM DET_TRANSP] THEN
REWRITE_TAC[GSYM DET_MUL] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN
GEN_REWRITE_TAC LAND_CONV [GSYM DET_TRANSP] THEN
REWRITE_TAC[matrix_mul; matrix_vector_mul; transp] THEN
AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA]);;
(* ------------------------------------------------------------------------- *)
(* Relation to invertibility. *)
(* ------------------------------------------------------------------------- *)
let INVERTIBLE_DET_NZ = prove
(`!A:real^N^N. invertible(A) <=> ~(det A = &0)`,
GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[INVERTIBLE_RIGHT_INVERSE; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `det:real^N^N->real`) THEN
REWRITE_TAC[DET_MUL; DET_I] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[INVERTIBLE_RIGHT_INVERSE] THEN
REWRITE_TAC[MATRIX_RIGHT_INVERTIBLE_INDEPENDENT_ROWS] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`c:num->real`; `i:num`] THEN STRIP_TAC THEN
MP_TAC(SPECL [`A:real^N^N`; `i:num`; `--(row i (A:real^N^N))`]
DET_ROW_SPAN) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN
`--(row i (A:real^N^N)) =
vsum ((1..dimindex(:N)) DELETE i) (\j. inv(c i) % c j % row j A)`
SUBST1_TAC THENL
[ASM_SIMP_TAC[VSUM_DELETE_CASES; FINITE_NUMSEG; IN_NUMSEG; VSUM_LMUL] THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV] THEN VECTOR_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC SPAN_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; FINITE_DELETE; IN_DELETE] THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN REPEAT(MATCH_MP_TAC SPAN_MUL) THEN
MATCH_MP_TAC(CONJUNCT1 SPAN_CLAUSES) THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DET_ZERO_ROW THEN
EXISTS_TAC `i:num` THEN
ASM_SIMP_TAC[row; CART_EQ; LAMBDA_BETA; VEC_COMPONENT;
VECTOR_ARITH `x + --x:real^N = vec 0`]);;
let DET_EQ_0 = prove
(`!A:real^N^N. det(A) = &0 <=> ~invertible(A)`,
REWRITE_TAC[INVERTIBLE_DET_NZ]);;
let DET_MATRIX_INV = prove
(`!A:real^N^N. det(matrix_inv A) = inv(det A)`,
GEN_TAC THEN ASM_CASES_TAC `invertible(A:real^N^N)` THENL
[MATCH_MP_TAC(REAL_FIELD `a * b = &1 ==> a = inv b`) THEN
ASM_SIMP_TAC[GSYM DET_MUL; MATRIX_INV; DET_I];
ASM_MESON_TAC[DET_EQ_0; INVERTIBLE_MATRIX_INV; REAL_INV_0]]);;
let MATRIX_MUL_LINV = prove
(`!A:real^N^N. ~(det A = &0) ==> matrix_inv A ** A = mat 1`,
SIMP_TAC[MATRIX_INV; DET_EQ_0]);;
let MATRIX_MUL_RINV = prove
(`!A:real^N^N. ~(det A = &0) ==> A ** matrix_inv A = mat 1`,
SIMP_TAC[MATRIX_INV; DET_EQ_0]);;
let DET_MATRIX_EQ_0 = prove
(`!f:real^N->real^N.
linear f
==> (det(matrix f) = &0 <=>
~(?g. linear g /\ f o g = I /\ g o f = I))`,
SIMP_TAC[DET_EQ_0; MATRIX_INVERTIBLE]);;
let DET_MATRIX_EQ_0_LEFT = prove
(`!f:real^N->real^N.
linear f
==> (det(matrix f) = &0 <=>
~(?g. linear g /\ g o f = I))`,
SIMP_TAC[DET_MATRIX_EQ_0] THEN MESON_TAC[LINEAR_INVERSE_LEFT]);;
let DET_MATRIX_EQ_0_RIGHT = prove
(`!f:real^N->real^N.
linear f
==> (det(matrix f) = &0 <=>
~(?g. linear g /\ f o g = I))`,
SIMP_TAC[DET_MATRIX_EQ_0] THEN MESON_TAC[LINEAR_INVERSE_LEFT]);;
let DET_EQ_0_RANK = prove
(`!A:real^N^N. det A = &0 <=> rank A < dimindex(:N)`,
REWRITE_TAC[DET_EQ_0; INVERTIBLE_LEFT_INVERSE; GSYM FULL_RANK_INJECTIVE;
MATRIX_LEFT_INVERTIBLE_INJECTIVE] THEN
GEN_TAC THEN MP_TAC(ISPEC `A:real^N^N` RANK_BOUND) THEN
ARITH_TAC);;
let RANK_EQ_FULL_DET = prove
(`!A:real^N^N. rank A = dimindex(:N) <=> ~(det A = &0)`,
GEN_TAC THEN MP_TAC(ISPEC `A:real^N^N` RANK_BOUND) THEN
SIMP_TAC[DET_EQ_0_RANK; NOT_LT; GSYM LE_ANTISYM; ARITH_RULE `MIN n n = n`]);;
let INVERTIBLE_COVARIANCE_RANK = prove
(`!A:real^N^M. invertible(transp A ** A) <=> rank A = dimindex(:N)`,
REWRITE_TAC[INVERTIBLE_DET_NZ; GSYM RANK_EQ_FULL_DET; RANK_GRAM]);;
let HOMOGENEOUS_LINEAR_EQUATIONS_DET = prove
(`!A:real^N^N. (?x. ~(x = vec 0) /\ A ** x = vec 0) <=> det A = &0`,
GEN_TAC THEN
REWRITE_TAC[MATRIX_NONFULL_LINEAR_EQUATIONS_EQ; DET_EQ_0_RANK] THEN
MATCH_MP_TAC(ARITH_RULE `r <= MIN N N ==> (~(r = N) <=> r < N)`) THEN
REWRITE_TAC[RANK_BOUND]);;
let INVERTIBLE_MATRIX_MUL = prove
(`!A:real^N^N B:real^N^N.
invertible(A ** B) <=> invertible A /\ invertible B`,
REWRITE_TAC[INVERTIBLE_DET_NZ; DET_MUL; DE_MORGAN_THM; REAL_ENTIRE]);;
let MATRIX_INV_MUL = prove
(`!A:real^N^N B:real^N^N.
invertible A /\ invertible B
==> matrix_inv(A ** B) = matrix_inv B ** matrix_inv A`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_INV_UNIQUE THEN
ONCE_REWRITE_TAC[MATRIX_MUL_ASSOC] THEN
GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV o LAND_CONV)
[GSYM MATRIX_MUL_ASSOC] THEN
ASM_SIMP_TAC[MATRIX_MUL_LINV; DET_EQ_0; MATRIX_MUL_RID; MATRIX_MUL_RINV]);;
let DET_SIMILAR = prove
(`!S:real^N^N A. invertible S ==> det(matrix_inv S ** A ** S) = det A`,
REWRITE_TAC[INVERTIBLE_DET_NZ; DET_MUL; DET_MATRIX_INV] THEN
CONV_TAC REAL_FIELD);;
let INVERTIBLE_NEARBY_ONORM = prove
(`!A B:real^N^N.
invertible A /\
onorm(\x. (B - A) ** x) < inv(onorm(\x. matrix_inv A ** x))
==> invertible B`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM ONORM_NEG] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_LNEG; MATRIX_NEG_SUB] THEN DISCH_TAC THEN
ABBREV_TAC `S = matrix_inv(A:real^N^N) ** (A - B)` THEN
SUBGOAL_THEN `B = (A:real^N^N) ** (mat 1 - S:real^N^N)` SUBST1_TAC THENL
[EXPAND_TAC "S" THEN
REWRITE_TAC[MATRIX_SUB_LDISTRIB; MATRIX_MUL_ASSOC] THEN
ASM_SIMP_TAC[MATRIX_INV; MATRIX_MUL_RID; MATRIX_MUL_LID] THEN
REWRITE_TAC[MATRIX_SUB; MATRIX_NEG_ADD] THEN
REWRITE_TAC[MATRIX_ADD_RNEG; MATRIX_ADD_ASSOC; MATRIX_ADD_LID] THEN
REWRITE_TAC[MATRIX_NEG_NEG];
ASM_REWRITE_TAC[INVERTIBLE_MATRIX_MUL]] THEN
REWRITE_TAC[INVERTIBLE_LEFT_INVERSE; MATRIX_LEFT_INVERTIBLE_KER] THEN
X_GEN_TAC `x:real^N` THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_SUB_RDISTRIB; VECTOR_SUB_EQ] THEN
CONV_TAC(LAND_CONV SYM_CONV) THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LID] THEN
DISCH_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN
MP_TAC(ISPECL
[`\x:real^N. matrix_inv(A:real^N^N) ** x`;
`\x:real^N. (A - B:real^N^N) ** x`]
ONORM_COMPOSE) THEN
ASM_SIMP_TAC[MATRIX_VECTOR_MUL_LINEAR; o_DEF; MATRIX_VECTOR_MUL_ASSOC] THEN
REWRITE_TAC[REAL_NOT_LE] THEN TRANS_TAC REAL_LTE_TRANS `&1` THEN
CONJ_TAC THENL
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
W(MP_TAC o PART_MATCH (rand o rand) REAL_LT_RDIV_EQ o snd) THEN
ASM_REWRITE_TAC[real_div; REAL_MUL_LID] THEN
DISCH_THEN MATCH_MP_TAC THEN
SIMP_TAC[ONORM_POS_LT; MATRIX_VECTOR_MUL_LINEAR] THEN
REWRITE_TAC[GSYM MATRIX_EQ_0; MATRIX_INV_EQ_0] THEN
ASM_MESON_TAC[INVERTIBLE_MAT];
MP_TAC(ISPEC `\x:real^N. (S:real^N^N) ** x` ONORM) THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN
DISCH_THEN(MP_TAC o SPEC `x:real^N` o CONJUNCT1) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM REAL_MUL_LID] THEN
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; NORM_POS_LT]]);;
let INVERTIBLE_NEARBY = prove
(`!A:real^N^N.
invertible A
==> ?e. &0 < e /\ !B. onorm(\x. (B - A) ** x) < e ==> invertible B`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `inv(onorm(\x. matrix_inv(A:real^N^N) ** x))` THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[INVERTIBLE_NEARBY_ONORM]] THEN
SIMP_TAC[REAL_LT_INV_EQ; ONORM_POS_LT; MATRIX_VECTOR_MUL_LINEAR] THEN
REWRITE_TAC[GSYM MATRIX_EQ_0; MATRIX_INV_EQ_0] THEN
ASM_MESON_TAC[INVERTIBLE_MAT]);;
(* ------------------------------------------------------------------------- *)
(* Cramer's rule. *)
(* ------------------------------------------------------------------------- *)
let CRAMER_LEMMA_TRANSP = prove
(`!A:real^N^N x:real^N.
1 <= k /\ k <= dimindex(:N)
==> det((lambda i. if i = k
then vsum(1..dimindex(:N)) (\i. x$i % row i A)
else row i A):real^N^N) =
x$k * det A`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `1..dimindex(:N) = k INSERT ((1..dimindex(:N)) DELETE k)`
SUBST1_TAC THENL [ASM_MESON_TAC[INSERT_DELETE; IN_NUMSEG]; ALL_TAC] THEN
SIMP_TAC[VSUM_CLAUSES; FINITE_NUMSEG; FINITE_DELETE; IN_DELETE] THEN
REWRITE_TAC[VECTOR_ARITH
`(x:real^N)$k % row k (A:real^N^N) + s =
(x$k - &1) % row k A + row k A + s`] THEN
W(MP_TAC o PART_MATCH (lhs o rand) DET_ROW_ADD o lhand o snd) THEN
ASM_SIMP_TAC[DET_ROW_MUL] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC(REAL_RING `d = d' /\ e = d' ==> (c - &1) * d + e = c * d'`) THEN
CONJ_TAC THENL
[AP_TERM_TAC THEN ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; row];
MATCH_MP_TAC DET_ROW_SPAN THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SPAN_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; FINITE_DELETE; IN_DELETE] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN
MATCH_MP_TAC(CONJUNCT1 SPAN_CLAUSES) THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]]);;
let CRAMER_LEMMA = prove
(`!A:real^N^N x:real^N.
1 <= k /\ k <= dimindex(:N)
==> det((lambda i j. if j = k then (A**x)$i else A$i$j):real^N^N) =
x$k * det(A)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[MATRIX_MUL_VSUM] THEN
FIRST_ASSUM(MP_TAC o SYM o SPECL [`transp(A:real^N^N)`; `x:real^N`] o
MATCH_MP CRAMER_LEMMA_TRANSP) THEN
REWRITE_TAC[DET_TRANSP] THEN DISCH_THEN SUBST1_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM DET_TRANSP] THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; MATRIX_MUL_VSUM; row; column;
COND_COMPONENT; VECTOR_MUL_COMPONENT; VSUM_COMPONENT]);;
let CRAMER = prove
(`!A:real^N^N x b.
~(det(A) = &0)
==> (A ** x = b <=>
x = lambda k.
det((lambda i j. if j = k then b$i else A$i$j):real^N^N) /
det(A))`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(MESON[]
`(?x. p(x)) /\ (!x. p(x) ==> x = a) ==> !x. p(x) <=> x = a`) THEN
CONJ_TAC THENL
[MP_TAC(SPEC `A:real^N^N` INVERTIBLE_DET_NZ) THEN
ASM_MESON_TAC[invertible; MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID];
GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[CART_EQ; CRAMER_LEMMA; LAMBDA_BETA; REAL_FIELD
`~(z = &0) ==> (x = y / z <=> x * z = y)`]]);;
(* ------------------------------------------------------------------------- *)
(* Variants of Cramer's rule for matrix-matrix multiplication. *)
(* ------------------------------------------------------------------------- *)
let CRAMER_MATRIX_LEFT = prove
(`!A:real^N^N X:real^N^N B:real^N^N.
~(det A = &0)
==> (X ** A = B <=>
X = lambda k l.
det((lambda i j. if j = l then B$k$i else A$j$i):real^N^N) /
det A)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CART_EQ] THEN
ASM_SIMP_TAC[MATRIX_MUL_COMPONENT; CRAMER; DET_TRANSP] THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPLICATE_TAC 2 (AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC) THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; transp]);;
let CRAMER_MATRIX_RIGHT = prove
(`!A:real^N^N X:real^N^N B:real^N^N.
~(det A = &0)
==> (A ** X = B <=>
X = lambda k l.
det((lambda i j. if j = k then B$i$l else A$i$j):real^N^N) /
det A)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM TRANSP_EQ] THEN
REWRITE_TAC[MATRIX_TRANSP_MUL] THEN
ASM_SIMP_TAC[CRAMER_MATRIX_LEFT; DET_TRANSP] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM TRANSP_EQ] THEN
REWRITE_TAC[TRANSP_TRANSP] THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; transp] THEN
REPEAT(GEN_TAC THEN STRIP_TAC) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; transp]);;
let CRAMER_MATRIX_RIGHT_INVERSE = prove
(`!A:real^N^N A':real^N^N.
A ** A' = mat 1 <=>
~(det A = &0) /\
A' = lambda k l.
det((lambda i j. if j = k then if i = l then &1 else &0
else A$i$j):real^N^N) /
det A`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `det(A:real^N^N) = &0` THENL
[ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o AP_TERM `det:real^N^N->real`) THEN
ASM_REWRITE_TAC[DET_MUL; DET_I] THEN REAL_ARITH_TAC;
ASM_SIMP_TAC[CRAMER_MATRIX_RIGHT] THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPEAT(GEN_TAC THEN STRIP_TAC) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA; mat]]);;
let CRAMER_MATRIX_LEFT_INVERSE = prove
(`!A:real^N^N A':real^N^N.
A' ** A = mat 1 <=>
~(det A = &0) /\
A' = lambda k l.
det((lambda i j. if j = l then if i = k then &1 else &0
else A$j$i):real^N^N) /
det A`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `det(A:real^N^N) = &0` THENL
[ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o AP_TERM `det:real^N^N->real`) THEN
ASM_REWRITE_TAC[DET_MUL; DET_I] THEN REAL_ARITH_TAC;
ASM_SIMP_TAC[CRAMER_MATRIX_LEFT] THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPEAT(GEN_TAC THEN STRIP_TAC) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA; mat] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Cofactors and their relationship to inverse matrices. *)
(* ------------------------------------------------------------------------- *)
let cofactor = new_definition
`(cofactor:real^N^N->real^N^N) A =
lambda i j. det((lambda k l. if k = i /\ l = j then &1
else if k = i \/ l = j then &0
else A$k$l):real^N^N)`;;
let COFACTOR_TRANSP = prove
(`!A:real^N^N. cofactor(transp A) = transp(cofactor A)`,
SIMP_TAC[cofactor; CART_EQ; LAMBDA_BETA; transp] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM DET_TRANSP] THEN
AP_TERM_TAC THEN SIMP_TAC[cofactor; CART_EQ; LAMBDA_BETA; transp] THEN
MESON_TAC[]);;
let COFACTOR_COLUMN = prove
(`!A:real^N^N.
cofactor A =
lambda i j. det((lambda k l. if l = j then if k = i then &1 else &0
else A$k$l):real^N^N)`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN
SIMP_TAC[cofactor; CART_EQ; LAMBDA_BETA] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
REWRITE_TAC[det] THEN MATCH_MP_TAC SUM_EQ THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN GEN_TAC THEN
DISCH_TAC THEN AP_TERM_TAC THEN
ASM_CASES_TAC `(p:num->num) i = j` THENL
[MATCH_MP_TAC PRODUCT_EQ THEN
X_GEN_TAC `k:num` THEN SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN STRIP_TAC THEN
SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL
[ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG];
SIMP_TAC[LAMBDA_BETA; IN_NUMSEG] THEN STRIP_TAC] THEN
ASM_CASES_TAC `(p:num->num) k = j` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
MATCH_MP_TAC(REAL_ARITH `s = &0 /\ t = &0 ==> s = t`) THEN
ASM_SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG] THEN CONJ_TAC THEN
EXISTS_TAC `inverse (p:num->num) j` THEN
ASM_SIMP_TAC[IN_NUMSEG; LAMBDA_BETA] THEN
(SUBGOAL_THEN `inverse(p:num->num) j IN 1..dimindex(:N)` MP_TAC THENL
[ASM_MESON_TAC[PERMUTES_IN_IMAGE; PERMUTES_INVERSE; IN_NUMSEG];
SIMP_TAC[LAMBDA_BETA; IN_NUMSEG] THEN STRIP_TAC] THEN
SUBGOAL_THEN `(p:num->num)(inverse p j) = j` SUBST1_TAC THENL
[ASM_MESON_TAC[PERMUTES_INVERSES; IN_NUMSEG];
ASM_SIMP_TAC[LAMBDA_BETA] THEN
ASM_MESON_TAC[PERMUTES_INVERSE_EQ]])]);;
let COFACTOR_ROW = prove
(`!A:real^N^N.
cofactor A =
lambda i j. det((lambda k l. if k = i then if l = j then &1 else &0
else A$k$l):real^N^N)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM TRANSP_EQ] THEN
REWRITE_TAC[GSYM COFACTOR_TRANSP] THEN
SIMP_TAC[COFACTOR_COLUMN; CART_EQ; LAMBDA_BETA; transp] THEN
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM DET_TRANSP] THEN
AP_TERM_TAC THEN SIMP_TAC[cofactor; CART_EQ; LAMBDA_BETA; transp]);;
let MATRIX_RIGHT_INVERSE_COFACTOR = prove
(`!A:real^N^N A':real^N^N.
A ** A' = mat 1 <=>
~(det A = &0) /\ A' = inv(det A) %% transp(cofactor A)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CRAMER_MATRIX_RIGHT_INVERSE] THEN
ASM_CASES_TAC `det(A:real^N^N) = &0` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; MATRIX_CMUL_COMPONENT] THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN
X_GEN_TAC `l:num` THEN STRIP_TAC THEN
REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[transp; COFACTOR_COLUMN; LAMBDA_BETA] THEN
AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA]);;
let MATRIX_LEFT_INVERSE_COFACTOR = prove
(`!A:real^N^N A':real^N^N.
A' ** A = mat 1 <=>
~(det A = &0) /\ A' = inv(det A) %% transp(cofactor A)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[MATRIX_LEFT_RIGHT_INVERSE] THEN
REWRITE_TAC[MATRIX_RIGHT_INVERSE_COFACTOR]);;
let MATRIX_INV_COFACTOR = prove
(`!A. ~(det A = &0) ==> matrix_inv A = inv(det A) %% transp(cofactor A)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP MATRIX_MUL_LINV) THEN
SIMP_TAC[MATRIX_LEFT_INVERSE_COFACTOR]);;
let COFACTOR_MATRIX_INV = prove
(`!A:real^N^N. ~(det A = &0) ==> cofactor A = det(A) %% transp(matrix_inv A)`,
SIMP_TAC[MATRIX_INV_COFACTOR; TRANSP_MATRIX_CMUL; TRANSP_TRANSP] THEN
SIMP_TAC[MATRIX_CMUL_ASSOC; REAL_MUL_RINV; MATRIX_CMUL_LID]);;
let COFACTOR_I = prove
(`cofactor(mat 1:real^N^N) = mat 1`,
SIMP_TAC[COFACTOR_MATRIX_INV; DET_I; REAL_OF_NUM_EQ; ARITH_EQ] THEN
REWRITE_TAC[MATRIX_INV_I; MATRIX_CMUL_LID; TRANSP_MAT]);;
let DET_COFACTOR_EXPANSION = prove
(`!A:real^N^N i.
1 <= i /\ i <= dimindex(:N)
==> det A = sum (1..dimindex(:N))
(\j. A$i$j * (cofactor A)$i$j)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[COFACTOR_COLUMN; LAMBDA_BETA; det] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SUM_SWAP o rand o snd) THEN
ANTS_TAC THENL [SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
MATCH_MP_TAC SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN
GEN_TAC THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a * s * p:real = s * a * p`] THEN
REWRITE_TAC[SUM_LMUL] THEN AP_TERM_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`sum (1..dimindex (:N))
(\j. (A:real^N^N)$i$j *
product
(inverse p j INSERT ((1..dimindex(:N)) DELETE (inverse p j)))
(\k. if k = inverse p j then if k = i then &1 else &0
else A$k$(p k)))` THEN
CONJ_TAC THENL
[SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_PERMUTATIONS;
FINITE_NUMSEG; IN_DELETE] THEN
SUBGOAL_THEN `!j. inverse (p:num->num) j = i <=> j = p i`
(fun th -> REWRITE_TAC[th])
THENL [ASM_MESON_TAC[PERMUTES_INVERSES; IN_NUMSEG]; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH
`x * (if p then &1 else &0) * y = if p then x * y else &0`] THEN
SIMP_TAC[SUM_DELTA] THEN COND_CASES_TAC THENL
[ALL_TAC; ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]] THEN
SUBGOAL_THEN
`1..dimindex(:N) = i INSERT ((1..dimindex(:N)) DELETE i)`
(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th])
THENL
[ASM_SIMP_TAC[IN_NUMSEG; SET_RULE `s = x INSERT (s DELETE x) <=> x IN s`];
SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG; IN_DELETE] THEN
AP_TERM_TAC THEN MATCH_MP_TAC(MESON[PRODUCT_EQ]
`s = t /\ (!x. x IN t ==> f x = g x) ==> product s f = product t g`) THEN
SIMP_TAC[IN_DELETE] THEN ASM_MESON_TAC[PERMUTES_INVERSES; IN_NUMSEG]];
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN AP_TERM_TAC THEN MATCH_MP_TAC(MESON[PRODUCT_EQ]
`s = t /\ (!x. x IN t ==> f x = g x) ==> product s f = product t g`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SET_RULE `x INSERT (s DELETE x) = s <=> x IN s`] THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG; PERMUTES_INVERSE];
X_GEN_TAC `k:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
SUBGOAL_THEN `(p:num->num) k IN 1..dimindex(:N)` MP_TAC THENL
[ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN
SIMP_TAC[LAMBDA_BETA; IN_NUMSEG] THEN
ASM_MESON_TAC[PERMUTES_INVERSES; IN_NUMSEG]]]);;
let MATRIX_MUL_RIGHT_COFACTOR = prove
(`!A:real^N^N. A ** transp(cofactor A) = det(A) %% mat 1`,
GEN_TAC THEN
SIMP_TAC[CART_EQ; MATRIX_CMUL_COMPONENT; mat;
matrix_mul; LAMBDA_BETA; transp] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `i':num` THEN STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[GSYM DET_COFACTOR_EXPANSION; REAL_MUL_RID] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `det((lambda k l. if k = i' then (A:real^N^N)$i$l
else A$k$l):real^N^N)` THEN
CONJ_TAC THENL
[MP_TAC(GEN `A:real^N^N`
(ISPECL [`A:real^N^N`; `i':num`] DET_COFACTOR_EXPANSION)) THEN
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `j:num` THEN
REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
ASM_SIMP_TAC[LAMBDA_BETA] THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[cofactor; LAMBDA_BETA] THEN AP_TERM_TAC THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN ASM_MESON_TAC[];
REWRITE_TAC[REAL_MUL_RZERO] THEN MATCH_MP_TAC DET_IDENTICAL_ROWS THEN
MAP_EVERY EXISTS_TAC [`i:num`;` i':num`] THEN
ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA; row]]);;
let MATRIX_MUL_LEFT_COFACTOR = prove
(`!A:real^N^N. transp(cofactor A) ** A = det(A) %% mat 1`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM TRANSP_EQ] THEN
REWRITE_TAC[MATRIX_TRANSP_MUL] THEN
ONCE_REWRITE_TAC[GSYM COFACTOR_TRANSP] THEN
REWRITE_TAC[MATRIX_MUL_RIGHT_COFACTOR; TRANSP_MATRIX_CMUL] THEN
REWRITE_TAC[DET_TRANSP; TRANSP_MAT]);;
let COFACTOR_CMUL = prove
(`!A:real^N^N c. cofactor(c %% A) = c pow (dimindex(:N) - 1) %% cofactor A`,
REPEAT GEN_TAC THEN
SIMP_TAC[CART_EQ; cofactor; LAMBDA_BETA; MATRIX_CMUL_COMPONENT] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
REWRITE_TAC[det; GSYM SUM_LMUL] THEN
MATCH_MP_TAC SUM_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN
X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a * b * c:real = b * a * c`] THEN
AP_TERM_TAC THEN
SUBGOAL_THEN
`1..dimindex (:N) = i INSERT ((1..dimindex (:N)) DELETE i)`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_NUMSEG; IN_DELETE] THEN ASM_ARITH_TAC;
SIMP_TAC[PRODUCT_CLAUSES; FINITE_DELETE; FINITE_NUMSEG; IN_DELETE]] THEN
SUBGOAL_THEN
`1 <= (p:num->num) i /\ p i <= dimindex(:N)`
ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_IMAGE) THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN ASM SET_TAC[];
ASM_SIMP_TAC[LAMBDA_BETA]] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
SUBGOAL_THEN
`dimindex(:N) - 1 = CARD((1..dimindex(:N)) DELETE i)`
SUBST1_TAC THENL
[ASM_SIMP_TAC[CARD_DELETE; FINITE_NUMSEG; IN_NUMSEG; CARD_NUMSEG_1];
ASM_SIMP_TAC[REAL_MUL_LID; GSYM PRODUCT_CONST; FINITE_NUMSEG;
FINITE_DELETE; GSYM PRODUCT_MUL]] THEN
MATCH_MP_TAC PRODUCT_EQ THEN
X_GEN_TAC `k:num` THEN REWRITE_TAC[IN_DELETE; IN_NUMSEG] THEN STRIP_TAC THEN
SUBGOAL_THEN
`1 <= (p:num->num) k /\ p k <= dimindex(:N)`
ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_IMAGE) THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN ASM SET_TAC[];
ASM_SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC]);;
let COFACTOR_0 = prove
(`cofactor(mat 0:real^N^N) = if dimindex(:N) = 1 then mat 1 else mat 0`,
MP_TAC(ISPECL [`mat 1:real^N^N`; `&0`] COFACTOR_CMUL) THEN
REWRITE_TAC[MATRIX_CMUL_LZERO; COFACTOR_I; REAL_POW_ZERO] THEN
DISCH_THEN SUBST1_TAC THEN
SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> (n - 1 = 0 <=> n = 1)`] THEN
COND_CASES_TAC THEN REWRITE_TAC[MATRIX_CMUL_LZERO; MATRIX_CMUL_LID]);;
(* ------------------------------------------------------------------------- *)
(* Explicit formulas for low dimensions. *)
(* ------------------------------------------------------------------------- *)
let PRODUCT_1 = prove
(`product(1..1) f = f(1)`,
REWRITE_TAC[PRODUCT_SING_NUMSEG]);;
let PRODUCT_2 = prove
(`!t. product(1..2) t = t(1) * t(2)`,
REWRITE_TAC[num_CONV `2`; PRODUCT_CLAUSES_NUMSEG] THEN
REWRITE_TAC[PRODUCT_SING_NUMSEG; ARITH; REAL_MUL_ASSOC]);;
let PRODUCT_3 = prove
(`!t. product(1..3) t = t(1) * t(2) * t(3)`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; PRODUCT_CLAUSES_NUMSEG] THEN
REWRITE_TAC[PRODUCT_SING_NUMSEG; ARITH; REAL_MUL_ASSOC]);;
let PRODUCT_4 = prove
(`!t. product(1..4) t = t(1) * t(2) * t(3) * t(4)`,
REWRITE_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`;
PRODUCT_CLAUSES_NUMSEG] THEN
REWRITE_TAC[PRODUCT_SING_NUMSEG; ARITH; REAL_MUL_ASSOC]);;
let DET_1_GEN = prove
(`!A:real^N^N. dimindex(:N) = 1 ==> det A = A$1$1`,
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[det; PERMUTES_SING; NUMSEG_SING] THEN
REWRITE_TAC[SUM_SING; SET_RULE `{x | x = a} = {a}`; PRODUCT_SING] THEN
REWRITE_TAC[SIGN_I; I_THM] THEN REAL_ARITH_TAC);;
let DET_1 = prove
(`!A:real^1^1. det A = A$1$1`,
SIMP_TAC[DET_1_GEN; DIMINDEX_1]);;
let DET_2 = prove
(`!A:real^2^2. det A = A$1$1 * A$2$2 - A$1$2 * A$2$1`,
GEN_TAC THEN REWRITE_TAC[det; DIMINDEX_2] THEN
CONV_TAC(LAND_CONV(RATOR_CONV(ONCE_DEPTH_CONV NUMSEG_CONV))) THEN
SIMP_TAC[SUM_OVER_PERMUTATIONS_INSERT; FINITE_INSERT; FINITE_EMPTY;
ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[PERMUTES_EMPTY; SUM_SING; SET_RULE `{x | x = a} = {a}`] THEN
REWRITE_TAC[SWAP_REFL; I_O_ID] THEN
REWRITE_TAC[GSYM(NUMSEG_CONV `1..2`); SUM_2] THEN
SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[SIGN_COMPOSE; PERMUTATION_SWAP] THEN
REWRITE_TAC[SIGN_SWAP; ARITH] THEN REWRITE_TAC[PRODUCT_2] THEN
REWRITE_TAC[o_THM; swap; ARITH] THEN REAL_ARITH_TAC);;
let DET_3 = prove
(`!A:real^3^3.
det(A) = A$1$1 * A$2$2 * A$3$3 +
A$1$2 * A$2$3 * A$3$1 +
A$1$3 * A$2$1 * A$3$2 -
A$1$1 * A$2$3 * A$3$2 -
A$1$2 * A$2$1 * A$3$3 -
A$1$3 * A$2$2 * A$3$1`,
GEN_TAC THEN REWRITE_TAC[det; DIMINDEX_3] THEN
CONV_TAC(LAND_CONV(RATOR_CONV(ONCE_DEPTH_CONV NUMSEG_CONV))) THEN
SIMP_TAC[SUM_OVER_PERMUTATIONS_INSERT; FINITE_INSERT; FINITE_EMPTY;
ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[PERMUTES_EMPTY; SUM_SING; SET_RULE `{x | x = a} = {a}`] THEN
REWRITE_TAC[SWAP_REFL; I_O_ID] THEN
REWRITE_TAC[GSYM(NUMSEG_CONV `1..3`); SUM_3] THEN
SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[SIGN_COMPOSE; PERMUTATION_SWAP] THEN
REWRITE_TAC[SIGN_SWAP; ARITH] THEN REWRITE_TAC[PRODUCT_3] THEN
REWRITE_TAC[o_THM; swap; ARITH] THEN REAL_ARITH_TAC);;
let DET_4 = prove
(`!A:real^4^4.
det(A) = A$1$1 * A$2$2 * A$3$3 * A$4$4 +
A$1$1 * A$2$3 * A$3$4 * A$4$2 +
A$1$1 * A$2$4 * A$3$2 * A$4$3 +
A$1$2 * A$2$1 * A$3$4 * A$4$3 +
A$1$2 * A$2$3 * A$3$1 * A$4$4 +
A$1$2 * A$2$4 * A$3$3 * A$4$1 +
A$1$3 * A$2$1 * A$3$2 * A$4$4 +
A$1$3 * A$2$2 * A$3$4 * A$4$1 +
A$1$3 * A$2$4 * A$3$1 * A$4$2 +
A$1$4 * A$2$1 * A$3$3 * A$4$2 +
A$1$4 * A$2$2 * A$3$1 * A$4$3 +
A$1$4 * A$2$3 * A$3$2 * A$4$1 -
A$1$1 * A$2$2 * A$3$4 * A$4$3 -
A$1$1 * A$2$3 * A$3$2 * A$4$4 -
A$1$1 * A$2$4 * A$3$3 * A$4$2 -
A$1$2 * A$2$1 * A$3$3 * A$4$4 -
A$1$2 * A$2$3 * A$3$4 * A$4$1 -
A$1$2 * A$2$4 * A$3$1 * A$4$3 -
A$1$3 * A$2$1 * A$3$4 * A$4$2 -
A$1$3 * A$2$2 * A$3$1 * A$4$4 -
A$1$3 * A$2$4 * A$3$2 * A$4$1 -
A$1$4 * A$2$1 * A$3$2 * A$4$3 -
A$1$4 * A$2$2 * A$3$3 * A$4$1 -
A$1$4 * A$2$3 * A$3$1 * A$4$2`,
let lemma = prove
(`(sum {3,4} f = f 3 + f 4) /\
(sum {2,3,4} f = f 2 + f 3 + f 4)`,
SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN REAL_ARITH_TAC) in
GEN_TAC THEN REWRITE_TAC[det; DIMINDEX_4] THEN
CONV_TAC(LAND_CONV(RATOR_CONV(ONCE_DEPTH_CONV NUMSEG_CONV))) THEN
SIMP_TAC[SUM_OVER_PERMUTATIONS_INSERT; FINITE_INSERT; FINITE_EMPTY;
ARITH_EQ; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[PERMUTES_EMPTY; SUM_SING; SET_RULE `{x | x = a} = {a}`] THEN
REWRITE_TAC[SWAP_REFL; I_O_ID] THEN
REWRITE_TAC[GSYM(NUMSEG_CONV `1..4`); SUM_4; lemma] THEN
SIMP_TAC[SIGN_COMPOSE; PERMUTATION_SWAP; PERMUTATION_COMPOSE] THEN
REWRITE_TAC[SIGN_SWAP; ARITH] THEN REWRITE_TAC[PRODUCT_4] THEN
REWRITE_TAC[o_THM; swap; ARITH] THEN REAL_ARITH_TAC);;
let COFACTOR_1_GEN = prove
(`!A:real^N^N. dimindex(:N) = 1 ==> cofactor A = mat 1`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[CART_EQ; mat; cofactor; LAMBDA_BETA; DET_1_GEN; ARITH] THEN
REWRITE_TAC[LE_ANTISYM] THEN MESON_TAC[]);;
let COFACTOR_1 = prove
(`!A:real^1^1. cofactor A = mat 1`,
SIMP_TAC[COFACTOR_1_GEN; DIMINDEX_1]);;
(* ------------------------------------------------------------------------- *)
(* Disjoint or subset-related halfspaces and hyperplanes are parallel. *)
(* ------------------------------------------------------------------------- *)
let DISJOINT_HYPERPLANES_IMP_COLLINEAR = prove
(`!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x = d}
==> collinear {vec 0, a, b}`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`DISJOINT {x:real^N | a dot x = c} {x | b dot x = d}
==> !u v. a dot (u % a + v % b) = c /\
b dot (u % a + v % b) = d ==> F`)) THEN
REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
MP_TAC(ISPECL
[`vector[vector[(a:real^N) dot a; a dot b];
vector[a dot b; b dot b]]:real^2^2`;
`vector[c;d]:real^2`] MATRIX_FULL_LINEAR_EQUATIONS) THEN
REWRITE_TAC[RANK_EQ_FULL_DET] THEN
SIMP_TAC[CART_EQ; DIMINDEX_2; MATRIX_VECTOR_MUL_COMPONENT; ARITH;
VECTOR_2; FORALL_2; DOT_2; EXISTS_VECTOR_2; DET_2] THEN
MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL
[REWRITE_TAC[CONTRAPOS_THM]; MESON_TAC[DOT_SYM; REAL_MUL_SYM]] THEN
REWRITE_TAC[REAL_ARITH `a - b * b = &0 <=> b pow 2 = a`] THEN
REWRITE_TAC[DOT_CAUCHY_SCHWARZ_EQUAL]);;
let DISJOINT_HALFSPACES_IMP_COLLINEAR = prove
(`(!a b:real^N c d.
DISJOINT {x | a dot x < c} {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x < c} {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x < c} {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x < c} {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x < c} {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x <= c} {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x <= c} {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x <= c} {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x <= c} {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x <= c} {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x = c} {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x >= c} {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x >= c} {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x >= c} {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x >= c} {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x >= c} {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x > c} {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x > c} {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x > c} {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x > c} {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
DISJOINT {x | a dot x > c} {x | b dot x > d}
==> collinear {vec 0, a, b})`,
let lemma = prove
(`(!a b:real^N. collinear {vec 0,--a,b} <=> collinear{vec 0,a,b}) /\
(!a b:real^N. collinear {vec 0,a,--b} <=> collinear{vec 0,a,b})`,
REWRITE_TAC[COLLINEAR_LEMMA_ALT; VECTOR_NEG_EQ_0] THEN
REWRITE_TAC[VECTOR_ARITH `b:real^N = c % --a <=> b = --c % a`;
VECTOR_ARITH `--b:real^N = c % a <=> b = --c % a`] THEN
REWRITE_TAC[MESON[REAL_NEG_NEG] `(?x:real. P(--x)) <=> ?x. P x`]) in
REWRITE_TAC[REAL_ARITH `x >= d <=> --x <= --d`;
REAL_ARITH `x > d <=> --x < --d`] THEN
REWRITE_TAC[GSYM DOT_LNEG] THEN REPEAT STRIP_TAC THEN
REPLICATE_TAC 2
(TRY(FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`DISJOINT {x | a dot x <= b} t
==> (!x y. x < y ==> x <= y) ==> DISJOINT {x | a dot x < b} t`)) THEN
REWRITE_TAC[REAL_LT_IMP_LE] THEN DISCH_TAC) THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[DISJOINT_SYM])) THEN
REPLICATE_TAC 2
(TRY(FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`DISJOINT {x | a dot x < b} t
==> b - &1 < b ==> DISJOINT {x | a dot x = b - &1} t`)) THEN
REWRITE_TAC[ARITH_RULE `c - &1 < c`] THEN DISCH_TAC) THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[DISJOINT_SYM])) THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DISJOINT_HYPERPLANES_IMP_COLLINEAR) THEN
REWRITE_TAC[lemma]);;
let SUBSET_HALFSPACES_IMP_COLLINEAR = prove
(`(!a b:real^N c d.
{x | a dot x < c} SUBSET {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x < c} SUBSET {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x < c} SUBSET {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x < c} SUBSET {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x < c} SUBSET {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x <= c} SUBSET {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x <= c} SUBSET {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x <= c} SUBSET {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x <= c} SUBSET {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x <= c} SUBSET {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x = c} SUBSET {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x = c} SUBSET {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x = c} SUBSET {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x = c} SUBSET {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x = c} SUBSET {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x >= c} SUBSET {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x >= c} SUBSET {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x >= c} SUBSET {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x >= c} SUBSET {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x >= c} SUBSET {x | b dot x > d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x > c} SUBSET {x | b dot x < d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x > c} SUBSET {x | b dot x <= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x > c} SUBSET {x | b dot x = d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x > c} SUBSET {x | b dot x >= d}
==> collinear {vec 0, a, b}) /\
(!a b:real^N c d.
{x | a dot x > c} SUBSET {x | b dot x > d}
==> collinear {vec 0, a, b})`,
REWRITE_TAC[SET_RULE `s SUBSET {x | P x} <=> DISJOINT s {x | ~P x}`] THEN
REWRITE_TAC[REAL_ARITH
`(~(x < a) <=> x >= a) /\ (~(x <= a) <=> x > a) /\
(~(x = a) <=> x > a \/ x < a) /\
(~(x > a) <=> x <= a) /\ (~(x >= a) <=> x < a)`] THEN
REWRITE_TAC[SET_RULE
`DISJOINT s {x | P x \/ Q x} <=>
DISJOINT s {x | P x} /\ DISJOINT s {x | Q x}`] THEN
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
TRY(DISCH_THEN(MP_TAC o CONJUNCT1)) THEN
REWRITE_TAC[DISJOINT_HALFSPACES_IMP_COLLINEAR]);;
let SUBSET_HYPERPLANES = prove
(`!a b a' b'.
{x | a dot x = b} SUBSET {x | a' dot x = b'} <=>
{x | a dot x = b} = {} \/ {x | a' dot x = b'} = (:real^N) \/
{x | a dot x = b} = {x | a' dot x = b'}`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `{x:real^N | a dot x = b} = {}` THEN
ASM_REWRITE_TAC[EMPTY_SUBSET] THEN
ASM_CASES_TAC `{x | a' dot x = b'} = (:real^N)` THEN
ASM_REWRITE_TAC[SUBSET_UNIV] THEN
RULE_ASSUM_TAC(REWRITE_RULE
[HYPERPLANE_EQ_EMPTY; HYPERPLANE_EQ_UNIV]) THEN
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN
ASM_CASES_TAC `{x:real^N | a dot x = b} SUBSET {x | a' dot x = b'}` THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`a:real^N`; `a':real^N`; `b:real`; `b':real`]
(el 12 (CONJUNCTS SUBSET_HALFSPACES_IMP_COLLINEAR))) THEN
ASM_REWRITE_TAC[COLLINEAR_LEMMA_ALT] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_SIMP_TAC[DOT_LZERO] THENL
[SET_TAC[]; STRIP_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real` SUBST_ALL_TAC) THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
ASM_CASES_TAC `c % a:real^N = vec 0` THEN ASM_SIMP_TAC[DOT_LZERO] THENL
[SET_TAC[]; POP_ASSUM MP_TAC] THEN
SIMP_TAC[VECTOR_MUL_EQ_0; DE_MORGAN_THM; DOT_LMUL; REAL_FIELD
`~(c = &0) ==> (c * a = b <=> a = b / c)`] THEN
STRIP_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `(b / (a dot a)) % a:real^N`) THEN
ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Existence of the characteristic polynomial. *)
(* ------------------------------------------------------------------------- *)
let EIGENVALUES_CHARACTERISTIC_ALT = prove
(`!A:real^N^N c.
(?v. ~(v = vec 0) /\ A ** v = c % v) <=> det(A - c %% mat 1) = &0`,
REWRITE_TAC[GSYM HOMOGENEOUS_LINEAR_EQUATIONS_DET] THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_SUB_RDISTRIB] THEN
REWRITE_TAC[MATRIX_VECTOR_LMUL; VECTOR_SUB_EQ; MATRIX_VECTOR_MUL_LID]);;
let EIGENVALUES_CHARACTERISTIC = prove
(`!A:real^N^N c.
(?v. ~(v = vec 0) /\ A ** v = c % v) <=> det(c %% mat 1 - A) = &0`,
ONCE_REWRITE_TAC[GSYM MATRIX_NEG_SUB] THEN
ASM_REWRITE_TAC[EIGENVALUES_CHARACTERISTIC_ALT; DET_NEG] THEN
REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let INVERTIBLE_EIGENVALUES = prove
(`!A:real^N^N.
invertible(A) <=> !c v. A ** v = c % v /\ ~(v = vec 0) ==> ~(c = &0)`,
GEN_TAC THEN REWRITE_TAC[LEFT_FORALL_IMP_THM] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EIGENVALUES_CHARACTERISTIC_ALT; INVERTIBLE_DET_NZ] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[FORALL_UNWIND_THM2; MATRIX_CMUL_LZERO; MATRIX_SUB_RZERO]);;
let CHARACTERISTIC_POLYNOMIAL = prove
(`!A:real^N^N.
?a. a(dimindex(:N)) = &1 /\
!x. det(x %% mat 1 - A) =
sum (0..dimindex(:N)) (\i. a i * x pow i)`,
GEN_TAC THEN REWRITE_TAC[det] THEN
SUBGOAL_THEN
`!p n. IMAGE p (1..dimindex(:N)) SUBSET 1..dimindex(:N) /\
n <= dimindex(:N)
==> ?a. a n = (if !i. 1 <= i /\ i <= n ==> p i = i then &1 else &0) /\
!x. product (1..n) (\i. (x %% mat 1 - A:real^N^N)$i$p i) =
sum (0..n) (\i. a i * x pow i)`
MP_TAC THENL
[GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG] THEN
REWRITE_TAC[LE_0; ARITH_EQ; ARITH_RULE `1 <= SUC n`] THENL
[EXISTS_TAC `\i. if i = 0 then &1 else &0` THEN
SIMP_TAC[real_pow; REAL_MUL_LID; ARITH_RULE `1 <= i ==> ~(i <= 0)`;
SUM_CLAUSES_NUMSEG];
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
ASM_SIMP_TAC[ARITH_RULE `SUC n <= N ==> n <= N`] THEN
DISCH_THEN(X_CHOOSE_THEN `a:num->real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MATRIX_SUB_COMPONENT; MATRIX_CMUL_COMPONENT] THEN
ASSUME_TAC(ARITH_RULE `1 <= SUC n`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
REWRITE_TAC[FORALL_IN_IMAGE; IN_NUMSEG] THEN
DISCH_THEN(MP_TAC o SPEC `SUC n`) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN ASM_SIMP_TAC[MAT_COMPONENT] THEN
ASM_CASES_TAC `p(SUC n) = SUC n` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC;
EXISTS_TAC `\i. if i <= n
then --((A:real^N^N)$(SUC n)$(p(SUC n))) * a i
else &0` THEN
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; ARITH_RULE `~(SUC n <= n)`] THEN
CONJ_TAC THENL
[COND_CASES_TAC THEN REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID; GSYM SUM_RMUL] THEN
GEN_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN REWRITE_TAC[] THEN
REAL_ARITH_TAC]] THEN
REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN
REWRITE_TAC[GSYM SUM_RMUL] THEN EXISTS_TAC
`\i. (if i = 0 then &0 else a(i - 1)) -
(if i = SUC n then &0 else (A:real^N^N)$(SUC n)$(SUC n) * a i)` THEN
ASM_REWRITE_TAC[NOT_SUC; LE; SUC_SUB1; REAL_SUB_RZERO] THEN
CONJ_TAC THENL [ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN
REWRITE_TAC[REAL_SUB_RDISTRIB; SUM_SUB_NUMSEG] THEN
GEN_TAC THEN BINOP_TAC THENL
[SIMP_TAC[SUM_CLAUSES_LEFT; ARITH_RULE `0 <= SUC n`] THEN
REWRITE_TAC[ADD1; SUM_OFFSET; ARITH_RULE `~(i + 1 = 0)`; ADD_SUB] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_POW_ADD; REAL_POW_1; REAL_ADD_LID];
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; REAL_MUL_LZERO; REAL_ADD_RID] THEN
SIMP_TAC[ARITH_RULE `i <= n ==> ~(i = SUC n)`]] THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN REWRITE_TAC[REAL_ADD_LID; REAL_MUL_AC]];
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `a:(num->num)->num->real` THEN DISCH_TAC] THEN
EXISTS_TAC
`\i:num. sum {p | p permutes 1..dimindex(:N)} (\p. sign p * a p i)` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MP_TAC(ISPECL
[`\p:num->num. sign p * a p (dimindex(:N))`;
`{p | p permutes 1..dimindex(:N)}`;
`I:num->num`] SUM_DELETE) THEN
SIMP_TAC[IN_ELIM_THM; PERMUTES_I; FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
MATCH_MP_TAC(REAL_ARITH `k = &1 /\ s' = &0 ==> s' = s - k ==> s = &1`) THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `I:num->num`) THEN
SIMP_TAC[IMAGE_I; SUBSET_REFL; SIGN_I; I_THM; REAL_MUL_LID];
MATCH_MP_TAC SUM_EQ_0 THEN X_GEN_TAC `p:num->num` THEN
REWRITE_TAC[IN_ELIM_THM; IN_DELETE] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num->num`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[PERMUTES_IMAGE; SUBSET_REFL]; ALL_TAC] THEN
COND_CASES_TAC THEN SIMP_TAC[REAL_MUL_RZERO] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [permutes]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [FUN_EQ_THM]) THEN
REWRITE_TAC[IN_NUMSEG; I_THM] THEN ASM_MESON_TAC[]];
X_GEN_TAC `x:real` THEN REWRITE_TAC[GSYM SUM_RMUL] THEN
W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o rand o snd) THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUM_EQ THEN
X_GEN_TAC `p:num->num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; SUM_LMUL] THEN AP_TERM_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num->num`) THEN ANTS_TAC THENL
[ASM_MESON_TAC[PERMUTES_IMAGE; SUBSET_REFL]; SIMP_TAC[]]]);;
let FINITE_EIGENVALUES = prove
(`!A:real^N^N. FINITE {c | ?v. ~(v = vec 0) /\ A ** v = c % v}`,
GEN_TAC THEN REWRITE_TAC[EIGENVALUES_CHARACTERISTIC] THEN
MP_TAC(ISPEC `A:real^N^N` CHARACTERISTIC_POLYNOMIAL) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_POLYFUN_FINITE_ROOTS] THEN EXISTS_TAC `dimindex(:N)` THEN
ASM_REWRITE_TAC[IN_NUMSEG; LE_0; LE_REFL] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Grassmann-Plucker relations for n = 2, n = 3 and n = 4. *)
(* I have a proof of the general n case but the proof is a bit long and the *)
(* result doesn't seem generally useful enough to go in the main theories. *)
(* ------------------------------------------------------------------------- *)
let GRASSMANN_PLUCKER_2 = prove
(`!x1 x2 y1 y2:real^2.
det(vector[x1;x2]) * det(vector[y1;y2]) =
det(vector[y1;x2]) * det(vector[x1;y2]) +
det(vector[y2;x2]) * det(vector[y1;x1])`,
REWRITE_TAC[DET_2; VECTOR_2] THEN REAL_ARITH_TAC);;
let GRASSMANN_PLUCKER_3 = prove
(`!x1 x2 x3 y1 y2 y3:real^3.
det(vector[x1;x2;x3]) * det(vector[y1;y2;y3]) =
det(vector[y1;x2;x3]) * det(vector[x1;y2;y3]) +
det(vector[y2;x2;x3]) * det(vector[y1;x1;y3]) +
det(vector[y3;x2;x3]) * det(vector[y1;y2;x1])`,
REWRITE_TAC[DET_3; VECTOR_3] THEN REAL_ARITH_TAC);;
let GRASSMANN_PLUCKER_4 = prove
(`!x1 x2 x3 x4:real^4 y1 y2 y3 y4:real^4.
det(vector[x1;x2;x3;x4]) * det(vector[y1;y2;y3;y4]) =
det(vector[y1;x2;x3;x4]) * det(vector[x1;y2;y3;y4]) +
det(vector[y2;x2;x3;x4]) * det(vector[y1;x1;y3;y4]) +
det(vector[y3;x2;x3;x4]) * det(vector[y1;y2;x1;y4]) +
det(vector[y4;x2;x3;x4]) * det(vector[y1;y2;y3;x1])`,
REWRITE_TAC[DET_4; VECTOR_4] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Determinants of integer matrices. *)
(* ------------------------------------------------------------------------- *)
let INTEGER_PRODUCT = prove
(`!f s. (!x. x IN s ==> integer(f x)) ==> integer(product s f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PRODUCT_CLOSED THEN
ASM_REWRITE_TAC[INTEGER_CLOSED]);;
let INTEGER_SIGN = prove
(`!p. integer(sign p)`,
SIMP_TAC[sign; COND_RAND; INTEGER_CLOSED; COND_ID]);;
let INTEGER_DET = prove
(`!M:real^N^N.
(!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N)
==> integer(M$i$j))
==> integer(det M)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[det] THEN
MATCH_MP_TAC INTEGER_SUM THEN X_GEN_TAC `p:num->num` THEN
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC INTEGER_MUL THEN REWRITE_TAC[INTEGER_SIGN] THEN
MATCH_MP_TAC INTEGER_PRODUCT THEN REWRITE_TAC[IN_NUMSEG] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[IN_NUMSEG; permutes]);;
(* ------------------------------------------------------------------------- *)
(* Diagonal matrices (for arbitrary rectangular matrix, not just square). *)
(* ------------------------------------------------------------------------- *)
let diagonal_matrix = new_definition
`diagonal_matrix(A:real^N^M) <=>
!i j. 1 <= i /\ i <= dimindex(:M) /\
1 <= j /\ j <= dimindex(:N) /\
~(i = j)
==> A$i$j = &0`;;
let DIAGONAL_MATRIX = prove
(`!A:real^N^N.
diagonal_matrix A <=> A = (lambda i j. if i = j then A$i$j else &0)`,
SIMP_TAC[CART_EQ; LAMBDA_BETA; diagonal_matrix] THEN MESON_TAC[]);;
let DIAGONAL_MATRIX_MAT = prove
(`!m. diagonal_matrix(mat m:real^N^N)`,
SIMP_TAC[mat; diagonal_matrix; LAMBDA_BETA]);;
let TRANSP_DIAGONAL_MATRIX = prove
(`!A:real^N^N. diagonal_matrix A ==> transp A = A`,
GEN_TAC THEN REWRITE_TAC[diagonal_matrix; CART_EQ; TRANSP_COMPONENT] THEN
STRIP_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN X_GEN_TAC `j:num` THEN
STRIP_TAC THEN ASM_CASES_TAC `i:num = j` THEN ASM_SIMP_TAC[]);;
let DIAGONAL_IMP_SYMMETRIC_MATRIX = prove
(`!A:real^N^N. diagonal_matrix A ==> symmetric_matrix A`,
REWRITE_TAC[symmetric_matrix; TRANSP_DIAGONAL_MATRIX]);;
let DIAGONAL_MATRIX_ADD = prove
(`!A B:real^N^M.
diagonal_matrix A /\ diagonal_matrix B
==> diagonal_matrix(A + B)`,
SIMP_TAC[diagonal_matrix; MATRIX_ADD_COMPONENT;
REAL_ADD_LID; REAL_ADD_RID]);;
let DIAGONAL_MATRIX_CMUL = prove
(`!A:real^N^M c.
diagonal_matrix A ==> diagonal_matrix(c %% A)`,
SIMP_TAC[diagonal_matrix; MATRIX_CMUL_COMPONENT; REAL_MUL_RZERO]);;
let MATRIX_MUL_DIAGONAL = prove
(`!A:real^N^N B:real^N^N.
diagonal_matrix A /\ diagonal_matrix B
==> A ** B = lambda i j. A$i$j * B$i$j`,
REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [DIAGONAL_MATRIX])) THEN
SIMP_TAC[CART_EQ; matrix_mul; LAMBDA_BETA] THEN
ONCE_REWRITE_TAC[MESON[REAL_MUL_LZERO; REAL_MUL_RZERO]
`(if p then a else &0) * (if q then b else &0) =
if q then (if p then a * b else &0) else &0`] THEN
SIMP_TAC[SUM_DELTA; IN_NUMSEG; COND_ID; SUM_0]);;
let DIAGONAL_MATRIX_MUL_COMPONENT = prove
(`!A:real^N^N B:real^N^N i j.
diagonal_matrix A /\ diagonal_matrix B /\
1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N)
==> (A ** B)$i$j = A$i$j * B$i$j`,
ASM_SIMP_TAC[MATRIX_MUL_DIAGONAL; LAMBDA_BETA]);;
let DIAGONAL_MATRIX_MUL = prove
(`!A:real^N^N B:real^N^N.
diagonal_matrix A /\ diagonal_matrix B
==> diagonal_matrix(A ** B)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC RAND_CONV [diagonal_matrix] THEN
SIMP_TAC[DIAGONAL_MATRIX_MUL_COMPONENT] THEN
SIMP_TAC[diagonal_matrix; REAL_MUL_LZERO]);;
let DIAGONAL_MATRIX_MUL_EQ = prove
(`!A:real^M^N B:real^N^M.
diagonal_matrix (A ** B) <=>
pairwise (\i j. orthogonal (row i A) (column j B)) (1..dimindex(:N))`,
REWRITE_TAC[diagonal_matrix; matrix_mul; pairwise] THEN
SIMP_TAC[LAMBDA_BETA; IN_NUMSEG; orthogonal; dot; row; column] THEN
REWRITE_TAC[GSYM CONJ_ASSOC]);;
let DIAGONAL_MATRIX_INV_EXPLICIT = prove
(`!A:real^N^N. diagonal_matrix A ==> matrix_inv A = lambda i j. inv(A$i$j)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_INV_UNIQUE_STRONG THEN
REWRITE_TAC[symmetric_matrix] THEN
SUBGOAL_THEN
`diagonal_matrix((lambda i j. inv((A:real^N^N)$i$j)):real^N^N)`
ASSUME_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[diagonal_matrix]) THEN
ASM_SIMP_TAC[diagonal_matrix; LAMBDA_BETA; REAL_INV_0];
ASM_SIMP_TAC[DIAGONAL_MATRIX_MUL_COMPONENT; CART_EQ; LAMBDA_BETA;
TRANSP_COMPONENT; DIAGONAL_MATRIX_MUL]] THEN
MP_TAC(ISPEC `A:real^N^N` DIAGONAL_MATRIX) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN SIMP_TAC[LAMBDA_BETA] THEN
REPEAT CONJ_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[REAL_INV_EQ_0; REAL_RING
`a * b * a = a <=> b * a = &1 \/ a = &0`] THEN
CONV_TAC REAL_FIELD);;
let DIAGONAL_MATRIX_INV_COMPONENT = prove
(`!A:real^N^N i j.
diagonal_matrix A /\
1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N)
==> (matrix_inv A)$i$j = inv(A$i$j)`,
ASM_SIMP_TAC[DIAGONAL_MATRIX_INV_EXPLICIT; LAMBDA_BETA]);;
let DIAGONAL_MATRIX_INV = prove
(`!A:real^N^N. diagonal_matrix(matrix_inv A) <=> diagonal_matrix A`,
SUBGOAL_THEN
`!A:real^N^N. diagonal_matrix A ==> diagonal_matrix(matrix_inv A)`
MP_TAC THENL [REPEAT STRIP_TAC; MESON_TAC[MATRIX_INV_INV]] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DIAGONAL_MATRIX_INV_EXPLICIT) THEN
POP_ASSUM MP_TAC THEN SIMP_TAC[diagonal_matrix; LAMBDA_BETA] THEN
REWRITE_TAC[REAL_INV_0]);;
let DET_DIAGONAL = prove
(`!A:real^N^N.
diagonal_matrix A
==> det(A) = product(1..dimindex(:N)) (\i. A$i$i)`,
REWRITE_TAC[diagonal_matrix] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC DET_LOWERTRIANGULAR THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[LT_REFL]);;
let INVERTIBLE_DIAGONAL_MATRIX = prove
(`!D:real^N^N.
diagonal_matrix D
==> (invertible D <=>
!i. 1 <= i /\ i <= dimindex(:N) ==> ~(D$i$i = &0))`,
SIMP_TAC[INVERTIBLE_DET_NZ; DET_DIAGONAL] THEN
SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG] THEN MESON_TAC[]);;
let COMMUTING_WITH_DIAGONAL_MATRIX = prove
(`!A D:real^N^N.
diagonal_matrix D
==> (A ** D = D ** A <=>
!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N)
==> A$i$j = &0 \/ D$i$i = D$j$j)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o REWRITE_RULE[DIAGONAL_MATRIX]) THEN
SIMP_TAC[CART_EQ; matrix_mul; LAMBDA_BETA] THEN
REWRITE_TAC[MESON[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_MUL_SYM]
`(if a = b then x else &0) * y = (if b = a then x * y else &0) /\
y * (if a = b then x else &0) = (if a = b then x * y else &0)`] THEN
SIMP_TAC[SUM_DELTA; IN_NUMSEG; REAL_EQ_MUL_RCANCEL] THEN MESON_TAC[]);;
let RANK_DIAGONAL_MATRIX = prove
(`!A:real^N^N.
diagonal_matrix A
==> rank A = CARD {i | i IN 1..dimindex(:N) /\ ~(A$i$i = &0)}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[RANK_DIM_IM; GSYM SPAN_STDBASIS] THEN
SIMP_TAC[GSYM SPAN_LINEAR_IMAGE; MATRIX_VECTOR_MUL_LINEAR; DIM_SPAN] THEN
REWRITE_TAC[GSYM IN_NUMSEG; SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF] THEN
TRANS_TAC EQ_TRANS
`dim {(A:real^N^N)$i$i % basis i:real^N | i IN 1..dimindex(:N)}` THEN
CONJ_TAC THENL
[AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE
`(!x. x IN s ==> f x = g x) ==> IMAGE f s = {g x | x IN s}`) THEN
FIRST_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [DIAGONAL_MATRIX]) THEN
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA; IN_NUMSEG; CART_EQ] THEN
ONCE_REWRITE_TAC[MESON[REAL_MUL_LZERO]
`(if i = j then a else &0) * b = if j = i then a * b else &0`] THEN
SIMP_TAC[SUM_DELTA; IN_NUMSEG; BASIS_COMPONENT; VECTOR_MUL_COMPONENT] THEN
MESON_TAC[REAL_MUL_RZERO];
ALL_TAC] THEN
TRANS_TAC EQ_TRANS
`dim {(A:real^N^N)$i$i % basis i:real^N |i|
i IN 1..dimindex(:N) /\ ~(A$i$i = &0)}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(MESON[DIM_INSERT_0]
`(vec 0:real^N) INSERT s = (vec 0:real^N) INSERT t ==> dim s = dim t`) THEN
MATCH_MP_TAC(SET_RULE
`t SUBSET s /\ (!x. x IN s ==> ~(x IN t) ==> x = a)
==> a INSERT s = a INSERT t`) THEN
CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[FORALL_IN_GSPEC]] THEN
SIMP_TAC[VECTOR_MUL_EQ_0; IN_ELIM_THM; BASIS_NONZERO; IN_NUMSEG] THEN
SET_TAC[];
ALL_TAC] THEN
TRANS_TAC EQ_TRANS
`dim{basis i:real^N | i IN 1..dimindex(:N) /\ ~((A:real^N^N)$i$i = &0)}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SPAN_EQ_DIM THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN
CONJ_TAC THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN
REWRITE_TAC[SUBSPACE_SPAN] THEN
REWRITE_TAC[FORALL_IN_GSPEC; SUBSET; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THENL
[ALL_TAC;
SUBGOAL_THEN
`basis i:real^N = inv((A:real^N^N)$i$i) % A$i$i % basis i`
(fun th -> GEN_REWRITE_TAC LAND_CONV [th])
THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID];
ALL_TAC]] THEN
MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhs o rand) DIM_EQ_CARD o lhand o snd) THEN
ANTS_TAC THENL
[MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ] INDEPENDENT_MONO)
INDEPENDENT_STDBASIS) THEN
REWRITE_TAC[IN_NUMSEG] THEN SET_TAC[];
DISCH_THEN SUBST1_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SIMPLE_IMAGE_GEN] THEN
MATCH_MP_TAC CARD_IMAGE_INJ THEN
SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG; IN_ELIM_THM; IN_NUMSEG] THEN
REWRITE_TAC[IMP_CONJ] THEN SIMP_TAC[BASIS_INJ_EQ]);;
let ONORM_DIAGONAL_MATRIX = prove
(`!A:real^N^N.
diagonal_matrix A
==> onorm(\x. A ** x) = sup {abs(A$i$i) | 1 <= i /\ i <= dimindex(:N)}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[onorm] THEN MATCH_MP_TAC SUP_EQ THEN
X_GEN_TAC `b:real` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN
EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `i:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `basis i:real^N`) THEN
ASM_SIMP_TAC[NORM_BASIS; MATRIX_VECTOR_MUL_BASIS] THEN
DISCH_THEN(MP_TAC o MATCH_MP (MESON[COMPONENT_LE_NORM; REAL_LE_TRANS]
`norm(x) <= b ==> !i. abs(x$i) <= b`)) THEN
DISCH_THEN(MP_TAC o SPEC `i:num`) THEN ASM_SIMP_TAC[column; LAMBDA_BETA];
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
TRANS_TAC REAL_LE_TRANS `norm(b % x:real^N)` THEN CONJ_TAC THENL
[MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o GEN_REWRITE_RULE I [DIAGONAL_MATRIX]) THEN
FIRST_X_ASSUM(K ALL_TAC o SYM) THEN POP_ASSUM MP_TAC THEN
SIMP_TAC[LAMBDA_BETA; MATRIX_VECTOR_MUL_COMPONENT; dot] THEN
REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
SIMP_TAC[SUM_DELTA; IN_NUMSEG] THEN
REWRITE_TAC[REAL_ABS_MUL; VECTOR_MUL_COMPONENT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_RMUL THEN
REWRITE_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC(REAL_ARITH `x <= b ==> x <= abs b`) THEN
ASM_SIMP_TAC[];
ASM_REWRITE_TAC[NORM_MUL] THEN FIRST_X_ASSUM(MP_TAC o SPEC `1`) THEN
ASM_REWRITE_TAC[DIMINDEX_GE_1; LE_REFL] THEN REAL_ARITH_TAC]]);;
(* ------------------------------------------------------------------------- *)
(* Positive semidefinite matrices. *)
(* ------------------------------------------------------------------------- *)
let positive_semidefinite = new_definition
`positive_semidefinite(A:real^N^N) <=>
symmetric_matrix A /\ !x. &0 <= x dot (A ** x)`;;
let POSITIVE_SEMIDEFINITE_IMP_SYMMETRIC_MATRIX = prove
(`!A:real^N^N. positive_semidefinite A ==> symmetric_matrix A`,
SIMP_TAC[positive_semidefinite]);;
let POSITIVE_SEMIDEFINITE_IMP_SYMMETRIC = prove
(`!A:real^N^N. positive_semidefinite A ==> transp A = A`,
REWRITE_TAC[GSYM symmetric_matrix;
POSITIVE_SEMIDEFINITE_IMP_SYMMETRIC_MATRIX]);;
let POSITIVE_SEMIDEFINITE_ADD = prove
(`!A B:real^N^N.
positive_semidefinite A /\ positive_semidefinite B
==> positive_semidefinite(A + B)`,
SIMP_TAC[positive_semidefinite; SYMMETRIC_MATRIX_ADD] THEN
SIMP_TAC[MATRIX_VECTOR_MUL_ADD_RDISTRIB; DOT_RADD; REAL_LE_ADD]);;
let POSITIVE_SEMIDEFINITE_CMUL = prove
(`!c A:real^N^N.
positive_semidefinite A /\ &0 <= c
==> positive_semidefinite(c %% A)`,
SIMP_TAC[positive_semidefinite; SYMMETRIC_MATRIX_CMUL] THEN
SIMP_TAC[MATRIX_VECTOR_LMUL; DOT_RMUL; REAL_LE_MUL]);;
let POSITIVE_SEMIDEFINITE_TRANSP = prove
(`!A:real^N^N. positive_semidefinite(transp A) <=> positive_semidefinite A`,
REWRITE_TAC[positive_semidefinite; symmetric_matrix] THEN
MESON_TAC[TRANSP_TRANSP]);;
let POSITIVE_SEMIDEFINITE_COVARIANCE = prove
(`!A:real^N^M. positive_semidefinite(transp A ** A)`,
REWRITE_TAC[positive_semidefinite; symmetric_matrix;
MATRIX_TRANSP_MUL; TRANSP_TRANSP] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC] THEN
ONCE_REWRITE_TAC[GSYM DOT_LMUL_MATRIX] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_TRANSP; DOT_POS_LE]);;
let POSITIVE_SEMIDEFINITE_SIMILAR = prove
(`!A B:real^N^M.
positive_semidefinite A
==> positive_semidefinite(transp B ** A ** B)`,
REWRITE_TAC[positive_semidefinite; symmetric_matrix] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[MATRIX_TRANSP_MUL; TRANSP_TRANSP; GSYM MATRIX_MUL_ASSOC] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC] THEN
REWRITE_TAC[GSYM DOT_LMUL_MATRIX; GSYM MATRIX_VECTOR_MUL_TRANSP] THEN
ASM_REWRITE_TAC[DOT_LMUL_MATRIX]);;
let POSITIVE_SEMIDEFINITE_SIMILAR_EQ = prove
(`!A B:real^N^N.
invertible B
==> (positive_semidefinite (transp B ** A ** B) <=>
positive_semidefinite A)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
REWRITE_TAC[POSITIVE_SEMIDEFINITE_SIMILAR] THEN
DISCH_THEN(MP_TAC o ISPEC `matrix_inv B:real^N^N` o MATCH_MP
POSITIVE_SEMIDEFINITE_SIMILAR) THEN
ASM_SIMP_TAC[GSYM MATRIX_MUL_ASSOC; MATRIX_INV; MATRIX_MUL_RID] THEN
REWRITE_TAC[MATRIX_MUL_ASSOC; GSYM MATRIX_TRANSP_MUL] THEN
ASM_SIMP_TAC[MATRIX_INV; TRANSP_MAT; MATRIX_MUL_LID]);;
let POSITIVE_SEMIDEFINITE_DIAGONAL_MATRIX = prove
(`!D:real^N^N.
diagonal_matrix D /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= D$i$i)
==> positive_semidefinite D`,
SIMP_TAC[positive_semidefinite; DIAGONAL_IMP_SYMMETRIC_MATRIX] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [DIAGONAL_MATRIX]) THEN
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA; dot] THEN
SIMP_TAC[COND_RATOR; COND_RAND; REAL_MUL_LZERO] THEN
CONV_TAC(RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
SIMP_TAC[SUM_DELTA] THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN
GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH `x * d * x:real = d * x * x`] THEN
MATCH_MP_TAC REAL_LE_MUL THEN
ASM_SIMP_TAC[REAL_LE_SQUARE]);;
let POSITIVE_SEMIDEFINITE_DIAGONAL_MATRIX_EQ = prove
(`!D:real^N^N.
diagonal_matrix D
==> (positive_semidefinite D <=>
!i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= D$i$i)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
ASM_SIMP_TAC[POSITIVE_SEMIDEFINITE_DIAGONAL_MATRIX] THEN
REWRITE_TAC[positive_semidefinite] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `basis i:real^N`) THEN
ASM_SIMP_TAC[DOT_BASIS; MATRIX_VECTOR_MUL_BASIS; column; LAMBDA_BETA]);;
let DIAGONAL_POSITIVE_SEMIDEFINITE = prove
(`!A:real^N^N i.
positive_semidefinite A /\ 1 <= i /\ i <= dimindex(:N)
==> &0 <= A$i$i`,
REWRITE_TAC[positive_semidefinite] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `basis i:real^N`) THEN
ASM_SIMP_TAC[MATRIX_VECTOR_MUL_BASIS; column; DOT_BASIS; LAMBDA_BETA]);;
let TRACE_POSITIVE_SEMIDEFINITE = prove
(`!A:real^N^N. positive_semidefinite A ==> &0 <= trace A`,
SIMP_TAC[trace; SUM_POS_LE_NUMSEG; DIAGONAL_POSITIVE_SEMIDEFINITE]);;
let TRACE_LE_MUL_SQUARES = prove
(`!A B:real^N^N.
symmetric_matrix A /\ symmetric_matrix B
==> trace((A ** B) ** (A ** B)) <= trace((A ** A) ** (B ** B))`,
REWRITE_TAC[symmetric_matrix] THEN REPEAT STRIP_TAC THEN MP_TAC
(ISPEC `A ** B - B ** A:real^N^N` POSITIVE_SEMIDEFINITE_COVARIANCE) THEN
DISCH_THEN(MP_TAC o MATCH_MP TRACE_POSITIVE_SEMIDEFINITE) THEN
REWRITE_TAC[MATRIX_TRANSP_MUL; TRANSP_MATRIX_SUB; MATRIX_SUB_LDISTRIB] THEN
ASM_REWRITE_TAC[MATRIX_SUB_RDISTRIB; TRACE_SUB] THEN MATCH_MP_TAC(REAL_ARITH
`a = y /\ d = y /\ b = x /\ c = x ==> &0 <= a - b - (c - d) ==> x <= y`) THEN
REWRITE_TAC[GSYM MATRIX_MUL_ASSOC] THEN REPEAT CONJ_TAC THEN
REPEAT(GEN_REWRITE_TAC LAND_CONV [TRACE_MUL_SYM] THEN
REWRITE_TAC[GSYM MATRIX_MUL_ASSOC]));;
let POSITIVE_SEMIDEFINITE_ZERO_FORM = prove
(`!A:real^N^N. positive_semidefinite A /\ x dot (A ** x) = &0
==> A ** x = vec 0`,
let lemma = prove
(`(!t. &0 <= a + b * t) ==> b = &0`,
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o SPEC `--(a + &1) / b`) THEN
ASM_SIMP_TAC[REAL_DIV_LMUL] THEN REAL_ARITH_TAC) in
REWRITE_TAC[positive_semidefinite; symmetric_matrix] THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN `t:real` o SPEC `(A:real^N^N) ** x + t % x`) THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_ADD_LDISTRIB; DOT_RADD] THEN
REWRITE_TAC[DOT_LADD; MATRIX_VECTOR_MUL_RMUL; DOT_LMUL] THEN
REWRITE_TAC[DOT_RMUL] THEN
SUBGOAL_THEN `x dot (A ** A ** x) = ((A:real^N^N) ** x) dot (A ** x)`
SUBST1_TAC THENL
[ASM_REWRITE_TAC[GSYM DOT_LMUL_MATRIX; VECTOR_MATRIX_MUL_TRANSP];
ASM_REWRITE_TAC[REAL_ARITH `(a + t * b) + t * b + t * t * &0 =
a + (&2 * b) * t`]] THEN
DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN
REWRITE_TAC[REAL_ENTIRE; DOT_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ]);;
let POSITIVE_SEMIDEFINITE_ZERO_FORM_EQ = prove
(`!A:real^N^N. positive_semidefinite A
==> (x dot (A ** x) = &0 <=> A ** x = vec 0)`,
REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
ASM_SIMP_TAC[DOT_RZERO; POSITIVE_SEMIDEFINITE_ZERO_FORM]);;
let POSITIVE_SEMIDEFINITE_1_GEN = prove
(`!A:real^N^N.
dimindex(:N) = 1 ==> (positive_semidefinite A <=> &0 <= A$1$1)`,
REPEAT STRIP_TAC THEN
SIMP_TAC[positive_semidefinite; symmetric_matrix; transp; CART_EQ; dot] THEN
ASM_SIMP_TAC[LAMBDA_BETA; ARITH; MATRIX_VECTOR_MUL_COMPONENT] THEN
ASM_REWRITE_TAC[FORALL_1; SUM_1; dot] THEN
REWRITE_TAC[REAL_ARITH `x * a * x:real = a * x pow 2`] THEN
EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LE_MUL; REAL_LE_POW_2]] THEN
DISCH_THEN(MP_TAC o SPEC `basis 1:real^N`) THEN
SIMP_TAC[BASIS_COMPONENT; ARITH; DIMINDEX_GE_1; LE_REFL] THEN
REAL_ARITH_TAC);;
let POSITIVE_SEMIDEFINITE_1 = prove
(`!A:real^1^1. positive_semidefinite A <=> &0 <= A$1$1`,
GEN_TAC THEN MATCH_MP_TAC POSITIVE_SEMIDEFINITE_1_GEN THEN
REWRITE_TAC[DIMINDEX_1]);;
let POSITIVE_SEMIDEFINITE_SUBMATRIX_2 = prove
(`!A:real^N^N i j.
positive_semidefinite A /\
1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N)
==> positive_semidefinite
(vector[vector[A$i$i;A$i$j];
vector[A$j$i;A$j$j]]:real^2^2)`,
REWRITE_TAC[positive_semidefinite; symmetric_matrix] THEN
REPEAT STRIP_TAC THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CART_EQ]) THEN
SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; DIMINDEX_2; VECTOR_2; ARITH;
FORALL_2] THEN
ASM_MESON_TAC[];
SIMP_TAC[DOT_2; VECTOR_2; matrix_vector_mul; DIMINDEX_2; LAMBDA_BETA;
ARITH; SUM_2]] THEN
ASM_CASES_TAC `j:num = i` THENL
[ASM_REWRITE_TAC[REAL_ARITH
`x * (a * x + a * y) + y * (a * x + a * y):real =
a * (x + y) pow 2`] THEN
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_LE_POW_2] THEN
MATCH_MP_TAC DIAGONAL_POSITIVE_SEMIDEFINITE THEN
ASM_REWRITE_TAC[positive_semidefinite; symmetric_matrix];
FIRST_X_ASSUM(MP_TAC o SPEC
`(lambda m. if m = i then (x:real^2)$1
else if m = j then (x:real^2)$2 else &0):real^N`) THEN
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA] THEN
REPLICATE_TAC 2
(REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
SIMP_TAC[SUM_CASES; FINITE_NUMSEG; SUM_DELTA; REAL_MUL_RZERO] THEN
ASM_SIMP_TAC[SET_RULE `P a ==> {x | P x /\ x = a} = {a}`;
IN_NUMSEG; IN_ELIM_THM; SUM_SING] THEN
SIMP_TAC[dot; LAMBDA_BETA] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM])]);;
(* ------------------------------------------------------------------------- *)
(* The Frobenius norm and associated inner product, which turn out to be the *)
(* usual Euclidean versions modulo flattening. *)
(* ------------------------------------------------------------------------- *)
let DOT_VECTORIZE = prove
(`!A B:real^N^M. vectorize A dot vectorize B = trace(transp A ** B)`,
REPEAT GEN_TAC THEN
SIMP_TAC[dot; trace; matrix_mul; transp; LAMBDA_BETA] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
SIMP_TAC[VECTORIZE_COMPONENT; DIMINDEX_FINITE_PROD] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
EXISTS_TAC
`\k. (1 + (k - 1) MOD dimindex(:N)),(1 + (k - 1) DIV dimindex(:N))` THEN
EXISTS_TAC `\(i,j). (j - 1) * dimindex(:N) + i` THEN
REWRITE_TAC[IN_ELIM_PAIR_THM; PAIR_EQ; IN_NUMSEG] THEN CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN CONJ_TAC THENL
[CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
TRANS_TAC LE_TRANS `(j - 1) * dimindex(:N) + dimindex(:N)` THEN
ASM_REWRITE_TAC[LE_ADD_LCANCEL] THEN
REWRITE_TAC[ARITH_RULE `x * n + n = (x + 1) * n`] THEN
ASM_SIMP_TAC[SUB_ADD; LE_MULT_RCANCEL];
CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE
`1 <= i /\ j = i - 1 ==> 1 + j = i`) THEN
ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `j - 1` THEN ASM_ARITH_TAC;
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `i - 1` THEN ASM_ARITH_TAC]];
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[LE_ADD] THEN
SIMP_TAC[DIVISION; DIMINDEX_GE_1; LE_1; ADD_SUB2; RDIV_LT_EQ; ARITH_RULE
`1 <= n ==> (1 + m <= n <=> m < n)`] THEN
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE
`1 <= x /\ x - 1 = q * n + r /\ r < n ==> q * n + 1 + r = x`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVISION THEN
SIMP_TAC[DIMINDEX_GE_1; LE_1]]);;
let NORM_VECTORIZE_TRANSP = prove
(`!A:real^N^M. norm(vectorize(transp A)) = norm(vectorize A)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[NORM_EQ; DOT_VECTORIZE; TRANSP_TRANSP] THEN
MATCH_ACCEPT_TAC TRACE_MUL_SYM);;
let COMPATIBLE_NORM_VECTORIZE = prove
(`!A:real^N^M x. norm(A ** x) <= norm(vectorize A) * norm x`,
REPEAT GEN_TAC THEN
SIMP_TAC[NORM_LE_SQUARE; REAL_LE_MUL; NORM_POS_LE] THEN
REWRITE_TAC[dot] THEN SIMP_TAC[MATRIX_MUL_DOT; LAMBDA_BETA] THEN
TRANS_TAC REAL_LE_TRANS
`sum (1..dimindex(:M))
(\i. norm((A:real^N^M)$i) pow 2 * norm(x:real^N) pow 2)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN
REWRITE_TAC[GSYM REAL_POW_MUL; GSYM REAL_POW_2] THEN
REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS; REAL_ABS_MUL; REAL_ABS_NORM] THEN
REWRITE_TAC[NORM_CAUCHY_SCHWARZ_ABS];
REWRITE_TAC[SUM_RMUL; REAL_POW_MUL] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
REWRITE_TAC[REAL_LE_POW_2; NORM_POW_2; DOT_VECTORIZE] THEN
ONCE_REWRITE_TAC[TRACE_MUL_SYM] THEN
REWRITE_TAC[trace] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
SIMP_TAC[transp; matrix_mul; LAMBDA_BETA; dot; REAL_LE_REFL]]);;
let ONORM_LE_NORM_VECTORIZE = prove
(`!A:real^M^N. onorm(\x. A ** x) <= norm(vectorize A)`,
GEN_TAC THEN MATCH_MP_TAC
(CONJUNCT2(MATCH_MP ONORM (SPEC_ALL MATRIX_VECTOR_MUL_LINEAR))) THEN
REWRITE_TAC[COMPATIBLE_NORM_VECTORIZE]);;
let NORM_VECTORIZE_POW_2 = prove
(`!A:real^N^M.
norm(vectorize A) pow 2 = sum(1..dimindex(:M)) (\i. norm(A$i) pow 2)`,
GEN_TAC THEN
REWRITE_TAC[NORM_POW_2; DOT_VECTORIZE] THEN
SIMP_TAC[trace; transp; matrix_mul; dot; LAMBDA_BETA] THEN
GEN_REWRITE_TAC LAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[]);;
let NORM_VECTORIZE_MUL_LE = prove
(`!A:real^N^P B:real^M^N.
norm(vectorize(A ** B)) <= norm(vectorize A) * norm(vectorize B)`,
REPEAT GEN_TAC THEN
SIMP_TAC[NORM_LE_SQUARE; REAL_LE_MUL; NORM_POS_LE] THEN
REWRITE_TAC[GSYM NORM_POW_2; NORM_VECTORIZE_POW_2] THEN
SIMP_TAC[MATRIX_MUL_COMPONENT; REAL_POW_MUL] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [NORM_VECTORIZE_POW_2] THEN
REWRITE_TAC[GSYM SUM_RMUL] THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `i:num` THEN
STRIP_TAC THEN REWRITE_TAC[GSYM REAL_POW_MUL] THEN
REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS; REAL_ABS_MUL; REAL_ABS_NORM] THEN
MESON_TAC[COMPATIBLE_NORM_VECTORIZE; NORM_VECTORIZE_TRANSP; REAL_MUL_SYM]);;
let NORM_VECTORIZE_HADAMARD_LE = prove
(`!A:real^N^M B:real^N^M.
norm(vectorize((lambda i j. A$i$j * B$i$j):real^N^M))
<= norm(vectorize A) * norm(vectorize B)`,
REPEAT GEN_TAC THEN
SIMP_TAC[NORM_LE_SQUARE; REAL_LE_MUL; NORM_POS_LE] THEN
REWRITE_TAC[DOT_VECTORIZE; REAL_POW_MUL; NORM_POW_2] THEN
SIMP_TAC[transp; matrix_mul; trace; LAMBDA_BETA] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
W(MP_TAC o PART_MATCH (rand o rand) SUM_MUL_BOUND o rand o snd) THEN
SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
REWRITE_TAC[REAL_LE_SQUARE] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN
MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC SUM_EQ THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[REAL_MUL_AC]);;
let TRACE_COVARIANCE_POS_LE = prove
(`!A:real^M^N. &0 <= trace(transp A ** A)`,
SIMP_TAC[POSITIVE_SEMIDEFINITE_COVARIANCE; TRACE_POSITIVE_SEMIDEFINITE]);;
let TRACE_COVARIANCE_EQ_0 = prove
(`!A:real^M^N. trace(transp A ** A) = &0 <=> A = mat 0`,
REWRITE_TAC[GSYM DOT_VECTORIZE; DOT_EQ_0; VECTORIZE_EQ_0]);;
let TRACE_COVARIANCE_POS_LT = prove
(`!A:real^M^N. &0 < trace(transp A ** A) <=> ~(A = mat 0)`,
MESON_TAC[REAL_LT_LE; TRACE_COVARIANCE_POS_LE; TRACE_COVARIANCE_EQ_0]);;
let TRACE_COVARIANCE_CAUCHY_SCHWARZ = prove
(`!A B:real^M^N.
trace(transp A ** B)
<= sqrt(trace(transp A ** A)) * sqrt(trace(transp B ** B))`,
REWRITE_TAC[GSYM DOT_VECTORIZE; GSYM vector_norm; NORM_CAUCHY_SCHWARZ]);;
let TRACE_COVARIANCE_CAUCHY_SCHWARZ_ABS = prove
(`!A B:real^M^N.
abs(trace(transp A ** B))
<= sqrt(trace(transp A ** A)) * sqrt(trace(transp B ** B))`,
REWRITE_TAC[GSYM DOT_VECTORIZE; GSYM vector_norm; NORM_CAUCHY_SCHWARZ_ABS]);;
let TRACE_COVARIANCE_CAUCHY_SCHWARZ_SQUARE = prove
(`!A B:real^M^N.
trace(transp A ** B) pow 2
<= trace(transp A ** A) * trace(transp B ** B)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
MATCH_MP_TAC REAL_RSQRT_LE THEN
SIMP_TAC[REAL_ABS_POS; REAL_LE_MUL; TRACE_COVARIANCE_POS_LE] THEN
REWRITE_TAC[TRACE_COVARIANCE_CAUCHY_SCHWARZ_ABS; SQRT_MUL]);;
(* ------------------------------------------------------------------------- *)
(* Positive definite matrices. *)
(* ------------------------------------------------------------------------- *)
let positive_definite = new_definition
`positive_definite(A:real^N^N) <=>
symmetric_matrix A /\ !x. ~(x = vec 0) ==> &0 < x dot (A ** x)`;;
let POSITIVE_DEFINITE_IMP_SYMMETRIC_MATRIX = prove
(`!A:real^N^N. positive_definite A ==> symmetric_matrix A`,
SIMP_TAC[positive_definite]);;
let POSITIVE_DEFINITE_IMP_SYMMETRIC = prove
(`!A:real^N^N. positive_definite A ==> transp A = A`,
REWRITE_TAC[GSYM symmetric_matrix; POSITIVE_DEFINITE_IMP_SYMMETRIC_MATRIX]);;
let POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE = prove
(`!A:real^N^N.
positive_definite A <=> positive_semidefinite A /\ invertible A`,
GEN_TAC THEN
REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`; positive_definite;
FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN
SIMP_TAC[MESON[] `P a ==> ((!x:real^N. ~(x = a) ==> P x) <=> (!x. P x))`;
DOT_LZERO; REAL_LE_REFL] THEN
REWRITE_TAC[CONJ_ASSOC; GSYM positive_semidefinite] THEN
ASM_CASES_TAC `positive_semidefinite(A:real^N^N)` THEN
ASM_SIMP_TAC[POSITIVE_SEMIDEFINITE_ZERO_FORM_EQ] THEN
REWRITE_TAC[GSYM HOMOGENEOUS_LINEAR_EQUATIONS_DET; INVERTIBLE_DET_NZ] THEN
MESON_TAC[]);;
let POSITIVE_DEFINITE_SIMILAR_EQ = prove
(`!A B:real^N^N.
positive_definite(transp B ** A ** B) <=>
invertible B /\ positive_definite A`,
REPEAT GEN_TAC THEN
REWRITE_TAC[POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE] THEN
REWRITE_TAC[INVERTIBLE_MATRIX_MUL; INVERTIBLE_TRANSP] THEN
MESON_TAC[POSITIVE_SEMIDEFINITE_SIMILAR_EQ]);;
let POSITIVE_DEFINITE_1_GEN = prove
(`!A:real^N^N.
dimindex(:N) = 1 ==> (positive_definite A <=> &0 < A$1$1)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[positive_definite; symmetric_matrix; transp; CART_EQ; dot] THEN
ASM_SIMP_TAC[LAMBDA_BETA; ARITH; MATRIX_VECTOR_MUL_COMPONENT] THEN
ASM_REWRITE_TAC[FORALL_1; SUM_1; dot; VEC_COMPONENT] THEN
REWRITE_TAC[REAL_ARITH `x * a * x:real = a * x pow 2`] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[REAL_LT_MUL; REAL_LT_POW_2]] THEN
DISCH_THEN(MP_TAC o SPEC `basis 1:real^N`) THEN
SIMP_TAC[BASIS_COMPONENT; ARITH; DIMINDEX_GE_1; LE_REFL] THEN
REAL_ARITH_TAC);;
let POSITIVE_DEFINITE_1 = prove
(`!A:real^1^1. positive_definite A <=> &0 < A$1$1`,
GEN_TAC THEN MATCH_MP_TAC POSITIVE_DEFINITE_1_GEN THEN
REWRITE_TAC[DIMINDEX_1]);;
let POSITIVE_DEFINITE_IMP_INVERTIBLE = prove
(`!A:real^N^N. positive_definite A ==> invertible A`,
SIMP_TAC[POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE]);;
let POSITIVE_DEFINITE_IMP_POSITIVE_SEMIDEFINITE = prove
(`!A:real^N^N. positive_definite A ==> positive_semidefinite A`,
SIMP_TAC[POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE]);;
let POSITIVE_SEMIDEFINITE_POSITIVE_DEFINITE_ADD = prove
(`!A B:real^N^N.
positive_semidefinite A /\ positive_definite B
==> positive_definite(A + B)`,
SIMP_TAC[positive_definite; positive_semidefinite; SYMMETRIC_MATRIX_ADD] THEN
SIMP_TAC[MATRIX_VECTOR_MUL_ADD_RDISTRIB; DOT_RADD; REAL_LET_ADD]);;
let POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE_ADD = prove
(`!A B:real^N^N.
positive_definite A /\ positive_semidefinite B
==> positive_definite(A + B)`,
SIMP_TAC[positive_definite; positive_semidefinite; SYMMETRIC_MATRIX_ADD] THEN
SIMP_TAC[MATRIX_VECTOR_MUL_ADD_RDISTRIB; DOT_RADD; REAL_LTE_ADD]);;
let POSITIVE_DEFINITE_ADD = prove
(`!A B:real^N^N.
positive_definite A /\ positive_definite B
==> positive_definite(A + B)`,
SIMP_TAC[positive_definite; SYMMETRIC_MATRIX_ADD] THEN
SIMP_TAC[MATRIX_VECTOR_MUL_ADD_RDISTRIB; DOT_RADD; REAL_LT_ADD]);;
let POSITIVE_DEFINITE_CMUL = prove
(`!c A:real^N^N.
positive_definite A /\ &0 < c
==> positive_definite(c %% A)`,
SIMP_TAC[positive_definite; SYMMETRIC_MATRIX_CMUL] THEN
SIMP_TAC[MATRIX_VECTOR_LMUL; DOT_RMUL; REAL_LT_MUL]);;
let NEARBY_POSITIVE_DEFINITE_MATRIX_GEN = prove
(`!A:real^N^N B x.
positive_semidefinite A /\ positive_definite B /\ &0 < x
==> positive_definite(A + x %% B)`,
SIMP_TAC[POSITIVE_SEMIDEFINITE_POSITIVE_DEFINITE_ADD;
POSITIVE_DEFINITE_CMUL]);;
let POSITIVE_DEFINITE_TRANSP = prove
(`!A:real^N^N. positive_definite(transp A) <=> positive_definite A`,
REWRITE_TAC[positive_definite; symmetric_matrix] THEN
MESON_TAC[TRANSP_TRANSP]);;
let POSITIVE_DEFINITE_COVARIANCE = prove
(`!A:real^N^N. positive_definite(transp A ** A) <=> invertible A`,
REWRITE_TAC[POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE;
POSITIVE_SEMIDEFINITE_COVARIANCE] THEN
REWRITE_TAC[INVERTIBLE_MATRIX_MUL; INVERTIBLE_TRANSP]);;
let POSITIVE_DEFINITE_SIMILAR = prove
(`!A B:real^N^N.
positive_definite A /\ invertible B
==> positive_definite(transp B ** A ** B)`,
SIMP_TAC[POSITIVE_DEFINITE_POSITIVE_SEMIDEFINITE;
POSITIVE_SEMIDEFINITE_SIMILAR; INVERTIBLE_MATRIX_MUL;
INVERTIBLE_TRANSP]);;
let POSITIVE_DEFINITE_DIAGONAL_MATRIX = prove
(`!D:real^N^N.
diagonal_matrix D /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> &0 < D$i$i)
==> positive_definite D`,
SIMP_TAC[positive_definite; DIAGONAL_IMP_SYMMETRIC_MATRIX] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [DIAGONAL_MATRIX]) THEN
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA; dot] THEN
SIMP_TAC[COND_RATOR; COND_RAND; REAL_MUL_LZERO] THEN
CONV_TAC(RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
SIMP_TAC[SUM_DELTA] THEN MATCH_MP_TAC SUM_POS_LT THEN
REWRITE_TAC[REAL_ARITH `x * d * x:real = d * x * x`] THEN
ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; REAL_LE_MUL; REAL_LE_SQUARE;
REAL_LT_IMP_LE] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [CART_EQ]) THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; VEC_COMPONENT] THEN
MATCH_MP_TAC MONO_EXISTS THEN
ASM_SIMP_TAC[GSYM REAL_POW_2; REAL_LT_MUL; REAL_LT_POW_2]);;
let POSITIVE_DEFINITE_DIAGONAL_MATRIX_EQ = prove
(`!D:real^N^N.
diagonal_matrix D
==> (positive_definite D <=>
!i. 1 <= i /\ i <= dimindex(:N) ==> &0 < D$i$i)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
ASM_SIMP_TAC[POSITIVE_DEFINITE_DIAGONAL_MATRIX] THEN
REWRITE_TAC[positive_definite] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `basis i:real^N`) THEN
ASM_SIMP_TAC[DOT_BASIS; MATRIX_VECTOR_MUL_BASIS; column; LAMBDA_BETA;
BASIS_NONZERO]);;
let DIAGONAL_POSITIVE_DEFINITE = prove
(`!A:real^N^N i.
positive_definite A /\ 1 <= i /\ i <= dimindex(:N)
==> &0 < A$i$i`,
REWRITE_TAC[positive_definite] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `basis i:real^N`) THEN
ASM_SIMP_TAC[MATRIX_VECTOR_MUL_BASIS; column; DOT_BASIS; LAMBDA_BETA;
BASIS_NONZERO]);;
let TRACE_POSITIVE_DEFINITE = prove
(`!A:real^N^N. positive_definite A ==> &0 < trace A`,
SIMP_TAC[trace; SUM_POS_LT_ALL; DIAGONAL_POSITIVE_DEFINITE;
IN_NUMSEG; FINITE_NUMSEG; NUMSEG_EMPTY; NOT_LT; DIMINDEX_GE_1]);;
let POSITIVE_DEFINITE_MAT = prove
(`!m. positive_definite(mat m:real^N^N) <=> 0 < m`,
SIMP_TAC[POSITIVE_DEFINITE_DIAGONAL_MATRIX_EQ; DIAGONAL_MATRIX_MAT] THEN
SIMP_TAC[mat; LAMBDA_BETA; REAL_OF_NUM_LT] THEN
MESON_TAC[LE_REFL; DIMINDEX_GE_1]);;
let POSITIVE_DEFINITE_ID = prove
(`positive_definite(mat 1:real^N^N)`,
REWRITE_TAC[POSITIVE_DEFINITE_MAT; ARITH]);;
let POSITIVE_SEMIDEFINITE_MAT = prove
(`!m. positive_semidefinite(mat m:real^N^N)`,
SIMP_TAC[POSITIVE_SEMIDEFINITE_DIAGONAL_MATRIX_EQ; DIAGONAL_MATRIX_MAT] THEN
SIMP_TAC[mat; LAMBDA_BETA; REAL_POS] THEN
MESON_TAC[LE_REFL; DIMINDEX_GE_1]);;
let NEARBY_POSITIVE_DEFINITE_MATRIX = prove
(`!A:real^N^N x.
positive_semidefinite A /\ &0 < x ==> positive_definite(A + x %% mat 1)`,
SIMP_TAC[NEARBY_POSITIVE_DEFINITE_MATRIX_GEN; POSITIVE_DEFINITE_ID]);;
let POSITIVE_SEMIDEFINITE_ANTISYM = prove
(`!A:real^N^N. positive_semidefinite A /\ positive_semidefinite(--A) <=>
A = mat 0`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[POSITIVE_SEMIDEFINITE_MAT; MATRIX_NEG_0] THEN
ASM_SIMP_TAC[MATRIX_EQ_0; GSYM POSITIVE_SEMIDEFINITE_ZERO_FORM_EQ] THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[positive_semidefinite] THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_LNEG; DOT_RNEG; IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN (MP_TAC o CONJUNCT2)) THEN
REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);;
let LOEWNER_ORDER_ANTISYM = prove
(`!(A:real^N^N) B.
positive_semidefinite(A - B) /\ positive_semidefinite(B - A) <=>
A = B`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM MATRIX_SUB_EQ] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM POSITIVE_SEMIDEFINITE_ANTISYM] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC MATRIX_ARITH);;
(* ------------------------------------------------------------------------- *)
(* Hadamard's inequality. *)
(* ------------------------------------------------------------------------- *)
let HADAMARD_INEQUALITY_ROW = prove
(`!A:real^N^N. abs(det A) <= product(1..dimindex(:N)) (\i. norm(row i A))`,
GEN_TAC THEN
ABBREV_TAC `a = \i. (A:real^N^N)$i` THEN
(MP_TAC o DISCH_ALL o instantiate_casewise_recursion)
`?b. !j. b j :real^N =
a j - vsum(1..j-1) (\i. (a j dot b i) / (b i dot b i) % b i)` THEN
ANTS_TAC THENL
[EXISTS_TAC `(<):num->num->bool` THEN REWRITE_TAC[WF_num] THEN
MATCH_MP_TAC ADMISSIBLE_IMP_SUPERADMISSIBLE THEN
REWRITE_TAC[admissible] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN
ASM_SIMP_TAC[IN_NUMSEG; ARITH_RULE `1 <= x /\ x <= y - 1 ==> x < y`];
DISCH_THEN(STRIP_ASSUME_TAC o GSYM)] THEN
ABBREV_TAC `B:real^N^N = lambda i. b i` THEN
TRANS_TAC REAL_LE_TRANS `abs(det(B:real^N^N))` THEN CONJ_TAC THENL
[SUBGOAL_THEN
`!n. det((lambda i. if i <= n then b i else a i):real^N^N) =
det(A:real^N^N)`
(MP_TAC o SPEC `dimindex(:N)`)
THENL
[MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
[AP_TERM_TAC THEN EXPAND_TAC "a" THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
SIMP_TAC[ARITH_RULE `1 <= n ==> ~(n <= 0)`];
X_GEN_TAC `n:num` THEN DISCH_THEN(SUBST1_TAC o SYM)] THEN
ASM_CASES_TAC `dimindex(:N) <= n` THENL
[AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
REPEAT STRIP_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_ARITH_TAC;
FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE
`~(n <= k) ==> SUC k <= n`))] THEN
MP_TAC(ISPECL
[`(lambda i. if i <= n then b i else a i):real^N^N`;
`SUC n`;
`--vsum (1..SUC n - 1)
(\i. (a (SUC n) dot b i) / (b i dot b i) % b i):real^N`]
DET_ROW_SPAN) THEN
ASM_REWRITE_TAC[row; LAMBDA_ETA; ARITH_RULE `1 <= SUC n`] THEN
ANTS_TAC THENL
[MATCH_MP_TAC SPAN_NEG THEN MATCH_MP_TAC SPAN_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN
MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN
EXISTS_TAC `i:num` THEN
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN
SIMP_TAC[LAMBDA_BETA] THEN ASM_ARITH_TAC;
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC I [CART_EQ] THEN X_GEN_TAC `k:num` THEN
SIMP_TAC[LAMBDA_BETA] THEN STRIP_TAC THEN
ASM_CASES_TAC `SUC n = k` THEN
ASM_SIMP_TAC[LE_REFL; LAMBDA_BETA; GSYM VECTOR_SUB; ARITH_RULE
`SUC n = k ==> ~(k <= n)`] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_ARITH_TAC];
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC I [CART_EQ] THEN EXPAND_TAC "B" THEN
SIMP_TAC[LAMBDA_BETA]];
ALL_TAC] THEN
SUBGOAL_THEN
`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) /\
~(i = j)
==> orthogonal (b i:real^N) (b j)`
ASSUME_TAC THENL
[ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN
CONJ_TAC THENL [MESON_TAC[ORTHOGONAL_SYM]; ALL_TAC] THEN
GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP] THEN
REWRITE_TAC[ARITH_RULE
`j < n /\ 1 <= n /\ n <= N /\ 1 <= j /\ j <= N /\ ~(n = j) <=>
(1 <= n /\ n <= N) /\ (1 <= j /\ j <= N /\ j < n)`] THEN
MATCH_MP_TAC num_WF THEN CONV_TAC NUM_REDUCE_CONV THEN
X_GEN_TAC `n:num` THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_TAC THEN
X_GEN_TAC `m:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM o SPEC `n:num`) THEN
REWRITE_TAC[orthogonal; DOT_LSUB; REAL_SUB_0] THEN
SIMP_TAC[DOT_LSUM; FINITE_NUMSEG; DOT_LMUL] THEN TRANS_TAC EQ_TRANS
`sum(1..n-1) (\j. if j = m then (a n:real^N) dot (b m) else &0)` THEN
CONJ_TAC THENL
[REWRITE_TAC[SUM_DELTA; IN_NUMSEG] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_CASES_TAC `(b:num->real^N) m = vec 0` THEN
ASM_REWRITE_TAC[DOT_RZERO; REAL_MUL_RZERO] THEN
ASM_SIMP_TAC[DOT_EQ_0; REAL_DIV_RMUL];
CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE] THEN
DISJ2_TAC THEN REWRITE_TAC[GSYM orthogonal] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(m:num = n) ==> n < m \/ m < n`))
THENL [ALL_TAC; ONCE_REWRITE_TAC[ORTHOGONAL_SYM]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]];
ALL_TAC] THEN
SUBGOAL_THEN
`!i. 1 <= i /\ i <= dimindex(:N) ==> norm(b i:real^N) <= norm(a i:real^N)`
ASSUME_TAC THENL
[X_GEN_TAC `i:num` THEN STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `i:num`) THEN
REWRITE_TAC[NORM_LE; VECTOR_ARITH
`(x - y:real^N) dot (x - y) = (x dot x + y dot y) - &2 * x dot y`] THEN
REWRITE_TAC[REAL_ARITH `(a + b) - x <= a <=> b <= x`] THEN
SIMP_TAC[DOT_RSUM; FINITE_NUMSEG; DOT_RMUL; GSYM SUM_LMUL] THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x = y ==> y <= &2 * x`) THEN
CONJ_TAC THENL
[ONCE_REWRITE_TAC[REAL_ARITH `x / y * x:real = (x * x) / y`] THEN
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_LE_SQUARE; DOT_POS_LE];
AP_TERM_TAC] THEN
TRANS_TAC EQ_TRANS
`sum(1..i-1) (\k. if k = j then (a i:real^N) dot (b j) else &0)` THEN
CONJ_TAC THENL [ASM_REWRITE_TAC[SUM_DELTA; IN_NUMSEG]; ALL_TAC] THEN
SIMP_TAC[DOT_LSUM; FINITE_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN
REWRITE_TAC[DOT_LMUL] THEN
ASM_CASES_TAC `(b:num->real^N) j = vec 0` THEN
ASM_REWRITE_TAC[DOT_RZERO; REAL_MUL_RZERO; COND_ID] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[DOT_EQ_0; REAL_DIV_RMUL] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE] THEN
DISJ2_TAC THEN REWRITE_TAC[GSYM orthogonal] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(m:num = n) ==> n < m \/ m < n`))
THENL [ALL_TAC; ONCE_REWRITE_TAC[ORTHOGONAL_SYM]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
ALL_TAC] THEN
TRANS_TAC REAL_LE_TRANS
`product(1..dimindex(:N)) (\i. norm(b i:real^N))` THEN
CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC PRODUCT_LE_NUMSEG THEN
REWRITE_TAC[NORM_POS_LE; row; LAMBDA_ETA] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
TRANS_TAC REAL_LE_TRANS `norm((a:num->real^N) i)` THEN
ASM_SIMP_TAC[] THEN EXPAND_TAC "a" THEN REWRITE_TAC[REAL_LE_REFL]] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs x <= abs y ==> abs x <= y`) THEN
SIMP_TAC[PRODUCT_POS_LE_NUMSEG; NORM_POS_LE; REAL_LE_SQUARE_ABS] THEN
REWRITE_TAC[REAL_POW_2; GSYM PRODUCT_MUL_NUMSEG] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM DET_TRANSP] THEN
REWRITE_TAC[GSYM DET_MUL] THEN
W(MP_TAC o PART_MATCH (lhand o rand) DET_DIAGONAL o lhand o snd) THEN
SIMP_TAC[DIAGONAL_MATRIX_MUL_EQ; pairwise; GSYM ROW_TRANSP; IN_NUMSEG] THEN
EXPAND_TAC "B" THEN
SIMP_TAC[TRANSP_TRANSP; row; LAMBDA_ETA; LAMBDA_BETA] THEN
ASM_REWRITE_TAC[GSYM CONJ_ASSOC] THEN DISCH_THEN SUBST1_TAC THEN
MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN
EXPAND_TAC "B" THEN REWRITE_TAC[transp; GSYM REAL_POW_2] THEN
SIMP_TAC[matrix_mul; NORM_POW_2; dot; LAMBDA_BETA; dot]);;
let HADAMARD_INEQUALITY_COLUMN = prove
(`!A:real^N^N. abs(det A) <= product(1..dimindex(:N)) (\i. norm(column i A))`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM DET_TRANSP] THEN
SIMP_TAC[GSYM ROW_TRANSP; HADAMARD_INEQUALITY_ROW]);;
(* ------------------------------------------------------------------------- *)
(* Orthogonality of a transformation and matrix. *)
(* ------------------------------------------------------------------------- *)
let orthogonal_transformation = new_definition
`orthogonal_transformation(f:real^N->real^N) <=>
linear f /\ !v w. f(v) dot f(w) = v dot w`;;
let ORTHOGONAL_TRANSFORMATION = prove
(`!f. orthogonal_transformation f <=> linear f /\ !v. norm(f v) = norm(v)`,
GEN_TAC THEN REWRITE_TAC[orthogonal_transformation] THEN EQ_TAC THENL
[MESON_TAC[vector_norm]; SIMP_TAC[DOT_NORM] THEN MESON_TAC[LINEAR_ADD]]);;
let ORTHOGONAL_ORTHOGONAL_TRANSFORMATION = prove
(`!f x y:real^N.
orthogonal_transformation f
==> (orthogonal (f x) (f y) <=> orthogonal x y)`,
SIMP_TAC[orthogonal; orthogonal_transformation]);;
let ORTHOGONAL_TRANSFORMATION_COMPOSE = prove
(`!f g. orthogonal_transformation f /\ orthogonal_transformation g
==> orthogonal_transformation(f o g)`,
SIMP_TAC[orthogonal_transformation; LINEAR_COMPOSE; o_THM]);;
let ORTHOGONAL_TRANSFORMATION_NEG = prove
(`!f:real^N->real^N.
orthogonal_transformation(\x. --(f x)) <=> orthogonal_transformation f`,
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; LINEAR_COMPOSE_NEG_EQ; NORM_NEG]);;
let ORTHOGONAL_TRANSFORMATION_LINEAR = prove
(`!f:real^N->real^N. orthogonal_transformation f ==> linear f`,
SIMP_TAC[orthogonal_transformation]);;
let ORTHOGONAL_TRANSFORMATION_INJECTIVE = prove
(`!f:real^N->real^N.
orthogonal_transformation f ==> !x y. f x = f y ==> x = y`,
SIMP_TAC[LINEAR_INJECTIVE_0; ORTHOGONAL_TRANSFORMATION; GSYM NORM_EQ_0]);;
let ORTHOGONAL_TRANSFORMATION_SURJECTIVE = prove
(`!f:real^N->real^N.
orthogonal_transformation f ==> !y. ?x. f x = y`,
MESON_TAC[LINEAR_INJECTIVE_IMP_SURJECTIVE;
ORTHOGONAL_TRANSFORMATION_INJECTIVE; orthogonal_transformation]);;
let orthogonal_matrix = new_definition
`orthogonal_matrix(Q:real^N^N) <=>
transp(Q) ** Q = mat 1 /\ Q ** transp(Q) = mat 1`;;
let ORTHOGONAL_MATRIX = prove
(`orthogonal_matrix(Q:real^N^N) <=> transp(Q) ** Q = mat 1`,
MESON_TAC[MATRIX_LEFT_RIGHT_INVERSE; orthogonal_matrix]);;
let ORTHOGONAL_MATRIX_ALT = prove
(`!A:real^N^N. orthogonal_matrix A <=> A ** transp A = mat 1`,
MESON_TAC[MATRIX_LEFT_RIGHT_INVERSE; orthogonal_matrix]);;
let ORTHOGONAL_MATRIX_TRANSP = prove
(`!A:real^N^N. orthogonal_matrix(transp A) <=> orthogonal_matrix A`,
REWRITE_TAC[orthogonal_matrix; TRANSP_TRANSP; CONJ_ACI]);;
let ORTHOGONAL_MATRIX_TRANSP_LMUL = prove
(`!P:real^N^N. orthogonal_matrix P ==> transp P ** P = mat 1`,
REWRITE_TAC[ORTHOGONAL_MATRIX]);;
let ORTHOGONAL_MATRIX_TRANSP_RMUL = prove
(`!P:real^N^N. orthogonal_matrix P ==> P ** transp P = mat 1`,
REWRITE_TAC[ORTHOGONAL_MATRIX_ALT]);;
let NORM_VECTORIZE_ORTHOGONAL_MATRIX_RMUL = prove
(`!A:real^N^N P:real^N^N.
orthogonal_matrix P ==> norm(vectorize(A ** P)) = norm(vectorize A)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[NORM_EQ; DOT_VECTORIZE; MATRIX_TRANSP_MUL] THEN
GEN_REWRITE_TAC LAND_CONV [TRACE_MUL_SYM] THEN
ONCE_REWRITE_TAC[MATRIX_MUL_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV)
[GSYM MATRIX_MUL_ASSOC] THEN
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_TRANSP_RMUL; MATRIX_MUL_RID] THEN
MATCH_ACCEPT_TAC TRACE_MUL_SYM);;
let NORM_VECTORIZE_ORTHOGONAL_MATRIX_LMUL = prove
(`!A:real^N^N P:real^N^N.
orthogonal_matrix P ==> norm(vectorize(P ** A)) = norm(vectorize A)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM NORM_VECTORIZE_TRANSP] THEN
REWRITE_TAC[MATRIX_TRANSP_MUL] THEN
MATCH_MP_TAC NORM_VECTORIZE_ORTHOGONAL_MATRIX_RMUL THEN
ASM_REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSP]);;
let ORTHOGONAL_MATRIX_ID = prove
(`orthogonal_matrix(mat 1)`,
REWRITE_TAC[orthogonal_matrix; TRANSP_MAT; MATRIX_MUL_LID]);;
let ORTHOGONAL_MATRIX_MUL = prove
(`!A B. orthogonal_matrix A /\ orthogonal_matrix B
==> orthogonal_matrix(A ** B)`,
REWRITE_TAC[orthogonal_matrix; MATRIX_TRANSP_MUL] THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM MATRIX_MUL_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [MATRIX_MUL_ASSOC] THEN
ASM_REWRITE_TAC[MATRIX_MUL_LID; MATRIX_MUL_RID]);;
let ORTHOGONAL_TRANSFORMATION_MATRIX = prove
(`!f:real^N->real^N.
orthogonal_transformation f <=> linear f /\ orthogonal_matrix(matrix f)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[REWRITE_TAC[orthogonal_transformation; ORTHOGONAL_MATRIX] THEN
STRIP_TAC THEN ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`basis i:real^N`; `basis j:real^N`]) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN
REWRITE_TAC[DOT_MATRIX_VECTOR_MUL] THEN
ABBREV_TAC `A = transp (matrix f) ** matrix(f:real^N->real^N)` THEN
ASM_SIMP_TAC[matrix_mul; columnvector; rowvector; basis; LAMBDA_BETA;
SUM_DELTA; DIMINDEX_1; LE_REFL; dot; IN_NUMSEG; mat;
MESON[REAL_MUL_LID; REAL_MUL_LZERO; REAL_MUL_RID; REAL_MUL_RZERO]
`(if b then &1 else &0) * x = (if b then x else &0) /\
x * (if b then &1 else &0) = (if b then x else &0)`];
REWRITE_TAC[orthogonal_matrix; ORTHOGONAL_TRANSFORMATION; NORM_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN
ASM_REWRITE_TAC[DOT_MATRIX_VECTOR_MUL] THEN
SIMP_TAC[DOT_MATRIX_PRODUCT; MATRIX_MUL_LID]]);;
let ORTHOGONAL_MATRIX_TRANSFORMATION = prove
(`!A:real^N^N. orthogonal_matrix A <=> orthogonal_transformation(\x. A ** x)`,
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX; MATRIX_VECTOR_MUL_LINEAR] THEN
REWRITE_TAC[MATRIX_OF_MATRIX_VECTOR_MUL]);;
let ORTHOGONAL_MATRIX_MATRIX = prove
(`!f:real^N->real^N.
orthogonal_transformation f ==> orthogonal_matrix(matrix f)`,
SIMP_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX]);;
let ORTHOGONAL_MATRIX_NORM_EQ = prove
(`!A. orthogonal_matrix A <=> !x. norm(A ** x) = norm x`,
REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSFORMATION; MATRIX_VECTOR_MUL_LINEAR;
ORTHOGONAL_TRANSFORMATION]);;
let ORTHOGONAL_MATRIX_NORM = prove
(`!A x:real^N. orthogonal_matrix A ==> norm(A ** x) = norm x`,
SIMP_TAC[ORTHOGONAL_MATRIX_TRANSFORMATION; ORTHOGONAL_TRANSFORMATION]);;
let DET_ORTHOGONAL_MATRIX = prove
(`!Q. orthogonal_matrix Q ==> det(Q) = &1 \/ det(Q) = -- &1`,
GEN_TAC THEN REWRITE_TAC[REAL_RING `x = &1 \/ x = -- &1 <=> x * x = &1`] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM DET_TRANSP] THEN
SIMP_TAC[GSYM DET_MUL; orthogonal_matrix; DET_I]);;
let ORTHOGONAL_MATRIX_IMP_INVERTIBLE = prove
(`!A:real^N^N. orthogonal_matrix A ==> invertible A`,
GEN_TAC THEN REWRITE_TAC[INVERTIBLE_DET_NZ] THEN
DISCH_THEN(MP_TAC o MATCH_MP DET_ORTHOGONAL_MATRIX) THEN
REAL_ARITH_TAC);;
let MATRIX_MUL_LTRANSP_DOT_COLUMN = prove
(`!A:real^N^M. transp A ** A = (lambda i j. (column i A) dot (column j A))`,
SIMP_TAC[matrix_mul; CART_EQ; LAMBDA_BETA; transp; dot; column]);;
let MATRIX_MUL_RTRANSP_DOT_ROW = prove
(`!A:real^N^M. A ** transp A = (lambda i j. (row i A) dot (row j A))`,
SIMP_TAC[matrix_mul; CART_EQ; LAMBDA_BETA; transp; dot; row]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(column i A) = &1) /\
(!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j)
==> orthogonal (column i A) (column j A))`,
REWRITE_TAC[ORTHOGONAL_MATRIX] THEN
SIMP_TAC[MATRIX_MUL_LTRANSP_DOT_COLUMN; CART_EQ; mat; LAMBDA_BETA] THEN
REWRITE_TAC[orthogonal; NORM_EQ_1] THEN MESON_TAC[]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(row i A) = &1) /\
(!i j. 1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N) /\ ~(i = j)
==> orthogonal (row i A) (row j A))`,
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSP] THEN
SIMP_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS; COLUMN_TRANSP]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_INDEXED = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(row i A) = &1) /\
pairwise (\i j. orthogonal (row i A) (row j A)) (1..dimindex(:N))`,
REPEAT GEN_TAC THEN REWRITE_TAC[ORTHOGONAL_MATRIX_ALT] THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; pairwise; MAT_COMPONENT] THEN
SIMP_TAC[MATRIX_MUL_RTRANSP_DOT_ROW; IN_NUMSEG; LAMBDA_BETA] THEN
REWRITE_TAC[NORM_EQ_SQUARE; REAL_POS] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[orthogonal] THEN
MESON_TAC[]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_PAIRWISE = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
CARD(rows A) = dimindex(:N) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(row i A) = &1) /\
pairwise orthogonal (rows A)`,
REWRITE_TAC[rows; ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_INDEXED] THEN
GEN_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
REWRITE_TAC[PAIRWISE_IMAGE; GSYM numseg] THEN
MATCH_MP_TAC(TAUT `(p ==> (q <=> r /\ s)) ==> (p /\ q <=> r /\ p /\ s)`) THEN
DISCH_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV)
[GSYM CARD_NUMSEG_1] THEN
SIMP_TAC[CARD_IMAGE_EQ_INJ; FINITE_NUMSEG] THEN
REWRITE_TAC[pairwise; IN_NUMSEG] THEN
ASM_MESON_TAC[ORTHOGONAL_REFL; NORM_ARITH `~(norm(vec 0:real^N) = &1)`]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_SPAN = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
span(rows A) = (:real^N) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(row i A) = &1) /\
pairwise orthogonal (rows A)`,
GEN_TAC THEN REWRITE_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_PAIRWISE] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC(SET_RULE `UNIV SUBSET s ==> s = UNIV`) THEN
MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN
ASM_REWRITE_TAC[DIM_UNIV; SUBSET_UNIV; LE_REFL];
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM DIM_UNIV] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[DIM_SPAN] THEN
MATCH_MP_TAC DIM_EQ_CARD] THEN
MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN
ASM_REWRITE_TAC[rows; IN_ELIM_THM] THEN
ASM_MESON_TAC[NORM_ARITH `~(norm(vec 0:real^N) = &1)`]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS_INDEXED = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(column i A) = &1) /\
pairwise (\i j. orthogonal (column i A) (column j A)) (1..dimindex(:N))`,
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_INDEXED] THEN
SIMP_TAC[ROW_TRANSP; ROWS_TRANSP; pairwise; IN_NUMSEG]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS_PAIRWISE = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
CARD(columns A) = dimindex(:N) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(column i A) = &1) /\
pairwise orthogonal (columns A)`,
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_PAIRWISE] THEN
SIMP_TAC[ROW_TRANSP; ROWS_TRANSP]);;
let ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS_SPAN = prove
(`!A:real^N^N.
orthogonal_matrix A <=>
span(columns A) = (:real^N) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(column i A) = &1) /\
pairwise orthogonal (columns A)`,
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_SPAN] THEN
SIMP_TAC[ROW_TRANSP; ROWS_TRANSP]);;
let ORTHOGONAL_MATRIX_2 = prove
(`!A:real^2^2. orthogonal_matrix A <=>
A$1$1 pow 2 + A$2$1 pow 2 = &1 /\
A$1$2 pow 2 + A$2$2 pow 2 = &1 /\
A$1$1 * A$1$2 + A$2$1 * A$2$2 = &0`,
SIMP_TAC[orthogonal_matrix; CART_EQ; matrix_mul; LAMBDA_BETA;
TRANSP_COMPONENT; MAT_COMPONENT] THEN
REWRITE_TAC[DIMINDEX_2; FORALL_2; SUM_2] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RING);;
let ORTHOGONAL_MATRIX_2_ALT = prove
(`!A:real^2^2. orthogonal_matrix A <=>
A$1$1 pow 2 + A$2$1 pow 2 = &1 /\
(A$1$1 = A$2$2 /\ A$1$2 = --(A$2$1) \/
A$1$1 = --(A$2$2) /\ A$1$2 = A$2$1)`,
REWRITE_TAC[ORTHOGONAL_MATRIX_2] THEN CONV_TAC REAL_RING);;
let ORTHOGONAL_MATRIX_INV = prove
(`!A:real^N^N. orthogonal_matrix A ==> matrix_inv A = transp A`,
MESON_TAC[orthogonal_matrix; MATRIX_INV_UNIQUE]);;
let ORTHOGONAL_MATRIX_INV_EQ = prove
(`!A:real^N^N. orthogonal_matrix(matrix_inv A) <=> orthogonal_matrix A`,
MATCH_MP_TAC(MESON[]
`(!x. f(f x) = x) /\ (!x. P x ==> P(f x)) ==> (!x. P(f x) <=> P x)`) THEN
REWRITE_TAC[MATRIX_INV_INV] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP ORTHOGONAL_MATRIX_INV) THEN
ASM_REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSP]);;
let ORTHOGONAL_TRANSFORMATION_ORTHOGONAL_EIGENVECTORS = prove
(`!f:real^N->real^N v w a b.
orthogonal_transformation f /\ f v = a % v /\ f w = b % w /\ ~(a = b)
==> orthogonal v w`,
REWRITE_TAC[orthogonal_transformation] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(fun th ->
MP_TAC(SPECL [`v:real^N`; `v:real^N`] th) THEN
MP_TAC(SPECL [`v:real^N`; `w:real^N`] th) THEN
MP_TAC(SPECL [`w:real^N`; `w:real^N`] th)) THEN
ASM_REWRITE_TAC[DOT_LMUL; DOT_RMUL; orthogonal] THEN
REWRITE_TAC[REAL_MUL_ASSOC; REAL_RING `x * y = y <=> x = &1 \/ y = &0`] THEN
REWRITE_TAC[DOT_EQ_0] THEN
ASM_CASES_TAC `v:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN
ASM_CASES_TAC `w:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN
ASM_CASES_TAC `(v:real^N) dot w = &0` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(a:real = b)` THEN CONV_TAC REAL_RING);;
let ORTHOGONAL_MATRIX_ORTHOGONAL_EIGENVECTORS = prove
(`!A:real^N^N v w a b.
orthogonal_matrix A /\ A ** v = a % v /\ A ** w = b % w /\ ~(a = b)
==> orthogonal v w`,
REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSFORMATION;
ORTHOGONAL_TRANSFORMATION_ORTHOGONAL_EIGENVECTORS]);;
let ORTHOGONAL_TRANSFORMATION_ID = prove
(`orthogonal_transformation(\x. x)`,
REWRITE_TAC[orthogonal_transformation; LINEAR_ID]);;
let ORTHOGONAL_TRANSFORMATION_I = prove
(`orthogonal_transformation I`,
REWRITE_TAC[I_DEF; ORTHOGONAL_TRANSFORMATION_ID]);;
let ORTHOGONAL_TRANSFORMATION_1_GEN = prove
(`!f:real^N->real^N.
dimindex(:N) = 1
==> (orthogonal_transformation f <=> f = I \/ f = (--))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[I_DEF] THEN
GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM ETA_AX] THEN
EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_ID;
ORTHOGONAL_TRANSFORMATION_NEG] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ORTHOGONAL_TRANSFORMATION]) THEN
ASM_SIMP_TAC[LINEAR_1_GEN] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[NORM_MUL] THEN
DISCH_THEN(MP_TAC o SPEC `basis 1:real^N`) THEN
SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL; DIMINDEX_1] THEN
REWRITE_TAC[REAL_ARITH `abs x * &1 = &1 <=> x = &1 \/ x = -- &1`] THEN
MATCH_MP_TAC MONO_OR THEN SIMP_TAC[FUN_EQ_THM] THEN
REPEAT STRIP_TAC THEN CONV_TAC VECTOR_ARITH);;
let ORTHOGONAL_MATRIX_1 = prove
(`!m:real^N^N.
dimindex(:N) = 1
==> (orthogonal_matrix m <=> m = mat 1 \/ m = --mat 1)`,
REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSFORMATION] THEN
SIMP_TAC[ORTHOGONAL_TRANSFORMATION_1_GEN] THEN
REWRITE_TAC[MATRIX_EQ; FUN_EQ_THM] THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_LID; MATRIX_VECTOR_MUL_LNEG] THEN
REWRITE_TAC[I_THM]);;
let MATRIX_INV_ORTHOGONAL_LMUL = prove
(`!U A:real^M^N.
orthogonal_matrix U
==> matrix_inv(U ** A) = matrix_inv A ** matrix_inv U`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_INV_UNIQUE_STRONG THEN
REWRITE_TAC[symmetric_matrix] THEN
REWRITE_TAC[MATRIX_TRANSP_MUL; GSYM MATRIX_MUL_ASSOC] THEN
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_INV; TRANSP_TRANSP] THEN
REWRITE_TAC[MESON[MATRIX_MUL_ASSOC]
`(A:real^M^N) ** transp U ** U ** (B:real^P^M) =
A ** (transp U ** U) ** B`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[orthogonal_matrix]) THEN
ASM_REWRITE_TAC[MATRIX_MUL_LID] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM orthogonal_matrix]) THEN
ASM_SIMP_TAC[MATRIX_MUL_LCANCEL; ORTHOGONAL_MATRIX_IMP_INVERTIBLE] THEN
REWRITE_TAC[MATRIX_MUL_ASSOC] THEN
ASM_SIMP_TAC[MATRIX_MUL_RCANCEL; ORTHOGONAL_MATRIX_IMP_INVERTIBLE;
ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[GSYM MATRIX_TRANSP_MUL; GSYM MATRIX_MUL_ASSOC] THEN
REWRITE_TAC[REWRITE_RULE[symmetric_matrix] SYMMETRIC_MATRIX_INV_LMUL;
REWRITE_RULE[symmetric_matrix] SYMMETRIC_MATRIX_INV_RMUL;
MATRIX_INV_MUL_INNER; MATRIX_INV_MUL_OUTER]);;
let MATRIX_INV_ORTHOGONAL_RMUL = prove
(`!U A:real^M^N.
orthogonal_matrix U
==> matrix_inv(A ** U) = matrix_inv U ** matrix_inv A`,
ONCE_REWRITE_TAC[GSYM TRANSP_EQ; GSYM ORTHOGONAL_MATRIX_TRANSP] THEN
SIMP_TAC[TRANSP_MATRIX_INV; MATRIX_TRANSP_MUL; MATRIX_INV_ORTHOGONAL_LMUL]);;
let ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_LEFT = prove
(`!f:real^N->real^N.
orthogonal_transformation f <=> linear f /\ adjoint f o f = I`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM] THEN EQ_TAC THENL
[REWRITE_TAC[orthogonal_transformation] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ADJOINT_WORKS th]) THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[VECTOR_EQ_LDOT];
STRIP_TAC THEN ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN
REWRITE_TAC[NORM_EQ] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ADJOINT_WORKS th]) THEN
ASM_REWRITE_TAC[]]);;
let ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_RIGHT = prove
(`!f:real^N->real^N.
orthogonal_transformation f <=> linear f /\ f o adjoint f = I`,
GEN_TAC THEN REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_LEFT] THEN
MESON_TAC[ADJOINT_LINEAR; LINEAR_INVERSE_LEFT]);;
let ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT = prove
(`!f:real^N->real^N.
orthogonal_transformation f <=>
linear f /\ adjoint f o f = I /\ f o adjoint f = I`,
MESON_TAC[ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_LEFT;
ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_RIGHT]);;
let ORTHOGONAL_TRANSFORMATION_ADJOINT = prove
(`!f:real^N->real^N.
orthogonal_transformation f ==> orthogonal_transformation(adjoint f)`,
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_EQ_ADJOINT_LEFT] THEN
SIMP_TAC[ADJOINT_ADJOINT; ADJOINT_LINEAR] THEN
MESON_TAC[ADJOINT_LINEAR; LINEAR_INVERSE_LEFT]);;
let ORTHOGONAL_TRANSFORMATION_ADJOINT_EQ =
(`!f:real^N->real^N.
linear f
==> (orthogonal_transformation(adjoint f) <=>
orthogonal_transformation f)`,
MESON_TAC[ORTHOGONAL_TRANSFORMATION_ADJOINT; ADJOINT_LINEAR;
ADJOINT_ADJOINT]);;
let ONORM_ORTHOGONAL_TRANSFORMATION = prove
(`!f:real^N->real^N. orthogonal_transformation f ==> onorm f = &1`,
SIMP_TAC[ORTHOGONAL_TRANSFORMATION; onorm] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUP_UNIQUE THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
X_GEN_TAC `c:real` THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(MP_TAC o SPEC `basis 1:real^N`) THEN
SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL]);;
let ONORM_ORTHOGONAL_MATRIX = prove
(`!A:real^N^N. orthogonal_matrix A ==> onorm(\x. A ** x) = &1`,
REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSFORMATION] THEN
REWRITE_TAC[ONORM_ORTHOGONAL_TRANSFORMATION]);;
(* ------------------------------------------------------------------------- *)
(* Linearity of scaling, and hence isometry, that preserves origin. *)
(* ------------------------------------------------------------------------- *)
let SCALING_LINEAR = prove
(`!f:real^M->real^N c.
(f(vec 0) = vec 0) /\ (!x y. dist(f x,f y) = c * dist(x,y))
==> linear(f)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!v w. ((f:real^M->real^N) v) dot (f w) = c pow 2 * (v dot w)`
ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN `v:real^M` o
SPECL [`v:real^M`; `vec 0 :real^M`]) THEN
REWRITE_TAC[dist] THEN ASM_REWRITE_TAC[VECTOR_SUB_RZERO] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[DOT_NORM_SUB; GSYM dist] THEN
REAL_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[linear; VECTOR_EQ] THEN
ASM_REWRITE_TAC[DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN
REAL_ARITH_TAC);;
let ISOMETRY_LINEAR = prove
(`!f:real^M->real^N.
(f(vec 0) = vec 0) /\ (!x y. dist(f x,f y) = dist(x,y))
==> linear(f)`,
MESON_TAC[SCALING_LINEAR; REAL_MUL_LID]);;
let ISOMETRY_IMP_AFFINITY = prove
(`!f:real^M->real^N.
(!x y. dist(f x,f y) = dist(x,y))
==> ?h. linear h /\ !x. f(x) = f(vec 0) + h(x)`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `\x. (f:real^M->real^N) x - f(vec 0)` THEN
REWRITE_TAC[VECTOR_ARITH `a + (x - a):real^N = x`] THEN
MATCH_MP_TAC ISOMETRY_LINEAR THEN REWRITE_TAC[VECTOR_SUB_REFL] THEN
ASM_REWRITE_TAC[NORM_ARITH `dist(x - a:real^N,y - a) = dist(x,y)`]);;
(* ------------------------------------------------------------------------- *)
(* An orthogonality-preserving linear map is a similarity. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONALITY_PRESERVING_IMP_SCALING = prove
(`!f:real^M->real^N.
linear f /\ (!x y. orthogonal x y ==> orthogonal (f x) (f y))
==> ?c. &0 <= c /\ !x. norm(f x) = c * norm(x)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?c. &0 <= c /\
!i. 1 <= i /\ i <= dimindex(:M)
==> norm((f:real^M->real^N)(basis i)) = c`
MP_TAC THENL
[MATCH_MP_TAC(MESON[]
`(!x. A(f x)) /\ (?x. P x) /\ (!i j. P i /\ P j ==> f i = f j)
==> ?c. A c /\ !x. P x ==> f x = c`) THEN
REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL
[EXISTS_TAC `1` THEN REWRITE_TAC[LE_REFL; DIMINDEX_GE_1]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o ISPECL
[`basis i + basis j:real^M`; `basis i - basis j:real^M`]) THEN
ASM_SIMP_TAC[orthogonal; LINEAR_ADD; LINEAR_SUB; VECTOR_ARITH
`(x + y:real^M) dot (x - y) = x dot x - y dot y`] THEN
ASM_SIMP_TAC[GSYM NORM_POW_2; REAL_SUB_0; NORM_BASIS] THEN
REWRITE_TAC[NORM_POW_2; GSYM NORM_EQ];
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN STRIP_TAC THEN
ASM_SIMP_TAC[NORM_EQ_SQUARE; NORM_POS_LE; REAL_LE_MUL] THEN
X_GEN_TAC `x:real^M` THEN REWRITE_TAC[GSYM NORM_POW_2] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV o RAND_CONV)
[GSYM BASIS_EXPANSION] THEN
ASM_SIMP_TAC[LINEAR_VSUM; FINITE_NUMSEG; o_DEF; LINEAR_CMUL] THEN
W(MP_TAC o PART_MATCH (lhand o rand)
NORM_VSUM_PYTHAGOREAN o lhand o snd) THEN
REWRITE_TAC[pairwise; IN_NUMSEG; ORTHOGONAL_MUL; FINITE_NUMSEG] THEN
ASM_SIMP_TAC[ORTHOGONAL_BASIS_BASIS] THEN DISCH_THEN SUBST1_TAC THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[NORM_MUL; REAL_POW_MUL; SUM_RMUL; REAL_POW2_ABS] THEN
REWRITE_TAC[REAL_POW_2; GSYM dot; GSYM NORM_POW_2]]);;
let ORTHOGONALITY_PRESERVING_EQ_SIMILARITY_ALT,
ORTHOGONALITY_PRESERVING_EQ_SIMILARITY =
(CONJ_PAIR o prove)
(`(!f:real^N->real^N.
linear f /\ (!x y. orthogonal x y ==> orthogonal (f x) (f y)) <=>
?c g. &0 <= c /\ orthogonal_transformation g /\ f = \z. c % g z) /\
(!f:real^N->real^N.
linear f /\ (!x y. orthogonal x y ==> orthogonal (f x) (f y)) <=>
?c g. orthogonal_transformation g /\ f = \z. c % g z)`,
REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN
MATCH_MP_TAC(TAUT
`(q ==> r) /\ (r ==> p) /\ (p ==> q)
==> (p <=> q) /\ (p <=> r)`) THEN
REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[];
STRIP_TAC THEN
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR; LINEAR_COMPOSE_CMUL] THEN
ASM_SIMP_TAC[ORTHOGONAL_MUL; ORTHOGONAL_ORTHOGONAL_TRANSFORMATION];
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ORTHOGONALITY_PRESERVING_IMP_SCALING) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
ASM_CASES_TAC `c = &0` THENL
[ASM_SIMP_TAC[REAL_MUL_LZERO; FUN_EQ_THM; NORM_EQ_0] THEN
DISCH_TAC THEN EXISTS_TAC `\x:real^N. x` THEN
REWRITE_TAC[VECTOR_MUL_LZERO; ORTHOGONAL_TRANSFORMATION_ID];
STRIP_TAC THEN EXISTS_TAC `\x. inv(c) % (f:real^N->real^N) x` THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; FUN_EQ_THM] THEN
ASM_SIMP_TAC[LINEAR_COMPOSE_CMUL; NORM_MUL; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; VECTOR_MUL_LID; REAL_ABS_INV] THEN
ASM_REWRITE_TAC[real_abs; REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID]]]);;
(* ------------------------------------------------------------------------- *)
(* Hence another formulation of orthogonal transformation. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONAL_TRANSFORMATION_ISOMETRY = prove
(`!f:real^N->real^N.
orthogonal_transformation f <=>
(f(vec 0) = vec 0) /\ (!x y. dist(f x,f y) = dist(x,y))`,
GEN_TAC THEN REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN EQ_TAC THENL
[MESON_TAC[LINEAR_0; LINEAR_SUB; dist]; STRIP_TAC] THEN
ASM_SIMP_TAC[ISOMETRY_LINEAR] THEN X_GEN_TAC `x:real^N` THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `vec 0:real^N`]) THEN
ASM_REWRITE_TAC[dist; VECTOR_SUB_RZERO]);;
(* ------------------------------------------------------------------------- *)
(* Can extend an isometry from unit sphere. *)
(* ------------------------------------------------------------------------- *)
let ISOMETRY_SPHERE_EXTEND = prove
(`!f:real^N->real^N.
(!x. norm(x) = &1 ==> norm(f x) = &1) /\
(!x y. norm(x) = &1 /\ norm(y) = &1 ==> dist(f x,f y) = dist(x,y))
==> ?g. orthogonal_transformation g /\
(!x. norm(x) = &1 ==> g(x) = f(x))`,
let lemma = prove
(`!x:real^N y:real^N x':real^N y':real^N x0 y0 x0' y0'.
x = norm(x) % x0 /\ y = norm(y) % y0 /\
x' = norm(x) % x0' /\ y' = norm(y) % y0' /\
norm(x0) = &1 /\ norm(x0') = &1 /\ norm(y0) = &1 /\ norm(y0') = &1 /\
norm(x0' - y0') = norm(x0 - y0)
==> norm(x' - y') = norm(x - y)`,
REPEAT GEN_TAC THEN
MAP_EVERY ABBREV_TAC [`a = norm(x:real^N)`; `b = norm(y:real^N)`] THEN
REPLICATE_TAC 4 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[NORM_EQ; NORM_EQ_1] THEN
REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_LMUL; DOT_RMUL] THEN
REWRITE_TAC[DOT_SYM] THEN CONV_TAC REAL_RING) in
REPEAT STRIP_TAC THEN
EXISTS_TAC `\x. if x = vec 0 then vec 0
else norm(x) % (f:real^N->real^N)(inv(norm x) % x)` THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_ISOMETRY] THEN
SIMP_TAC[VECTOR_MUL_LID; REAL_INV_1] THEN CONJ_TAC THENL
[ALL_TAC; MESON_TAC[NORM_0; REAL_ARITH `~(&1 = &0)`]] THEN
REPEAT GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[dist; VECTOR_SUB_LZERO; VECTOR_SUB_RZERO; NORM_NEG; NORM_MUL;
REAL_ABS_NORM] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_EQ_RDIV_EQ; NORM_POS_LT] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; NORM_EQ_0] THEN
TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; NORM_EQ_0] THEN
MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC
[`inv(norm x) % x:real^N`; `inv(norm y) % y:real^N`;
`(f:real^N->real^N) (inv (norm x) % x)`;
`(f:real^N->real^N) (inv (norm y) % y)`] THEN
REWRITE_TAC[NORM_MUL; VECTOR_MUL_ASSOC; REAL_ABS_INV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_RINV; NORM_EQ_0] THEN
ASM_REWRITE_TAC[GSYM dist; VECTOR_MUL_LID] THEN
REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[NORM_MUL; VECTOR_MUL_ASSOC; REAL_ABS_INV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_RINV; NORM_EQ_0]);;
let ORTHOGONAL_TRANSFORMATION_INVERSE_o = prove
(`!f:real^N->real^N.
orthogonal_transformation f
==> ?g. orthogonal_transformation g /\ g o f = I /\ f o g = I`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_INJECTIVE) THEN
MP_TAC(ISPEC `f:real^N->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `g:real^N->real^N` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^N->real^N`; `g:real^N->real^N`]
LINEAR_INVERSE_LEFT) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN X_GEN_TAC `v:real^N` THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `norm((f:real^N->real^N)((g:real^N->real^N) v))` THEN
CONJ_TAC THENL [ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION]; ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM; o_THM; I_THM]) THEN
ASM_REWRITE_TAC[]);;
let ORTHOGONAL_TRANSFORMATION_INVERSE = prove
(`!f:real^N->real^N.
orthogonal_transformation f
==> ?g. orthogonal_transformation g /\
(!x. g(f x) = x) /\ (!y. f(g y) = y)`,
GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_INVERSE_o) THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;
let ONORM_COMPOSE_ORTHOGONAL_TRANSFORMATION_LEFT = prove
(`!f g. orthogonal_transformation f ==> onorm(f o g) = onorm g`,
SIMP_TAC[ORTHOGONAL_TRANSFORMATION; onorm; o_DEF]);;
let ONORM_COMPOSE_ORTHOGONAL_TRANSFORMATION_RIGHT = prove
(`!f g. orthogonal_transformation g ==> onorm(f o g) = onorm f`,
REPEAT STRIP_TAC THEN REWRITE_TAC[onorm; o_DEF] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_INVERSE_o) THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Reading operator norms off eigenvalue bases or diagonalizations. *)
(* ------------------------------------------------------------------------- *)
let SQNORM_LE_MAX_EIGENVECTOR_SPAN = prove
(`!(f:real^N->real^N) b c x l.
linear f /\
pairwise orthogonal b /\
(!x. x IN b ==> f x = c x % x /\ c x pow 2 <= l) /\
x IN span b
==> norm(f x) pow 2 <= l * norm x pow 2`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PAIRWISE_ORTHOGONAL_IMP_FINITE) THEN
ASM_SIMP_TAC[SPAN_FINITE; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `v:real^N->real` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[LINEAR_VSUM; o_DEF; LINEAR_CMUL] THEN
W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o
lhand o snd) THEN
W(MP_TAC o PART_MATCH(lhand o rand) NORM_VSUM_PYTHAGOREAN o
rand o rand o rand o snd) THEN
ASM_REWRITE_TAC[] THEN
REPEAT(ANTS_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN
REWRITE_TAC[pairwise; ORTHOGONAL_MUL] THEN ASM_MESON_TAC[];
DISCH_THEN SUBST1_TAC]) THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC SUM_LE THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] VECTOR_MUL_ASSOC] THEN
REWRITE_TAC[GSYM VECTOR_MUL_ASSOC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [NORM_MUL] THEN
REWRITE_TAC[REAL_POW_MUL] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
ASM_SIMP_TAC[REAL_POW2_ABS; REAL_LE_POW_2]);;
let NORM_LE_MAX_EIGENVECTOR_SPAN = prove
(`!(f:real^N->real^N) b c x l.
linear f /\
pairwise orthogonal b /\
(!x. x IN b ==> f x = c x % x /\ abs(c x) <= l) /\
x IN span b
==> norm(f x) <= l * norm x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[SPAN_EMPTY; IN_SING] THEN
MESON_TAC[LINEAR_0; NORM_0; REAL_MUL_RZERO; REAL_LE_REFL];
STRIP_TAC] THEN
GEN_REWRITE_TAC I [NORM_LE_SQUARE] THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[NORM_POS_LE] THEN
ASM_MESON_TAC[REAL_ABS_POS; REAL_LE_TRANS; MEMBER_NOT_EMPTY];
REWRITE_TAC[REAL_POW_MUL; GSYM NORM_POW_2]] THEN
MATCH_MP_TAC SQNORM_LE_MAX_EIGENVECTOR_SPAN THEN
MAP_EVERY EXISTS_TAC [`b:real^N->bool`; `c:real^N->real`] THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS; REAL_ABS_ABS] THEN ASM_REAL_ARITH_TAC);;
let ONORM_EQ_MAX_EIGENVECTOR = prove
(`!(f:real^N->real^N) b c.
linear f /\
pairwise orthogonal b /\
span b = (:real^N) /\
~(vec 0 IN b) /\
(!x. x IN b ==> f x = c x % x)
==> onorm f = sup {abs(c x) | x IN b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[SPAN_EMPTY] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`s = UNIV ==> (?x. ~(x IN s)) ==> P`)) THEN
EXISTS_TAC `vec 1:real^N` THEN REWRITE_TAC[VEC_EQ; IN_SING; ARITH_EQ];
STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM]] THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[ONORM_LE_EQ] THEN GEN_TAC THEN
MATCH_MP_TAC NORM_LE_MAX_EIGENVECTOR_SPAN THEN
MAP_EVERY EXISTS_TAC [`b:real^N->bool`; `c:real^N->real`] THEN
ASM_REWRITE_TAC[IN_UNIV] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
ASM_SIMP_TAC[REAL_LE_SUP_FINITE; SIMPLE_IMAGE; FINITE_IMAGE;
IMAGE_EQ_EMPTY; PAIRWISE_ORTHOGONAL_IMP_FINITE] THEN
REWRITE_TAC[EXISTS_IN_IMAGE] THEN EXISTS_TAC `x:real^N` THEN
ASM_REWRITE_TAC[REAL_LE_REFL];
MATCH_MP_TAC REAL_SUP_LE THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `norm(x:real^N)` THEN
REWRITE_TAC[NORM_POS_LT] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
TRANS_TAC REAL_LE_TRANS `norm((f:real^N->real^N) x)` THEN
ASM_SIMP_TAC[ONORM; NORM_MUL; REAL_LE_REFL]]);;
let ONORM_ORTHOGONAL_MATRIX_MUL_LEFT = prove
(`!(A:real^N^N) (P:real^N^N).
orthogonal_matrix P ==> onorm (\x. (P ** A) ** x) = onorm(\x. A ** x)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\x. ((P:real^N^N) ** (A:real^N^N)) ** x) = (\x. P ** x) o (\x. A ** x)`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF; MATRIX_VECTOR_MUL_ASSOC]; ALL_TAC] THEN
MATCH_MP_TAC ONORM_COMPOSE_ORTHOGONAL_TRANSFORMATION_LEFT THEN
ASM_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSFORMATION]);;
let ONORM_ORTHOGONAL_MATRIX_MUL_RIGHT = prove
(`!(A:real^N^N) (P:real^N^N).
orthogonal_matrix P ==> onorm (\x. (A ** P) ** x) = onorm(\x. A ** x)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\x. ((A:real^N^N) ** (P:real^N^N)) ** x) =
(\x. A ** x) o (\x. P ** x)`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF; MATRIX_VECTOR_MUL_ASSOC]; ALL_TAC] THEN
MATCH_MP_TAC ONORM_COMPOSE_ORTHOGONAL_TRANSFORMATION_RIGHT THEN
ASM_REWRITE_TAC[GSYM ORTHOGONAL_MATRIX_TRANSFORMATION]);;
let ONORM_DIAGONALIZED_MATRIX = prove
(`!(A:real^N^N) D P.
orthogonal_matrix P /\
diagonal_matrix D /\
transp P ** D ** P = A
==> onorm(\x. A ** x) = sup {abs(D$i$i) | 1 <= i /\ i <= dimindex (:N)}`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[ONORM_ORTHOGONAL_MATRIX_MUL_LEFT; ORTHOGONAL_MATRIX_TRANSP;
ONORM_ORTHOGONAL_MATRIX_MUL_RIGHT] THEN
ASM_SIMP_TAC[ONORM_DIAGONAL_MATRIX]);;
let ONORM_DIAGONALIZED_COVARIANCE_MATRIX = prove
(`!(A:real^N^N) D P.
orthogonal_matrix P /\
diagonal_matrix D /\
transp P ** D ** P = transp A ** A
==> onorm(\x. A ** x) =
sqrt(sup {abs(D$i$i) | 1 <= i /\ i <= dimindex (:N)})`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SQRT_UNIQUE THEN
SIMP_TAC[ONORM_POS_LE; MATRIX_VECTOR_MUL_LINEAR] THEN
REWRITE_TAC[GSYM ONORM_COVARIANCE] THEN
MATCH_MP_TAC ONORM_DIAGONALIZED_MATRIX THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* We can find an orthogonal matrix taking any unit vector to any other. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONAL_MATRIX_EXISTS_BASIS = prove
(`!a:real^N.
norm(a) = &1
==> ?A. orthogonal_matrix A /\ A**(basis 1) = a`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP VECTOR_IN_ORTHONORMAL_BASIS) THEN
REWRITE_TAC[HAS_SIZE] THEN
DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`]
FINITE_INDEX_NUMSEG_SPECIAL) THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN
REWRITE_TAC[TAUT `a /\ b ==> c <=> c \/ ~a \/ ~b`] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->real^N`
(CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 (ASSUME_TAC o SYM)
ASSUME_TAC))) THEN
EXISTS_TAC `(lambda i j. ((f j):real^N)$i):real^N^N` THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; matrix_vector_mul; BASIS_COMPONENT;
IN_NUMSEG] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN SIMP_TAC[REAL_MUL_RZERO; SUM_DELTA] THEN
ASM_REWRITE_TAC[IN_NUMSEG; REAL_MUL_RID; LE_REFL; DIMINDEX_GE_1] THEN
REWRITE_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS] THEN
SIMP_TAC[column; LAMBDA_BETA] THEN CONJ_TAC THENL
[X_GEN_TAC `i:num` THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `norm((f:num->real^N) i)` THEN CONJ_TAC THENL
[AP_TERM_TAC THEN ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA];
ASM_MESON_TAC[IN_IMAGE; IN_NUMSEG]];
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
SUBGOAL_THEN `orthogonal ((f:num->real^N) i) (f j)` MP_TAC THENL
[ASM_MESON_TAC[pairwise; IN_IMAGE; IN_NUMSEG]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THEN
ASM_SIMP_TAC[CART_EQ; LAMBDA_BETA]]);;
let ORTHOGONAL_TRANSFORMATION_EXISTS_1 = prove
(`!a b:real^N.
norm(a) = &1 /\ norm(b) = &1
==> ?f. orthogonal_transformation f /\ f a = b`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `b:real^N` ORTHOGONAL_MATRIX_EXISTS_BASIS) THEN
MP_TAC(ISPEC `a:real^N` ORTHOGONAL_MATRIX_EXISTS_BASIS) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `A:real^N^N` (STRIP_ASSUME_TAC o GSYM)) THEN
DISCH_THEN(X_CHOOSE_THEN `B:real^N^N` (STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `\x:real^N. ((B:real^N^N) ** transp(A:real^N^N)) ** x` THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX; MATRIX_VECTOR_MUL_LINEAR;
MATRIX_OF_MATRIX_VECTOR_MUL] THEN
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_MUL; ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC] THEN AP_TERM_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[ORTHOGONAL_MATRIX]) THEN
ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]);;
let ORTHOGONAL_TRANSFORMATION_EXISTS = prove
(`!a b:real^N.
norm(a) = norm(b) ==> ?f. orthogonal_transformation f /\ f a = b`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N = vec 0` THEN
ASM_SIMP_TAC[NORM_0; NORM_EQ_0] THENL
[MESON_TAC[ORTHOGONAL_TRANSFORMATION_ID]; ALL_TAC] THEN
ASM_CASES_TAC `a:real^N = vec 0` THENL
[ASM_MESON_TAC[NORM_0; NORM_EQ_0]; ALL_TAC] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`inv(norm a) % a:real^N`; `inv(norm b) % b:real^N`]
ORTHOGONAL_TRANSFORMATION_EXISTS_1) THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[NORM_EQ_0; REAL_MUL_LINV] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP LINEAR_CMUL o
MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
ASM_REWRITE_TAC[VECTOR_ARITH
`a % x:real^N = a % y <=> a % (x - y) = vec 0`] THEN
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0; VECTOR_SUB_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Or indeed, taking any subspace to another of suitable dimension. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONAL_TRANSFORMATION_INTO_SUBSPACE = prove
(`!s t:real^N->bool.
subspace s /\ subspace t /\ dim s <= dim t
==> ?f. orthogonal_transformation f /\ IMAGE f s SUBSET t`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `t:real^N->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN
MP_TAC(ISPEC `s:real^N->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN
ASM_REWRITE_TAC[HAS_SIZE] THEN
DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`c:real^N->bool`; `(:real^N)`] ORTHONORMAL_EXTENSION) THEN
MP_TAC(ISPECL [`b:real^N->bool`; `(:real^N)`] ORTHONORMAL_EXTENSION) THEN
ASM_REWRITE_TAC[UNION_UNIV; SPAN_UNIV; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `b':real^N->bool` THEN STRIP_TAC THEN
X_GEN_TAC `c':real^N->bool` THEN STRIP_TAC THEN
SUBGOAL_THEN
`independent(b UNION b':real^N->bool) /\
independent(c UNION c':real^N->bool)`
STRIP_ASSUME_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN
ASM_REWRITE_TAC[IN_UNION] THEN
ASM_MESON_TAC[NORM_ARITH `~(norm(vec 0:real^N) = &1)`];
ALL_TAC] THEN
SUBGOAL_THEN `FINITE(b UNION b':real^N->bool) /\
FINITE(c UNION c':real^N->bool)`
MP_TAC THENL
[ASM_SIMP_TAC[PAIRWISE_ORTHOGONAL_IMP_FINITE];
REWRITE_TAC[FINITE_UNION] THEN STRIP_TAC] THEN
SUBGOAL_THEN
`?f:real^N->real^N.
(!x y. x IN b UNION b' /\ y IN b UNION b' ==> (f x = f y <=> x = y)) /\
IMAGE f b SUBSET c /\
IMAGE f (b UNION b') SUBSET c UNION c'`
(X_CHOOSE_THEN `fb:real^N->real^N` STRIP_ASSUME_TAC)
THENL
[MP_TAC(ISPECL [`b:real^N->bool`; `c:real^N->bool`]
CARD_LE_INJ) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; INJECTIVE_ON_ALT] THEN
X_GEN_TAC `f:real^N->real^N` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`b':real^N->bool`;
`(c UNION c') DIFF IMAGE (f:real^N->real^N) b`]
CARD_LE_INJ) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[FINITE_UNION; FINITE_DIFF] THEN
W(MP_TAC o PART_MATCH (lhs o rand) CARD_DIFF o rand o snd) THEN
ASM_REWRITE_TAC[FINITE_UNION] THEN
ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `a + b:num = c ==> a <= c - b`) THEN
W(MP_TAC o PART_MATCH (lhs o rand) CARD_IMAGE_INJ o
rand o lhs o snd) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN
W(MP_TAC o PART_MATCH (rhs o rand) CARD_UNION o lhs o snd) THEN
ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [UNION_COMM] THEN
MATCH_MP_TAC(MESON[LE_ANTISYM]
`(FINITE s /\ CARD s <= CARD t) /\
(FINITE t /\ CARD t <= CARD s) ==> CARD s = CARD t`) THEN
CONJ_TAC THEN MATCH_MP_TAC INDEPENDENT_SPAN_BOUND THEN
ASM_REWRITE_TAC[FINITE_UNION; SUBSET_UNIV];
DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^N` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\x. if x IN b then (f:real^N->real^N) x else g x` THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]];
ALL_TAC] THEN
MP_TAC(ISPECL [`fb:real^N->real^N`; `b UNION b':real^N->bool`]
LINEAR_INDEPENDENT_EXTEND) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION];
REWRITE_TAC[SYM(ASSUME `span b:real^N->bool = s`)] THEN
ASM_SIMP_TAC[GSYM SPAN_LINEAR_IMAGE] THEN
REWRITE_TAC[SYM(ASSUME `span c:real^N->bool = t`)] THEN
MATCH_MP_TAC SPAN_MONO THEN ASM SET_TAC[]] THEN
SUBGOAL_THEN
`!v. v IN UNIV ==> norm((f:real^N->real^N) v) = norm v`
(fun th -> ASM_MESON_TAC[th; IN_UNIV]) THEN
UNDISCH_THEN `span (b UNION b') = (:real^N)` (SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[SPAN_FINITE; FINITE_UNION; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`z:real^N`; `u:real^N->real`] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[LINEAR_VSUM; FINITE_UNION] THEN
REWRITE_TAC[o_DEF; NORM_EQ_SQUARE; NORM_POS_LE; GSYM NORM_POW_2] THEN
ASM_SIMP_TAC[LINEAR_CMUL] THEN
W(MP_TAC o PART_MATCH (lhand o rand)
NORM_VSUM_PYTHAGOREAN o rand o snd) THEN
W(MP_TAC o PART_MATCH (lhand o rand)
NORM_VSUM_PYTHAGOREAN o lhand o rand o snd) THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN
ASM_SIMP_TAC[pairwise; ORTHOGONAL_CLAUSES; FINITE_UNION] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[ORTHOGONAL_MUL] THEN
REPEAT DISJ2_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[];
REPEAT(DISCH_THEN SUBST1_TAC) THEN ASM_SIMP_TAC[NORM_MUL] THEN
MATCH_MP_TAC SUM_EQ THEN ASM SET_TAC[]]);;
let ORTHOGONAL_TRANSFORMATION_ONTO_SUBSPACE = prove
(`!s t:real^N->bool.
subspace s /\ subspace t /\ dim s = dim t
==> ?f. orthogonal_transformation f /\ IMAGE f s = t`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`s:real^N->bool`; `t:real^N->bool`]
ORTHOGONAL_TRANSFORMATION_INTO_SUBSPACE) THEN
ASM_REWRITE_TAC[LE_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `f:real^N->real^N` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `span(IMAGE (f:real^N->real^N) s) = span t` MP_TAC THENL
[MATCH_MP_TAC DIM_EQ_SPAN THEN ASM_REWRITE_TAC[] THEN
W(MP_TAC o PART_MATCH (lhs o rand) DIM_INJECTIVE_LINEAR_IMAGE o
rand o snd) THEN
ASM_MESON_TAC[LE_REFL; orthogonal_transformation;
ORTHOGONAL_TRANSFORMATION_INJECTIVE];
ASM_SIMP_TAC[SPAN_LINEAR_IMAGE; ORTHOGONAL_TRANSFORMATION_LINEAR] THEN
ASM_SIMP_TAC[SPAN_OF_SUBSPACE]]);;
(* ------------------------------------------------------------------------- *)
(* Rotation, reflection, rotoinversion. *)
(* ------------------------------------------------------------------------- *)
let rotation_matrix = new_definition
`rotation_matrix Q <=> orthogonal_matrix Q /\ det(Q) = &1`;;
let rotoinversion_matrix = new_definition
`rotoinversion_matrix Q <=> orthogonal_matrix Q /\ det(Q) = -- &1`;;
let ORTHOGONAL_ROTATION_OR_ROTOINVERSION = prove
(`!Q. orthogonal_matrix Q <=> rotation_matrix Q \/ rotoinversion_matrix Q`,
MESON_TAC[rotation_matrix; rotoinversion_matrix; DET_ORTHOGONAL_MATRIX]);;
let ROTATION_MATRIX_1 = prove
(`!m:real^N^N.
dimindex(:N) = 1 ==> (rotation_matrix m <=> m = mat 1)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ORTHOGONAL_MATRIX_1; rotation_matrix] THEN
ASM_CASES_TAC `m:real^N^N = mat 1` THEN ASM_REWRITE_TAC[DET_I] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[DET_NEG; REAL_POW_ONE; DET_I] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let ROTOINVERSION_MATRIX_1 = prove
(`!m:real^N^N.
dimindex(:N) = 1 ==> (rotoinversion_matrix m <=> m = --mat 1)`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_1; rotoinversion_matrix] THEN
ASM_CASES_TAC `m:real^N^N = --mat 1` THEN
ASM_REWRITE_TAC[DET_NEG; DET_I; REAL_POW_ONE] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[DET_I] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let ROTATION_MATRIX_2 = prove
(`!A:real^2^2. rotation_matrix A <=>
A$1$1 pow 2 + A$2$1 pow 2 = &1 /\
A$1$1 = A$2$2 /\ A$1$2 = --(A$2$1)`,
REWRITE_TAC[rotation_matrix; ORTHOGONAL_MATRIX_2; DET_2] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Slightly stronger results giving rotation, but only in >= 2 dimensions. *)
(* ------------------------------------------------------------------------- *)
let ROTATION_MATRIX_EXISTS_BASIS = prove
(`!a:real^N.
2 <= dimindex(:N) /\ norm(a) = &1
==> ?A. rotation_matrix A /\ A**(basis 1) = a`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `A:real^N^N` STRIP_ASSUME_TAC o
MATCH_MP ORTHOGONAL_MATRIX_EXISTS_BASIS) THEN
FIRST_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I
[ORTHOGONAL_ROTATION_OR_ROTOINVERSION])
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
EXISTS_TAC `transp(lambda i. if i = dimindex(:N) then -- &1 % transp A$i
else (transp A:real^N^N)$i):real^N^N` THEN
REWRITE_TAC[rotation_matrix; DET_TRANSP] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[ORTHOGONAL_MATRIX_TRANSP];
SIMP_TAC[DET_ROW_MUL; DIMINDEX_GE_1; LE_REFL] THEN
MATCH_MP_TAC(REAL_ARITH `x = -- &1 ==> -- &1 * x = &1`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [rotoinversion_matrix]) THEN
DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM DET_TRANSP] THEN
AP_TERM_TAC THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN MESON_TAC[];
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA; CART_EQ; transp;
BASIS_COMPONENT] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`x * (if p then &1 else &0) = if p then x else &0`] THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(1 = n)`; LAMBDA_BETA]] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I
[GSYM ORTHOGONAL_MATRIX_TRANSP]) THEN
SPEC_TAC(`transp(A:real^N^N)`,`B:real^N^N`) THEN GEN_TAC THEN
SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N)
==> row i ((lambda i. if i = dimindex(:N) then -- &1 % B$i
else (B:real^N^N)$i):real^N^N) =
if i = dimindex(:N) then --(row i B) else row i B`
ASSUME_TAC THENL
[SIMP_TAC[row; LAMBDA_BETA; LAMBDA_ETA; VECTOR_MUL_LID; VECTOR_MUL_LNEG];
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS] THEN
ASM_MESON_TAC[ORTHOGONAL_LNEG; ORTHOGONAL_RNEG; NORM_NEG]]);;
let ROTATION_EXISTS_1 = prove
(`!a b:real^N.
2 <= dimindex(:N) /\ norm(a) = &1 /\ norm(b) = &1
==> ?f. orthogonal_transformation f /\ det(matrix f) = &1 /\ f a = b`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `b:real^N` ROTATION_MATRIX_EXISTS_BASIS) THEN
MP_TAC(ISPEC `a:real^N` ROTATION_MATRIX_EXISTS_BASIS) THEN
ASM_REWRITE_TAC[rotation_matrix] THEN
DISCH_THEN(X_CHOOSE_THEN `A:real^N^N`
(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (ASSUME_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `B:real^N^N`
(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (ASSUME_TAC o SYM))) THEN
EXISTS_TAC `\x:real^N. ((B:real^N^N) ** transp(A:real^N^N)) ** x` THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX; MATRIX_VECTOR_MUL_LINEAR;
MATRIX_OF_MATRIX_VECTOR_MUL; DET_MUL; DET_TRANSP] THEN
ASM_SIMP_TAC[ORTHOGONAL_MATRIX_MUL; ORTHOGONAL_MATRIX_TRANSP] THEN
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC; REAL_MUL_LID] THEN AP_TERM_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[ORTHOGONAL_MATRIX]) THEN
ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]);;
let ROTATION_EXISTS = prove
(`!a b:real^N.
2 <= dimindex(:N) /\ norm(a) = norm(b)
==> ?f. orthogonal_transformation f /\ det(matrix f) = &1 /\ f a = b`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N = vec 0` THEN
ASM_SIMP_TAC[NORM_0; NORM_EQ_0] THENL
[MESON_TAC[ORTHOGONAL_TRANSFORMATION_ID; MATRIX_ID; DET_I]; ALL_TAC] THEN
ASM_CASES_TAC `a:real^N = vec 0` THENL
[ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_ID; MATRIX_ID; DET_I; NORM_0;
NORM_EQ_0]; ALL_TAC] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`inv(norm a) % a:real^N`; `inv(norm b) % b:real^N`]
ROTATION_EXISTS_1) THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
ASM_SIMP_TAC[NORM_EQ_0; REAL_MUL_LINV] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP LINEAR_CMUL o
MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
ASM_REWRITE_TAC[VECTOR_ARITH
`a % x:real^N = a % y <=> a % (x - y) = vec 0`] THEN
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0; VECTOR_SUB_EQ]);;
let ROTATION_RIGHTWARD_LINE = prove
(`!a:real^N k.
1 <= k /\ k <= dimindex(:N)
==> ?b f. orthogonal_transformation f /\
(2 <= dimindex(:N) ==> det(matrix f) = &1) /\
f(b % basis k) = a /\
&0 <= b`,
REPEAT STRIP_TAC THEN EXISTS_TAC `norm(a:real^N)` THEN
ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; BASIS_COMPONENT; LE_REFL; DIMINDEX_GE_1;
REAL_MUL_RID; NORM_POS_LE; LT_IMP_LE; LTE_ANTISYM] THEN
REWRITE_TAC[ARITH_RULE `2 <= n <=> 1 <= n /\ ~(n = 1)`; DIMINDEX_GE_1] THEN
ASM_CASES_TAC `dimindex(:N) = 1` THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC ORTHOGONAL_TRANSFORMATION_EXISTS;
MATCH_MP_TAC ROTATION_EXISTS] THEN
ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN
REWRITE_TAC[REAL_ABS_NORM; REAL_MUL_RID] THEN
MATCH_MP_TAC(ARITH_RULE `~(n = 1) /\ 1 <= n ==> 2 <= n`) THEN
ASM_REWRITE_TAC[DIMINDEX_GE_1]);;
(* ------------------------------------------------------------------------- *)
(* In 3 dimensions, a rotation is indeed about an "axis". *)
(* ------------------------------------------------------------------------- *)
let EULER_ROTATION_THEOREM = prove
(`!A:real^3^3. rotation_matrix A ==> ?v:real^3. ~(v = vec 0) /\ A ** v = v`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `A - mat 1:real^3^3` HOMOGENEOUS_LINEAR_EQUATIONS_DET) THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_SUB_RDISTRIB;
VECTOR_SUB_EQ; MATRIX_VECTOR_MUL_LID] THEN
DISCH_THEN SUBST1_TAC THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[rotation_matrix; orthogonal_matrix; DET_3] THEN
SIMP_TAC[CART_EQ; FORALL_3; MAT_COMPONENT; DIMINDEX_3; LAMBDA_BETA; ARITH;
MATRIX_SUB_COMPONENT; MAT_COMPONENT; SUM_3;
matrix_mul; transp; matrix_vector_mul] THEN
CONV_TAC REAL_RING);;
let EULER_ROTOINVERSION_THEOREM = prove
(`!A:real^3^3.
rotoinversion_matrix A ==> ?v:real^3. ~(v = vec 0) /\ A ** v = --v`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[VECTOR_ARITH `a:real^N = --v <=> a + v = vec 0`] THEN
MP_TAC(ISPEC `A + mat 1:real^3^3` HOMOGENEOUS_LINEAR_EQUATIONS_DET) THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_ADD_RDISTRIB; MATRIX_VECTOR_MUL_LID] THEN
DISCH_THEN SUBST1_TAC THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[rotoinversion_matrix; orthogonal_matrix; DET_3] THEN
SIMP_TAC[CART_EQ; FORALL_3; MAT_COMPONENT; DIMINDEX_3; LAMBDA_BETA; ARITH;
MATRIX_ADD_COMPONENT; MAT_COMPONENT; SUM_3;
matrix_mul; transp; matrix_vector_mul] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* We can always rotate so that a hyperplane is "horizontal". *)
(* ------------------------------------------------------------------------- *)
let ROTATION_LOWDIM_HORIZONTAL = prove
(`!s:real^N->bool.
dim s < dimindex(:N)
==> ?f. orthogonal_transformation f /\ det(matrix f) = &1 /\
(IMAGE f s) SUBSET {z | z$(dimindex(:N)) = &0}`,
GEN_TAC THEN ASM_CASES_TAC `dim(s:real^N->bool) = 0` THENL
[RULE_ASSUM_TAC(REWRITE_RULE[DIM_EQ_0]) THEN DISCH_TAC THEN
EXISTS_TAC `\x:real^N. x` THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_ID; MATRIX_ID; DET_I] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`s SUBSET {a} ==> a IN t ==> IMAGE (\x. x) s SUBSET t`)) THEN
SIMP_TAC[IN_ELIM_THM; VEC_COMPONENT; LE_REFL; DIMINDEX_GE_1];
DISCH_TAC] THEN
SUBGOAL_THEN `2 <= dimindex(:N)` ASSUME_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC o MATCH_MP
LOWDIM_SUBSET_HYPERPLANE) THEN
MP_TAC(ISPECL [`a:real^N`; `norm(a:real^N) % basis(dimindex(:N)):real^N`]
ROTATION_EXISTS) THEN
ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN
REWRITE_TAC[REAL_ABS_NORM; REAL_MUL_RID] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; SUBSET; IN_ELIM_THM] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
SUBGOAL_THEN `(f:real^N->real^N) x dot (f a) = &0` MP_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[orthogonal_transformation]) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
ASM_SIMP_TAC[SPAN_SUPERSET; IN_ELIM_THM];
ASM_SIMP_TAC[DOT_BASIS; LE_REFL; DIMINDEX_GE_1; DOT_RMUL] THEN
ASM_REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0]]);;
let ORTHOGONAL_TRANSFORMATION_LOWDIM_HORIZONTAL = prove
(`!s:real^N->bool.
dim s < dimindex(:N)
==> ?f. orthogonal_transformation f /\
(IMAGE f s) SUBSET {z | z$(dimindex(:N)) = &0}`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ROTATION_LOWDIM_HORIZONTAL) THEN
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]);;
let ORTHOGONAL_TRANSFORMATION_BETWEEN_ORTHOGONAL_SETS = prove
(`!v:num->real^N w k.
pairwise (\i j. orthogonal (v i) (v j)) k /\
pairwise (\i j. orthogonal (w i) (w j)) k /\
(!i. i IN k ==> norm(v i) = norm(w i))
==> ?f. orthogonal_transformation f /\
(!i. i IN k ==> f(v i) = w i)`,
let lemma1 = prove
(`!v:num->real^N n.
pairwise (\i j. orthogonal (v i) (v j)) (1..n) /\
(!i. 1 <= i /\ i <= n ==> norm(v i) = &1)
==> ?f. orthogonal_transformation f /\
(!i. 1 <= i /\ i <= n ==> f(basis i) = v i)`,
REWRITE_TAC[pairwise; IN_NUMSEG; GSYM CONJ_ASSOC] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `pairwise orthogonal (IMAGE (v:num->real^N) (1..n))`
ASSUME_TAC THENL
[REWRITE_TAC[PAIRWISE_IMAGE] THEN ASM_SIMP_TAC[pairwise; IN_NUMSEG];
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
PAIRWISE_ORTHOGONAL_INDEPENDENT)) THEN
REWRITE_TAC[SET_RULE
`~(a IN IMAGE f s) <=> !x. x IN s ==> ~(f x = a)`] THEN
ANTS_TAC THENL
[REWRITE_TAC[IN_NUMSEG] THEN
ASM_MESON_TAC[NORM_0; REAL_ARITH `~(&1 = &0)`];
DISCH_THEN(MP_TAC o CONJUNCT2 o MATCH_MP INDEPENDENT_BOUND)] THEN
SUBGOAL_THEN
`!i j. 1 <= i /\ i <= n /\ 1 <= j /\ j <= n /\ ~(i = j)
==> ~(v i:real^N = v j)`
ASSUME_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_REFL; NORM_0; REAL_ARITH `~(&1 = &0)`];
ALL_TAC] THEN
SUBGOAL_THEN `CARD(IMAGE (v:num->real^N) (1..n)) = n` ASSUME_TAC THENL
[W(MP_TAC o PART_MATCH (lhs o rand) CARD_IMAGE_INJ o lhs o snd) THEN
ASM_REWRITE_TAC[CARD_NUMSEG_1; IN_NUMSEG; FINITE_NUMSEG] THEN
ASM_MESON_TAC[];
ASM_REWRITE_TAC[] THEN DISCH_TAC] THEN
SUBGOAL_THEN
`?w:num->real^N.
pairwise (\i j. orthogonal (w i) (w j)) (1..dimindex(:N)) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> norm(w i) = &1) /\
(!i. 1 <= i /\ i <= n ==> w i = v i)`
STRIP_ASSUME_TAC THENL
[ALL_TAC;
EXISTS_TAC
`(\x. vsum(1..dimindex(:N)) (\i. x$i % w i)):real^N->real^N` THEN
SIMP_TAC[BASIS_COMPONENT; IN_NUMSEG; COND_RATOR; COND_RAND] THEN
REWRITE_TAC[VECTOR_MUL_LID; VECTOR_MUL_LZERO; VSUM_DELTA] THEN
ASM_SIMP_TAC[IN_NUMSEG] THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[LE_TRANS]] THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX] THEN
CONJ_TAC THENL
[MATCH_MP_TAC LINEAR_COMPOSE_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[linear; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN
REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[matrix; column; ORTHOGONAL_MATRIX_ORTHONORMAL_COLUMNS] THEN
SIMP_TAC[LAMBDA_BETA; LAMBDA_ETA; BASIS_COMPONENT; IN_NUMSEG] THEN
SIMP_TAC[COND_RATOR; COND_RAND; VECTOR_MUL_LZERO; VSUM_DELTA] THEN
SIMP_TAC[IN_NUMSEG; orthogonal; dot; LAMBDA_BETA; NORM_EQ_SQUARE] THEN
REWRITE_TAC[VECTOR_MUL_LID; GSYM dot; GSYM NORM_EQ_SQUARE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise; IN_NUMSEG; orthogonal]) THEN
ASM_SIMP_TAC[]] THEN
FIRST_ASSUM(MP_TAC o SPEC `(:real^N)` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] ORTHONORMAL_EXTENSION)) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_NUMSEG; UNION_UNIV; SPAN_UNIV] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`n+1..dimindex(:N)`; `t:real^N->bool`]
CARD_EQ_BIJECTION) THEN
ANTS_TAC THENL
[REWRITE_TAC[FINITE_NUMSEG] THEN
MP_TAC(ISPECL [`(:real^N)`; `IMAGE v (1..n) UNION t:real^N->bool`]
BASIS_CARD_EQ_DIM) THEN
ASM_REWRITE_TAC[SUBSET_UNIV] THEN ANTS_TAC THENL
[MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN
ASM_REWRITE_TAC[IN_UNION; DE_MORGAN_THM; IN_NUMSEG] THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_NUMSEG; SET_RULE
`~(x IN s) <=> !y. y IN s ==> ~(y = x)`] THEN
ASM_MESON_TAC[NORM_0; REAL_ARITH `~(&1 = &0)`];
ALL_TAC] THEN
ASM_SIMP_TAC[FINITE_UNION; IMP_CONJ; FINITE_IMAGE; CARD_UNION;
SET_RULE `t INTER s = {} <=> DISJOINT s t`] THEN
DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[CARD_NUMSEG; DIM_UNIV] THEN
ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[CONJ_ASSOC; SET_RULE
`(!x. x IN s ==> f x IN t) /\ (!y. y IN t ==> ?x. x IN s /\ f x = y) <=>
t = IMAGE f s`] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; LEFT_IMP_EXISTS_THM; IN_NUMSEG] THEN
X_GEN_TAC `w:num->real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
REWRITE_TAC[ARITH_RULE `n + 1 <= x <=> n < x`; CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q ==> r <=> p /\ ~r ==> ~q`] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN STRIP_TAC THEN
REWRITE_TAC[TAUT `p /\ ~r ==> ~q <=> p /\ q ==> r`] THEN
EXISTS_TAC `\i. if i <= n then (v:num->real^N) i else w i` THEN
SIMP_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[FORALL_IN_IMAGE; IN_NUMSEG]) THEN
CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[ARITH_RULE `~(i <= n) ==> n + 1 <= i`]] THEN
REWRITE_TAC[pairwise] THEN MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN
CONJ_TAC THENL [MESON_TAC[ORTHOGONAL_SYM]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN DISCH_TAC THEN
ASM_CASES_TAC `j:num <= n` THEN ASM_REWRITE_TAC[IN_NUMSEG] THENL
[COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `i:num <= n` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
UNDISCH_TAC
`pairwise orthogonal
(IMAGE (v:num->real^N) (1..n) UNION IMAGE w (n+1..dimindex (:N)))` THEN
REWRITE_TAC[pairwise] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `(w:num->real^N) j`) THENL
[DISCH_THEN(MP_TAC o SPEC `(v:num->real^N) i`);
DISCH_THEN(MP_TAC o SPEC `(w:num->real^N) i`)] THEN
ASM_REWRITE_TAC[IN_UNION; IN_IMAGE; IN_NUMSEG] THEN
DISCH_THEN MATCH_MP_TAC THENL
[CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[ARITH_RULE `~(x <= n) ==> n + 1 <= x`]; ALL_TAC];
ASM_MESON_TAC[ARITH_RULE `~(x <= n) ==> n + 1 <= x /\ n < x`]] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DISJOINT]) THEN
REWRITE_TAC[SET_RULE `IMAGE w t INTER IMAGE v s = {} <=>
!i j. i IN s /\ j IN t ==> ~(v i = w j)`] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN
ASM_ARITH_TAC) in
let lemma2 = prove
(`!v:num->real^N w k.
pairwise (\i j. orthogonal (v i) (v j)) k /\
pairwise (\i j. orthogonal (w i) (w j)) k /\
(!i. i IN k ==> norm(v i) = norm(w i)) /\
(!i. i IN k ==> ~(v i = vec 0) /\ ~(w i = vec 0))
==> ?f. orthogonal_transformation f /\
(!i. i IN k ==> f(v i) = w i)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `FINITE(k:num->bool)` MP_TAC THENL
[SUBGOAL_THEN `pairwise orthogonal (IMAGE (v:num->real^N) k)`
ASSUME_TAC THENL
[REWRITE_TAC[PAIRWISE_IMAGE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise];
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
PAIRWISE_ORTHOGONAL_INDEPENDENT)) THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP INDEPENDENT_IMP_FINITE) THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC FINITE_IMAGE_INJ_EQ THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN
ASM_MESON_TAC[ORTHOGONAL_REFL];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q /\ ~s ==> ~r`] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num->num` MP_TAC) THEN
REWRITE_TAC[IN_NUMSEG] THEN GEN_REWRITE_TAC I [IMP_CONJ] THEN
DISCH_THEN(fun th -> DISCH_THEN SUBST_ALL_TAC THEN ASSUME_TAC th) THEN
RULE_ASSUM_TAC(REWRITE_RULE
[PAIRWISE_IMAGE; FORALL_IN_IMAGE; IN_NUMSEG]) THEN
MP_TAC(ISPECL
[`\i. inv(norm(w(n i))) % (w:num->real^N) ((n:num->num) i)`;
`CARD(k:num->bool)`] lemma1) THEN
MP_TAC(ISPECL
[`\i. inv(norm(v(n i))) % (v:num->real^N) ((n:num->num) i)`;
`CARD(k:num->bool)`] lemma1) THEN
ASM_SIMP_TAC[NORM_MUL; REAL_MUL_LINV; NORM_EQ_0; REAL_ABS_INV;
REAL_ABS_NORM; pairwise; orthogonal; IN_NUMSEG] THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise; orthogonal; IN_NUMSEG]) THEN
ASM_SIMP_TAC[DOT_LMUL; DOT_RMUL; REAL_ENTIRE; FORALL_IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `f:real^N->real^N` STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^N` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPEC `f:real^N->real^N` ORTHOGONAL_TRANSFORMATION_INVERSE) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `f':real^N->real^N` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(g:real^N->real^N) o (f':real^N->real^N)` THEN
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_COMPOSE; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN DISCH_TAC THEN REWRITE_TAC[o_THM] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`(g:real^N->real^N) (norm((w:num->real^N)(n(i:num))) % basis i)` THEN
CONJ_TAC THENL
[AP_TERM_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[]
`(!x. f'(f x) = x) ==> f x = y ==> f' y = x`));
ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[orthogonal_transformation]) THEN
ASM_SIMP_TAC[LINEAR_CMUL; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; NORM_EQ_0; VECTOR_MUL_LID]) in
REPEAT STRIP_TAC THEN MP_TAC(ISPECL
[`v:num->real^N`; `w:num->real^N`;
`{i | i IN k /\ ~((v:num->real^N) i = vec 0)}`] lemma2) THEN
ASM_SIMP_TAC[IN_ELIM_THM; CONJ_ASSOC] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[NORM_EQ_0]] THEN
CONJ_TAC THEN MATCH_MP_TAC PAIRWISE_MONO THEN EXISTS_TAC `k:num->bool` THEN
ASM_REWRITE_TAC[] THEN SET_TAC[];
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[orthogonal_transformation] THEN
GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `(v:num->real^N) i = vec 0` THEN ASM_SIMP_TAC[] THEN
ASM_MESON_TAC[LINEAR_0; NORM_EQ_0]]);;
(* ------------------------------------------------------------------------- *)
(* Reflection of a vector about 0 along a line. *)
(* ------------------------------------------------------------------------- *)
let reflect_along = new_definition
`reflect_along v (x:real^N) = x - (&2 * (x dot v) / (v dot v)) % v`;;
let REFLECT_ALONG_ADD = prove
(`!v x y:real^N.
reflect_along v (x + y) = reflect_along v x + reflect_along v y`,
REPEAT GEN_TAC THEN
REWRITE_TAC[reflect_along; VECTOR_ARITH
`x - a % v + y - b % v:real^N = (x + y) - (a + b) % v`] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[DOT_LADD] THEN REAL_ARITH_TAC);;
let REFLECT_ALONG_MUL = prove
(`!v a x:real^N. reflect_along v (a % x) = a % reflect_along v x`,
REWRITE_TAC[reflect_along; DOT_LMUL; REAL_ARITH
`&2 * (a * x) / y = a * &2 * x / y`] THEN
REWRITE_TAC[VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC]);;
let LINEAR_REFLECT_ALONG = prove
(`!v:real^N. linear(reflect_along v)`,
REWRITE_TAC[linear; REFLECT_ALONG_ADD; REFLECT_ALONG_MUL]);;
let REFLECT_ALONG_0 = prove
(`!v:real^N. reflect_along v (vec 0) = vec 0`,
REWRITE_TAC[MATCH_MP LINEAR_0 (SPEC_ALL LINEAR_REFLECT_ALONG)]);;
let REFLECT_ALONG_NEG = prove
(`!v x:real^N. reflect_along v (--x) = --(reflect_along v x)`,
MESON_TAC[LINEAR_REFLECT_ALONG; LINEAR_NEG]);;
let REFLECT_ALONG_REFL = prove
(`!v:real^N. reflect_along v v = --v`,
GEN_TAC THEN ASM_CASES_TAC `v:real^N = vec 0` THEN
ASM_REWRITE_TAC[VECTOR_NEG_0; REFLECT_ALONG_0] THEN
REWRITE_TAC[reflect_along] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; DOT_EQ_0] THEN VECTOR_ARITH_TAC);;
let REFLECT_ALONG_INVOLUTION = prove
(`!v x:real^N. reflect_along v (reflect_along v x) = x`,
REWRITE_TAC[reflect_along; DOT_LSUB; VECTOR_MUL_EQ_0; VECTOR_ARITH
`x - a % v - b % v:real^N = x <=> (a + b) % v = vec 0`] THEN
REWRITE_TAC[DOT_LMUL; GSYM DOT_EQ_0] THEN CONV_TAC REAL_FIELD);;
let REFLECT_ALONG_GALOIS = prove
(`!v p q:real^N. reflect_along v p = q <=> p = reflect_along v q`,
MESON_TAC[REFLECT_ALONG_INVOLUTION]);;
let REFLECT_ALONG_EQ_0 = prove
(`!v x:real^N. reflect_along v x = vec 0 <=> x = vec 0`,
MESON_TAC[REFLECT_ALONG_0; REFLECT_ALONG_INVOLUTION]);;
let ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG = prove
(`!v:real^N. orthogonal_transformation(reflect_along v)`,
GEN_TAC THEN ASM_CASES_TAC `v:real^N = vec 0` THENL
[GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
ASM_REWRITE_TAC[reflect_along; VECTOR_MUL_RZERO; VECTOR_SUB_RZERO;
ORTHOGONAL_TRANSFORMATION_ID];
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN
REWRITE_TAC[LINEAR_REFLECT_ALONG; NORM_EQ] THEN
REWRITE_TAC[reflect_along; VECTOR_ARITH
`(a - b:real^N) dot (a - b) = (a dot a + b dot b) - &2 * a dot b`] THEN
REWRITE_TAC[DOT_LMUL; DOT_RMUL] THEN X_GEN_TAC `w:real^N` THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [GSYM DOT_EQ_0]) THEN
CONV_TAC REAL_FIELD]);;
let REFLECT_ALONG_EQ_SELF = prove
(`!v x:real^N. reflect_along v x = x <=> orthogonal v x`,
REPEAT GEN_TAC THEN REWRITE_TAC[reflect_along; orthogonal] THEN
REWRITE_TAC[VECTOR_ARITH `x - a:real^N = x <=> a = vec 0`] THEN
REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
ASM_CASES_TAC `v:real^N = vec 0` THEN ASM_SIMP_TAC[DOT_LZERO; DOT_SYM] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [GSYM DOT_EQ_0]) THEN
CONV_TAC REAL_FIELD);;
let REFLECT_ALONG_ZERO = prove
(`reflect_along (vec 0:real^N) = I`,
REWRITE_TAC[FUN_EQ_THM; I_THM; REFLECT_ALONG_EQ_SELF; ORTHOGONAL_0]);;
let REFLECT_ALONG_LINEAR_IMAGE = prove
(`!f:real^M->real^N v x.
linear f /\ (!x. norm(f x) = norm x)
==> reflect_along (f v) (f x) = f(reflect_along v x)`,
REWRITE_TAC[reflect_along] THEN
SIMP_TAC[PRESERVES_NORM_PRESERVES_DOT; LINEAR_SUB; LINEAR_CMUL]);;
add_linear_invariants [REFLECT_ALONG_LINEAR_IMAGE];;
let REFLECT_ALONG_SCALE = prove
(`!c v x:real^N. ~(c = &0) ==> reflect_along (c % v) x = reflect_along v x`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `v:real^N = vec 0` THEN
ASM_REWRITE_TAC[VECTOR_MUL_RZERO; REFLECT_ALONG_ZERO] THEN
REWRITE_TAC[reflect_along; VECTOR_MUL_ASSOC] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[DOT_RMUL] THEN REWRITE_TAC[DOT_LMUL] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [GSYM DOT_EQ_0]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);;
let REFLECT_ALONG_NEGATION = prove
(`!v:real^N. reflect_along (--v) = reflect_along v`,
REWRITE_TAC[FUN_EQ_THM; VECTOR_NEG_MINUS1] THEN REPEAT GEN_TAC THEN
MATCH_MP_TAC REFLECT_ALONG_SCALE THEN REAL_ARITH_TAC);;
let REFLECT_ALONG_1D = prove
(`!v x:real^N.
dimindex(:N) = 1 ==> reflect_along v x = if v = vec 0 then x else --x`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[reflect_along; dot; SUM_1; CART_EQ; FORALL_1] THEN
REWRITE_TAC[VEC_COMPONENT; COND_RATOR; COND_RAND] THEN
SIMP_TAC[VECTOR_NEG_COMPONENT; VECTOR_MUL_COMPONENT;
VECTOR_SUB_COMPONENT; REAL_MUL_RZERO] THEN
CONV_TAC REAL_FIELD);;
let REFLECT_ALONG_BASIS = prove
(`!x:real^N k.
1 <= k /\ k <= dimindex(:N)
==> reflect_along (basis k) x = x - (&2 * x$k) % basis k`,
SIMP_TAC[reflect_along; DOT_BASIS; BASIS_COMPONENT; REAL_DIV_1]);;
let MATRIX_REFLECT_ALONG_BASIS = prove
(`!k. 1 <= k /\ k <= dimindex(:N)
==> matrix(reflect_along (basis k)):real^N^N =
lambda i j. if i = k /\ j = k then --(&1)
else if i = j then &1
else &0`,
SIMP_TAC[CART_EQ; LAMBDA_BETA; matrix; REFLECT_ALONG_BASIS;
VECTOR_SUB_COMPONENT; BASIS_COMPONENT; VECTOR_MUL_COMPONENT] THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_REAL_ARITH_TAC);;
let ROTOINVERSION_MATRIX_REFLECT_ALONG = prove
(`!v:real^N. ~(v = vec 0) ==> rotoinversion_matrix(matrix(reflect_along v))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[rotoinversion_matrix] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX;
ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG];
ALL_TAC] THEN
ABBREV_TAC `w:real^N = inv(norm v) % v` THEN
SUBGOAL_THEN `reflect_along (v:real^N) = reflect_along w` SUBST1_TAC THENL
[EXPAND_TAC "w" THEN REWRITE_TAC[FUN_EQ_THM] THEN
ASM_SIMP_TAC[REFLECT_ALONG_SCALE; REAL_INV_EQ_0; NORM_EQ_0];
SUBGOAL_THEN `norm(w:real^N) = &1` MP_TAC THENL
[EXPAND_TAC "w" THEN SIMP_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[NORM_EQ_0];
POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`w:real^N`,`v:real^N`)]] THEN
X_GEN_TAC `v:real^N` THEN ASM_CASES_TAC `v:real^N = vec 0` THEN
ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN DISCH_TAC THEN
MP_TAC(ISPECL [`v:real^N`; `basis 1:real^N`]
ORTHOGONAL_TRANSFORMATION_EXISTS) THEN
ASM_SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN
DISCH_THEN(X_CHOOSE_THEN `f:real^N->real^N` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`matrix(reflect_along v) =
transp(matrix(f:real^N->real^N)) ** matrix(reflect_along (f v)) ** matrix f`
SUBST1_TAC THENL
[UNDISCH_THEN `(f:real^N->real^N) v = basis 1` (K ALL_TAC) THEN
REWRITE_TAC[MATRIX_EQ; GSYM MATRIX_VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[MATRIX_WORKS; LINEAR_REFLECT_ALONG;
ORTHOGONAL_TRANSFORMATION_LINEAR] THEN
X_GEN_TAC `x:real^N` THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `(transp(matrix(f:real^N->real^N)) ** matrix f) **
(reflect_along v x:real^N)` THEN
CONJ_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_MATRIX; MATRIX_VECTOR_MUL_LID;
ORTHOGONAL_TRANSFORMATION_MATRIX];
REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[MATRIX_WORKS; ORTHOGONAL_TRANSFORMATION_LINEAR] THEN
AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC REFLECT_ALONG_LINEAR_IMAGE THEN
ASM_REWRITE_TAC[GSYM ORTHOGONAL_TRANSFORMATION]];
ASM_REWRITE_TAC[DET_MUL; DET_TRANSP] THEN
MATCH_MP_TAC(REAL_RING
`(x = &1 \/ x = -- &1) /\ y = a ==> x * y * x = a`) THEN
CONJ_TAC THENL
[ASM_MESON_TAC[DET_ORTHOGONAL_MATRIX; ORTHOGONAL_TRANSFORMATION_MATRIX];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhs o rand) DET_UPPERTRIANGULAR o lhand o snd) THEN
SIMP_TAC[MATRIX_REFLECT_ALONG_BASIS; DIMINDEX_GE_1; LE_REFL] THEN
SIMP_TAC[LAMBDA_BETA; ARITH_RULE
`j < i ==> ~(i = j) /\ ~(i = 1 /\ j = 1)`] THEN
DISCH_THEN(K ALL_TAC) THEN
SIMP_TAC[PRODUCT_CLAUSES_LEFT; DIMINDEX_GE_1] THEN
MATCH_MP_TAC(REAL_RING `x = &1 ==> a * x = a`) THEN
MATCH_MP_TAC PRODUCT_EQ_1 THEN
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]);;
let DET_MATRIX_REFLECT_ALONG = prove
(`!v:real^N. det(matrix(reflect_along v)) =
if v = vec 0 then &1 else --(&1)`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REFLECT_ALONG_ZERO] THEN
REWRITE_TAC[MATRIX_I; DET_I] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ROTOINVERSION_MATRIX_REFLECT_ALONG) THEN
SIMP_TAC[rotoinversion_matrix]);;
let REFLECT_ALONG_BASIS_COMPONENT = prove
(`!x:real^N i j.
1 <= i /\ i <= dimindex(:N) /\
1 <= j /\ j <= dimindex(:N)
==> reflect_along (basis i) x$j = if j = i then --(x$j) else x$j`,
SIMP_TAC[REFLECT_ALONG_BASIS; VECTOR_SUB_COMPONENT] THEN
SIMP_TAC[VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN
REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REFLECT_BASIS_ALONG_BASIS = prove
(`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N)
==> reflect_along (basis i:real^N) (basis j) =
if i = j then --(basis j) else basis j`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[CART_EQ; REFLECT_ALONG_BASIS_COMPONENT; BASIS_COMPONENT;
VECTOR_NEG_COMPONENT] THEN
ASM_MESON_TAC[REAL_NEG_0]);;
let NORM_REFLECT_ALONG = prove
(`!v x:real^N. norm(reflect_along v x) = norm x`,
MESON_TAC[ORTHOGONAL_TRANSFORMATION;
ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG]);;
let REFLECT_ALONG_EQ = prove
(`!v x y:real^N. reflect_along v x = reflect_along v y <=> x = y`,
MESON_TAC[ORTHOGONAL_TRANSFORMATION_INJECTIVE;
ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG]);;
let REFLECT_ALONG_SURJECTIVE = prove
(`!v y:real^N. ?x. reflect_along v x = y`,
MESON_TAC[REFLECT_ALONG_INVOLUTION]);;
let REFLECT_ALONG_SWITCH = prove
(`!a b:real^N.
norm a = norm b /\ ~(a = b)
==> reflect_along (b - a) a = b /\ reflect_along (b - a) b = a`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SIMP_TAC[reflect_along; DOT_RSUB] THEN
REWRITE_TAC[real_div; VECTOR_ARITH
`(a - c % (b - a):real^N = b <=> (&1 + c) % (b - a) = vec 0) /\
(b - c % (b - a):real^N = a <=> (&1 - c) % (b - a) = vec 0)`] THEN
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN
MATCH_MP_TAC(REAL_FIELD
`~(d = &0) /\ x + y = &0 /\ y - x = d
==> &1 + &2 * x * inv d = &0 /\ &1 - &2 * y * inv d = &0`) THEN
ASM_REWRITE_TAC[GSYM DOT_RSUB; DOT_EQ_0; VECTOR_SUB_EQ] THEN
ASM_REWRITE_TAC[DOT_RSUB; GSYM NORM_POW_2; DOT_LSUB] THEN
REWRITE_TAC[DOT_SYM] THEN REAL_ARITH_TAC);;
let ROTOINVERSION_EXISTS_GEN = prove
(`!s a b:real^N.
subspace s /\ a IN s /\ b IN s /\ ~(a = b) /\ norm a = norm b
==> ?f. orthogonal_transformation f /\ IMAGE f s = s /\
(!x. orthogonal a x /\ orthogonal b x ==> f x = x) /\
det (matrix f) = -- &1 /\
f a = b /\ f b = a`,
REPEAT STRIP_TAC THEN EXISTS_TAC `reflect_along (b - a:real^N)` THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG] THEN
ASM_REWRITE_TAC[DET_MATRIX_REFLECT_ALONG; VECTOR_SUB_EQ] THEN
ASM_SIMP_TAC[REFLECT_ALONG_SWITCH] THEN CONJ_TAC THENL
[MATCH_MP_TAC(SET_RULE
`(!x. f(f x) = x) /\ (!x. x IN s ==> f x IN s) ==> IMAGE f s = s`) THEN
REWRITE_TAC[REFLECT_ALONG_INVOLUTION] THEN REWRITE_TAC[reflect_along] THEN
ASM_SIMP_TAC[SUBSPACE_SUB; SUBSPACE_MUL];
REWRITE_TAC[ONCE_REWRITE_RULE[DOT_SYM] orthogonal] THEN
SIMP_TAC[reflect_along; DOT_RSUB] THEN
REWRITE_TAC[real_div; REAL_SUB_REFL; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[VECTOR_ARITH `x - &0 % y:real^N = x`]]);;
let ORTHOGONAL_TRANSFORMATION_EXISTS_GEN = prove
(`!s a b:real^N.
subspace s /\ a IN s /\ b IN s /\ norm a = norm b
==> ?f. orthogonal_transformation f /\ IMAGE f s = s /\
(!x. orthogonal a x /\ orthogonal b x ==> f x = x) /\
f a = b /\ f b = a`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL
[EXISTS_TAC `\x:real^N. x` THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_ID; IMAGE_ID];
MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`; `b:real^N`]
ROTOINVERSION_EXISTS_GEN) THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* All orthogonal transformations are a composition of reflections. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONAL_TRANSFORMATION_GENERATED_BY_REFLECTIONS = prove
(`!f:real^N->real^N n.
orthogonal_transformation f /\
dimindex(:N) <= dim {x | f x = x} + n
==> ?l. LENGTH l <= n /\ ALL (\v. ~(v = vec 0)) l /\
f = ITLIST (\v h. reflect_along v o h) l I`,
ONCE_REWRITE_TAC[GSYM SWAP_FORALL_THM] THEN INDUCT_TAC THENL
[REWRITE_TAC[CONJUNCT1 LE; LENGTH_EQ_NIL; ADD_CLAUSES; UNWIND_THM2] THEN
SIMP_TAC[DIM_SUBSET_UNIV; ARITH_RULE `a:num <= b ==> (b <= a <=> a = b)`;
ITLIST; DIM_EQ_FULL; orthogonal_transformation] THEN
SIMP_TAC[SPAN_OF_SUBSPACE; SUBSPACE_LINEAR_FIXED_POINTS; IMP_CONJ] THEN
REWRITE_TAC[EXTENSION; IN_UNIV; IN_ELIM_THM] THEN
SIMP_TAC[FUN_EQ_THM; I_THM; ALL];
REPEAT STRIP_TAC THEN ASM_CASES_TAC `!x:real^N. f x = x` THENL
[EXISTS_TAC `[]:(real^N) list` THEN
ASM_REWRITE_TAC[ITLIST; FUN_EQ_THM; I_THM; ALL; LENGTH; LE_0];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM])] THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
ABBREV_TAC `v:real^N = inv(&2) % (f a - a)` THEN FIRST_X_ASSUM
(MP_TAC o SPEC `reflect_along v o (f:real^N->real^N)`) THEN
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG;
ORTHOGONAL_TRANSFORMATION_COMPOSE] THEN
ANTS_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
`a <= d + SUC n ==> d < d' ==> a <= d' + n`)) THEN
MATCH_MP_TAC DIM_PSUBSET THEN REWRITE_TAC[PSUBSET_ALT] THEN
SUBGOAL_THEN
`!y:real^N. dist(y,f a) = dist(y,a) ==> reflect_along v y = y`
ASSUME_TAC THENL
[REWRITE_TAC[dist; NORM_EQ_SQUARE; NORM_POS_LE; NORM_POW_2] THEN
REWRITE_TAC[VECTOR_ARITH
`(y - b:real^N) dot (y - b) =
(y dot y + b dot b) - &2 * y dot b`] THEN
REWRITE_TAC[REAL_ARITH `(y + aa) - &2 * a = (y + bb) - &2 * b <=>
a - b = inv(&2) * (aa - bb)`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[orthogonal_transformation]) THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN
EXPAND_TAC "v" THEN REWRITE_TAC[GSYM DOT_RSUB; reflect_along] THEN
SIMP_TAC[DOT_RMUL; real_div; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_SUB_RZERO];
ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC SPAN_MONO THEN SIMP_TAC[SUBSET; IN_ELIM_THM; o_THM] THEN
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_ISOMETRY];
ALL_TAC] THEN
EXISTS_TAC `a:real^N` THEN
ASM_SIMP_TAC[SUBSPACE_LINEAR_FIXED_POINTS; SPAN_OF_SUBSPACE;
ORTHOGONAL_TRANSFORMATION_LINEAR; IN_ELIM_THM] THEN
MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `reflect_along (v:real^N) (midpoint(f a,a) + v)` THEN
CONJ_TAC THENL
[AP_TERM_TAC;
REWRITE_TAC[REFLECT_ALONG_ADD] THEN
ASM_SIMP_TAC[DIST_MIDPOINT; REFLECT_ALONG_REFL]] THEN
EXPAND_TAC "v" THEN REWRITE_TAC[midpoint] THEN VECTOR_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `l:(real^N)list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `CONS (v:real^N) l` THEN
ASM_REWRITE_TAC[ALL; LENGTH; LE_SUC; VECTOR_SUB_EQ; ITLIST] THEN
EXPAND_TAC "v" THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ] THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM
`(o)(reflect_along (v:real^N)):(real^N->real^N)->(real^N->real^N)`) THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; REFLECT_ALONG_INVOLUTION]]]);;
let ORTHOGONAL_TRANSFORMATION_REFLECT_INDUCT = prove
(`!P:(real^N->real^N)->bool.
P I /\
(!f a. orthogonal_transformation f /\ ~(a = vec 0) /\ P f
==> P(reflect_along a o f))
==> !f. orthogonal_transformation f ==> P f`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real^N->real^N`; `dimindex(:N)`]
ORTHOGONAL_TRANSFORMATION_GENERATED_BY_REFLECTIONS) THEN
ASM_REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] LE_ADD] THEN
DISCH_THEN(X_CHOOSE_THEN `l:(real^N)list` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `orthogonal_transformation(f:real^N->real^N)` THEN
MATCH_MP_TAC(TAUT `p /\ q ==> p ==> q`) THEN FIRST_X_ASSUM SUBST1_TAC THEN
UNDISCH_TAC `ALL (\v:real^N. ~(v = vec 0)) l` THEN
UNDISCH_THEN `LENGTH(l:(real^N)list) <= dimindex(:N)` (K ALL_TAC) THEN
SPEC_TAC(`l:(real^N)list`,`l:(real^N)list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; ITLIST] THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_I] THEN
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_COMPOSE;
ORTHOGONAL_TRANSFORMATION_REFLECT_ALONG]);;
(* ------------------------------------------------------------------------- *)
(* Extract scaling, translation and linear invariance theorems. *)
(* For the linear case, chain through some basic consequences automatically, *)
(* e.g. norm-preserving and linear implies injective. *)
(* ------------------------------------------------------------------------- *)
let SCALING_THEOREMS v =
let th1 = UNDISCH(snd(EQ_IMP_RULE(ISPEC v NORM_POS_LT))) in
let t = rand(concl th1) in
end_itlist CONJ (map (C MP th1 o SPEC t) (!scaling_theorems));;
let TRANSLATION_INVARIANTS x =
end_itlist CONJ (mapfilter (ISPEC x) (!invariant_under_translation));;
let USABLE_CONCLUSION f ths th =
let ith = PURE_REWRITE_RULE[RIGHT_FORALL_IMP_THM] (ISPEC f th) in
let bod = concl ith in
let cjs = conjuncts(fst(dest_imp bod)) in
let ths = map (fun t -> find(fun th -> aconv (concl th) t) ths) cjs in
GEN_ALL(MP ith (end_itlist CONJ ths));;
let LINEAR_INVARIANTS =
let sths = (CONJUNCTS o prove)
(`(!f:real^M->real^N.
linear f /\ (!x. norm(f x) = norm x)
==> (!x y. f x = f y ==> x = y)) /\
(!f:real^N->real^N.
linear f /\ (!x. norm(f x) = norm x) ==> (!y. ?x. f x = y)) /\
(!f:real^N->real^N. linear f /\ (!x y. f x = f y ==> x = y)
==> (!y. ?x. f x = y)) /\
(!f:real^N->real^N. linear f /\ (!y. ?x. f x = y)
==> (!x y. f x = f y ==> x = y))`,
CONJ_TAC THENL
[ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
SIMP_TAC[GSYM LINEAR_SUB; GSYM NORM_EQ_0];
MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE;
ORTHOGONAL_TRANSFORMATION_INJECTIVE; ORTHOGONAL_TRANSFORMATION;
LINEAR_SURJECTIVE_IFF_INJECTIVE]]) in
fun f ths ->
let ths' = ths @ mapfilter (USABLE_CONCLUSION f ths) sths in
end_itlist CONJ
(mapfilter (USABLE_CONCLUSION f ths') (!invariant_under_linear));;
(* ------------------------------------------------------------------------- *)
(* Tactic to pick WLOG a particular point as the origin. The conversion form *)
(* assumes it's the outermost universal variable; the tactic is more general *)
(* and allows any free or outer universally quantified variable. The list *)
(* "avoid" is the points not to translate. There is also a tactic to help in *)
(* proving new translation theorems, which uses similar machinery. *)
(* ------------------------------------------------------------------------- *)
let GEOM_ORIGIN_CONV,GEOM_TRANSLATE_CONV =
let pth = prove
(`!a:real^N. a = a + vec 0 /\
{} = IMAGE (\x. a + x) {} /\
{} = IMAGE (IMAGE (\x. a + x)) {} /\
(:real^N) = IMAGE (\x. a + x) (:real^N) /\
(:real^N->bool) = IMAGE (IMAGE (\x. a + x)) (:real^N->bool) /\
[] = MAP (\x. a + x) []`,
REWRITE_TAC[IMAGE_CLAUSES; VECTOR_ADD_RID; MAP] THEN
REWRITE_TAC[SET_RULE `UNIV = IMAGE f UNIV <=> !y. ?x. f x = y`] THEN
REWRITE_TAC[SURJECTIVE_IMAGE] THEN
REWRITE_TAC[VECTOR_ARITH `a + y:real^N = x <=> y = x - a`; EXISTS_REFL])
and qth = prove
(`!a:real^N.
((!P. (!x. P x) <=> (!x. P (a + x))) /\
(!P. (?x. P x) <=> (?x. P (a + x))) /\
(!Q. (!s. Q s) <=> (!s. Q(IMAGE (\x. a + x) s))) /\
(!Q. (?s. Q s) <=> (?s. Q(IMAGE (\x. a + x) s))) /\
(!Q. (!s. Q s) <=> (!s. Q(IMAGE (IMAGE (\x. a + x)) s))) /\
(!Q. (?s. Q s) <=> (?s. Q(IMAGE (IMAGE (\x. a + x)) s))) /\
(!P. (!g:real^1->real^N. P g) <=> (!g. P ((\x. a + x) o g))) /\
(!P. (?g:real^1->real^N. P g) <=> (?g. P ((\x. a + x) o g))) /\
(!P. (!g:num->real^N. P g) <=> (!g. P ((\x. a + x) o g))) /\
(!P. (?g:num->real^N. P g) <=> (?g. P ((\x. a + x) o g))) /\
(!Q. (!l. Q l) <=> (!l. Q(MAP (\x. a + x) l))) /\
(!Q. (?l. Q l) <=> (?l. Q(MAP (\x. a + x) l)))) /\
((!P. {x | P x} = IMAGE (\x. a + x) {x | P(a + x)}) /\
(!Q. {s | Q s} =
IMAGE (IMAGE (\x. a + x)) {s | Q(IMAGE (\x. a + x) s)}) /\
(!R. {l | R l} = IMAGE (MAP (\x. a + x)) {l | R(MAP (\x. a + x) l)}))`,
GEN_TAC THEN MATCH_MP_TAC QUANTIFY_SURJECTION_HIGHER_THM THEN
X_GEN_TAC `y:real^N` THEN EXISTS_TAC `y - a:real^N` THEN
VECTOR_ARITH_TAC) in
let GEOM_ORIGIN_CONV avoid tm =
let x,tm0 = dest_forall tm in
let th0 = ISPEC x pth in
let x' = genvar(type_of x) in
let ith = ISPEC x' qth in
let th1 = PARTIAL_EXPAND_QUANTS_CONV avoid (ASSUME(concl ith)) tm0 in
let th2 = CONV_RULE(RAND_CONV(SUBS_CONV(CONJUNCTS th0))) th1 in
let th3 = INST[x,x'] (PROVE_HYP ith th2) in
let ths = TRANSLATION_INVARIANTS x in
let thr = REFL x in
let th4 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV)
[BETA_THM;ADD_ASSUM(concl thr) ths] th3 in
let th5 = MK_FORALL x (PROVE_HYP thr th4) in
GEN_REWRITE_RULE (RAND_CONV o TRY_CONV) [FORALL_SIMP] th5
and GEOM_TRANSLATE_CONV avoid a tm =
let cth = CONJUNCT2(ISPEC a pth)
and vth = ISPEC a qth in
let th1 = PARTIAL_EXPAND_QUANTS_CONV avoid (ASSUME(concl vth)) tm in
let th2 = CONV_RULE(RAND_CONV(SUBS_CONV(CONJUNCTS cth))) th1 in
let th3 = PROVE_HYP vth th2 in
let ths = TRANSLATION_INVARIANTS a in
let thr = REFL a in
let th4 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV)
[BETA_THM;ADD_ASSUM(concl thr) ths] th3 in
PROVE_HYP thr th4 in
GEOM_ORIGIN_CONV,GEOM_TRANSLATE_CONV;;
let GEN_GEOM_ORIGIN_TAC x avoid (asl,w as gl) =
let avs,bod = strip_forall w
and avs' = subtract (frees w) (freesl(map (concl o snd) asl)) in
(MAP_EVERY X_GEN_TAC avs THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) (rev(subtract (avs@avs') [x])) THEN
SPEC_TAC(x,x) THEN CONV_TAC(GEOM_ORIGIN_CONV avoid)) gl;;
let GEOM_ORIGIN_TAC x = GEN_GEOM_ORIGIN_TAC x [];;
let GEOM_TRANSLATE_TAC avoid (asl,w) =
let a,bod = dest_forall w in
let n = length(fst(strip_forall bod)) in
(X_GEN_TAC a THEN
CONV_TAC(funpow n BINDER_CONV (LAND_CONV(GEOM_TRANSLATE_CONV avoid a))) THEN
REWRITE_TAC[]) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Rename existential variables in conclusion to fresh genvars. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_GENVAR_RULE =
let rec rule vs th =
match vs with
[] -> th
| v::ovs -> let x,bod = dest_exists(concl th) in
let th1 = rule ovs (ASSUME bod) in
let th2 = SIMPLE_CHOOSE x (SIMPLE_EXISTS x th1) in
PROVE_HYP th (CONV_RULE (GEN_ALPHA_CONV v) th2) in
fun th -> rule (map (genvar o type_of) (fst(strip_exists(concl th)))) th;;
(* ------------------------------------------------------------------------- *)
(* Rotate so that WLOG some point is a +ve multiple of basis vector k. *)
(* For general N, it's better to use k = 1 so the side-condition can be *)
(* discharged. For dimensions 1, 2 and 3 anything will work automatically. *)
(* Could generalize by asking the user to prove theorem 1 <= k <= N. *)
(* ------------------------------------------------------------------------- *)
let GEOM_BASIS_MULTIPLE_RULE =
let pth = prove
(`!f. orthogonal_transformation (f:real^N->real^N)
==> (vec 0 = f(vec 0) /\
{} = IMAGE f {} /\
{} = IMAGE (IMAGE f) {} /\
(:real^N) = IMAGE f (:real^N) /\
(:real^N->bool) = IMAGE (IMAGE f) (:real^N->bool) /\
[] = MAP f []) /\
((!P. (!x. P x) <=> (!x. P (f x))) /\
(!P. (?x. P x) <=> (?x. P (f x))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE f s))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE f s))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE (IMAGE f) s))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE (IMAGE f) s))) /\
(!P. (!g:real^1->real^N. P g) <=> (!g. P (f o g))) /\
(!P. (?g:real^1->real^N. P g) <=> (?g. P (f o g))) /\
(!P. (!g:num->real^N. P g) <=> (!g. P (f o g))) /\
(!P. (?g:num->real^N. P g) <=> (?g. P (f o g))) /\
(!Q. (!l. Q l) <=> (!l. Q(MAP f l))) /\
(!Q. (?l. Q l) <=> (?l. Q(MAP f l)))) /\
((!P. {x | P x} = IMAGE f {x | P(f x)}) /\
(!Q. {s | Q s} = IMAGE (IMAGE f) {s | Q(IMAGE f s)}) /\
(!R. {l | R l} = IMAGE (MAP f) {l | R(MAP f l)}))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(ASSUME_TAC o
MATCH_MP ORTHOGONAL_TRANSFORMATION_SURJECTIVE) THEN
CONJ_TAC THENL
[REWRITE_TAC[IMAGE_CLAUSES; MAP] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ORTHOGONAL_TRANSFORMATION_LINEAR) THEN
CONJ_TAC THENL [ASM_MESON_TAC[LINEAR_0]; ALL_TAC] THEN
REWRITE_TAC[SET_RULE `UNIV = IMAGE f UNIV <=> !y. ?x. f x = y`] THEN
ASM_REWRITE_TAC[SURJECTIVE_IMAGE];
MATCH_MP_TAC QUANTIFY_SURJECTION_HIGHER_THM THEN ASM_REWRITE_TAC[]])
and oth = prove
(`!f:real^N->real^N.
orthogonal_transformation f /\
(2 <= dimindex(:N) ==> det(matrix f) = &1)
==> linear f /\
(!x y. f x = f y ==> x = y) /\
(!y. ?x. f x = y) /\
(!x. norm(f x) = norm x) /\
(2 <= dimindex(:N) ==> det(matrix f) = &1)`,
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_INJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE];
ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION]])
and arithconv = REWRITE_CONV[DIMINDEX_1; DIMINDEX_2; DIMINDEX_3;
ARITH_RULE `1 <= 1`; DIMINDEX_GE_1] THENC
NUM_REDUCE_CONV in
fun k tm ->
let x,bod = dest_forall tm in
let th0 = ISPECL [x; mk_small_numeral k] ROTATION_RIGHTWARD_LINE in
let th1 = EXISTS_GENVAR_RULE
(MP th0 (EQT_ELIM(arithconv(lhand(concl th0))))) in
let [a;f],tm1 = strip_exists(concl th1) in
let th_orth,th2 = CONJ_PAIR(ASSUME tm1) in
let th_det,th2a = CONJ_PAIR th2 in
let th_works,th_zero = CONJ_PAIR th2a in
let thc,thq = CONJ_PAIR(PROVE_HYP th2 (UNDISCH(ISPEC f pth))) in
let th3 = CONV_RULE(RAND_CONV(SUBS_CONV(GSYM th_works::CONJUNCTS thc)))
(EXPAND_QUANTS_CONV(ASSUME(concl thq)) bod) in
let th4 = PROVE_HYP thq th3 in
let thps = CONJUNCTS(MATCH_MP oth (CONJ th_orth th_det)) in
let th5 = LINEAR_INVARIANTS f thps in
let th6 = PROVE_HYP th_orth
(GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV) [BETA_THM; th5] th4) in
let ntm = mk_forall(a,mk_imp(concl th_zero,rand(concl th6))) in
let th7 = MP(SPEC a (ASSUME ntm)) th_zero in
let th8 = DISCH ntm (EQ_MP (SYM th6) th7) in
if intersect (frees(concl th8)) [a;f] = [] then
let th9 = PROVE_HYP th1 (itlist SIMPLE_CHOOSE [a;f] th8) in
let th10 = DISCH ntm (GEN x (UNDISCH th9)) in
let a' = variant (frees(concl th10))
(mk_var(fst(dest_var x),snd(dest_var a))) in
CONV_RULE(LAND_CONV (GEN_ALPHA_CONV a')) th10
else
let mtm = list_mk_forall([a;f],mk_imp(hd(hyp th8),rand(concl th6))) in
let th9 = EQ_MP (SYM th6) (UNDISCH(SPECL [a;f] (ASSUME mtm))) in
let th10 = itlist SIMPLE_CHOOSE [a;f] (DISCH mtm th9) in
let th11 = GEN x (PROVE_HYP th1 th10) in
MATCH_MP MONO_FORALL th11;;
let GEOM_BASIS_MULTIPLE_TAC k l (asl,w as gl) =
let avs,bod = strip_forall w
and avs' = subtract (frees w) (freesl(map (concl o snd) asl)) in
(MAP_EVERY X_GEN_TAC avs THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) (rev(subtract (avs@avs') [l])) THEN
SPEC_TAC(l,l) THEN
W(MATCH_MP_TAC o GEOM_BASIS_MULTIPLE_RULE k o snd)) gl;;
(* ------------------------------------------------------------------------- *)
(* Create invariance theorems automatically, in simple cases. If there are *)
(* any nested quantifiers, this will need surjectivity. It's often possible *)
(* to prove a stronger theorem by more delicate manual reasoning, so this *)
(* isn't used nearly as often as GEOM_TRANSLATE_CONV / GEOM_TRANSLATE_TAC. *)
(* As a small step, some ad-hoc rewrites analogous to FORALL_IN_IMAGE are *)
(* tried if the first step doesn't finish the goal, but it's very ad hoc. *)
(* ------------------------------------------------------------------------- *)
let GEOM_TRANSFORM_TAC =
let cth0 = prove
(`!f:real^M->real^N.
linear f
==> vec 0 = f(vec 0) /\
{} = IMAGE f {} /\
{} = IMAGE (IMAGE f) {}`,
REWRITE_TAC[IMAGE_CLAUSES] THEN MESON_TAC[LINEAR_0])
and cth1 = prove
(`!f:real^M->real^N.
(!y. ?x. f x = y)
==> (:real^N) = IMAGE f (:real^M) /\
(:real^N->bool) = IMAGE (IMAGE f) (:real^M->bool)`,
REWRITE_TAC[SET_RULE `UNIV = IMAGE f UNIV <=> !y. ?x. f x = y`] THEN
REWRITE_TAC[SURJECTIVE_IMAGE])
and sths = (CONJUNCTS o prove)
(`(!f:real^M->real^N.
linear f /\ (!x. norm(f x) = norm x)
==> (!x y. f x = f y ==> x = y)) /\
(!f:real^N->real^N.
linear f /\ (!x. norm(f x) = norm x) ==> (!y. ?x. f x = y)) /\
(!f:real^N->real^N. linear f /\ (!x y. f x = f y ==> x = y)
==> (!y. ?x. f x = y)) /\
(!f:real^N->real^N. linear f /\ (!y. ?x. f x = y)
==> (!x y. f x = f y ==> x = y))`,
CONJ_TAC THENL
[ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
SIMP_TAC[GSYM LINEAR_SUB; GSYM NORM_EQ_0];
MESON_TAC[ORTHOGONAL_TRANSFORMATION_SURJECTIVE;
ORTHOGONAL_TRANSFORMATION_INJECTIVE; ORTHOGONAL_TRANSFORMATION;
LINEAR_SURJECTIVE_IFF_INJECTIVE]])
and aths = (CONJUNCTS o prove)
(`(!f s P. (!y. y IN IMAGE f s ==> P y) <=> (!x. x IN s ==> P(f x))) /\
(!f s P. (!u. u IN IMAGE (IMAGE f) s ==> P u) <=>
(!t. t IN s ==> P(IMAGE f t))) /\
(!f s P. (?y. y IN IMAGE f s /\ P y) <=> (?x. x IN s /\ P(f x))) /\
(!f s P. (?u. u IN IMAGE (IMAGE f) s /\ P u) <=>
(?t. t IN s /\ P(IMAGE f t)))`,
SET_TAC[]) in
fun avoid (asl,w as gl) ->
let f,wff = dest_forall w in
let vs,bod = strip_forall wff in
let ant,cons = dest_imp bod in
let hths = CONJUNCTS(ASSUME ant) in
let fths = hths @ mapfilter (USABLE_CONCLUSION f hths) sths in
let cths = mapfilter (USABLE_CONCLUSION f fths) [cth0; cth1]
and vconv =
try let vth = USABLE_CONCLUSION f fths QUANTIFY_SURJECTION_HIGHER_THM in
PROVE_HYP vth o PARTIAL_EXPAND_QUANTS_CONV avoid (ASSUME(concl vth))
with Failure _ -> ALL_CONV
and bths = LINEAR_INVARIANTS f fths in
(MAP_EVERY X_GEN_TAC (f::vs) THEN DISCH_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) cths THEN
CONV_TAC(LAND_CONV vconv) THEN
GEN_REWRITE_TAC (LAND_CONV o REDEPTH_CONV) [bths] THEN
REWRITE_TAC[] THEN
REWRITE_TAC(mapfilter (ADD_ASSUM ant o ISPEC f) aths) THEN
GEN_REWRITE_TAC (LAND_CONV o REDEPTH_CONV) [bths] THEN
REWRITE_TAC[]) gl;;
(* ------------------------------------------------------------------------- *)
(* Scale so that a chosen vector has size 1. Generates a conjunction of *)
(* two formulas, one for the zero case (which one hopes is trivial) and *)
(* one just like the original goal but with a norm(...) = 1 assumption. *)
(* ------------------------------------------------------------------------- *)
let GEOM_NORMALIZE_RULE =
let pth = prove
(`!a:real^N. ~(a = vec 0)
==> vec 0 = norm(a) % vec 0 /\
a = norm(a) % inv(norm a) % a /\
{} = IMAGE (\x. norm(a) % x) {} /\
{} = IMAGE (IMAGE (\x. norm(a) % x)) {} /\
(:real^N) = IMAGE (\x. norm(a) % x) (:real^N) /\
(:real^N->bool) =
IMAGE (IMAGE (\x. norm(a) % x)) (:real^N->bool) /\
[] = MAP (\x. norm(a) % x) []`,
REWRITE_TAC[IMAGE_CLAUSES; VECTOR_MUL_ASSOC; VECTOR_MUL_RZERO; MAP] THEN
SIMP_TAC[NORM_EQ_0; REAL_MUL_RINV; VECTOR_MUL_LID] THEN
GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[SET_RULE `UNIV = IMAGE f UNIV <=> !y. ?x. f x = y`] THEN
ASM_REWRITE_TAC[SURJECTIVE_IMAGE] THEN
X_GEN_TAC `y:real^N` THEN EXISTS_TAC `inv(norm(a:real^N)) % y:real^N` THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; NORM_EQ_0; REAL_MUL_RINV; VECTOR_MUL_LID])
and qth = prove
(`!a:real^N.
~(a = vec 0)
==> ((!P. (!r:real. P r) <=> (!r. P(norm a * r))) /\
(!P. (?r:real. P r) <=> (?r. P(norm a * r))) /\
(!P. (!x:real^N. P x) <=> (!x. P (norm(a) % x))) /\
(!P. (?x:real^N. P x) <=> (?x. P (norm(a) % x))) /\
(!Q. (!s:real^N->bool. Q s) <=>
(!s. Q(IMAGE (\x. norm(a) % x) s))) /\
(!Q. (?s:real^N->bool. Q s) <=>
(?s. Q(IMAGE (\x. norm(a) % x) s))) /\
(!Q. (!s:(real^N->bool)->bool. Q s) <=>
(!s. Q(IMAGE (IMAGE (\x. norm(a) % x)) s))) /\
(!Q. (?s:(real^N->bool)->bool. Q s) <=>
(?s. Q(IMAGE (IMAGE (\x. norm(a) % x)) s))) /\
(!P. (!g:real^1->real^N. P g) <=>
(!g. P ((\x. norm(a) % x) o g))) /\
(!P. (?g:real^1->real^N. P g) <=>
(?g. P ((\x. norm(a) % x) o g))) /\
(!P. (!g:num->real^N. P g) <=>
(!g. P ((\x. norm(a) % x) o g))) /\
(!P. (?g:num->real^N. P g) <=>
(?g. P ((\x. norm(a) % x) o g))) /\
(!Q. (!l. Q l) <=> (!l. Q(MAP (\x:real^N. norm(a) % x) l))) /\
(!Q. (?l. Q l) <=> (?l. Q(MAP (\x:real^N. norm(a) % x) l)))) /\
((!P. {x:real^N | P x} =
IMAGE (\x. norm(a) % x) {x | P(norm(a) % x)}) /\
(!Q. {s:real^N->bool | Q s} =
IMAGE (IMAGE (\x. norm(a) % x))
{s | Q(IMAGE (\x. norm(a) % x) s)}) /\
(!R. {l:(real^N)list | R l} =
IMAGE (MAP (\x:real^N. norm(a) % x))
{l | R(MAP (\x:real^N. norm(a) % x) l)}))`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT
`(a /\ b) /\ c /\ d ==> (a /\ b /\ c) /\ d`) THEN
CONJ_TAC THENL
[ASM_MESON_TAC[NORM_EQ_0; REAL_FIELD `~(x = &0) ==> x * inv x * a = a`];
MP_TAC(ISPEC `\x:real^N. norm(a:real^N) % x`
(INST_TYPE [`:real^1`,`:C`] QUANTIFY_SURJECTION_HIGHER_THM)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[SURJECTIVE_SCALING; NORM_EQ_0]])
and lth = prove
(`(!b:real^N. ~(b = vec 0) ==> (P(b) <=> Q(inv(norm b) % b)))
==> P(vec 0) /\ (!b. norm(b) = &1 ==> Q b) ==> (!b. P b)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `b:real^N = vec 0` THEN ASM_SIMP_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM;
REAL_MUL_LINV; NORM_EQ_0]) in
fun avoid tm ->
let x,tm0 = dest_forall tm in
let cth = UNDISCH(ISPEC x pth)
and vth = UNDISCH(ISPEC x qth) in
let th1 = ONCE_REWRITE_CONV[cth] tm0 in
let th2 = CONV_RULE (RAND_CONV
(PARTIAL_EXPAND_QUANTS_CONV avoid vth)) th1 in
let th3 = SCALING_THEOREMS x in
let th3' = (end_itlist CONJ (map
(fun th -> let avs,_ = strip_forall(concl th) in
let gvs = map (genvar o type_of) avs in
GENL gvs (SPECL gvs th))
(CONJUNCTS th3))) in
let th4 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV)
[BETA_THM; th3'] th2 in
MATCH_MP lth (GEN x (DISCH_ALL th4));;
let GEN_GEOM_NORMALIZE_TAC x avoid (asl,w as gl) =
let avs,bod = strip_forall w
and avs' = subtract (frees w) (freesl(map (concl o snd) asl)) in
(MAP_EVERY X_GEN_TAC avs THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) (rev(subtract (avs@avs') [x])) THEN
SPEC_TAC(x,x) THEN
W(MATCH_MP_TAC o GEOM_NORMALIZE_RULE avoid o snd)) gl;;
let GEOM_NORMALIZE_TAC x = GEN_GEOM_NORMALIZE_TAC x [];;
(* ------------------------------------------------------------------------- *)
(* Add invariance theorems for collinearity. *)
(* ------------------------------------------------------------------------- *)
let COLLINEAR_TRANSLATION_EQ = prove
(`!a s. collinear (IMAGE (\x. a + x) s) <=> collinear s`,
REWRITE_TAC[collinear] THEN GEOM_TRANSLATE_TAC["u"]);;
add_translation_invariants [COLLINEAR_TRANSLATION_EQ];;
let COLLINEAR_TRANSLATION = prove
(`!s a. collinear s ==> collinear (IMAGE (\x. a + x) s)`,
REWRITE_TAC[COLLINEAR_TRANSLATION_EQ]);;
let COLLINEAR_LINEAR_IMAGE = prove
(`!f s. collinear s /\ linear f ==> collinear(IMAGE f s)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[collinear; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[LINEAR_SUB; LINEAR_CMUL]);;
let COLLINEAR_LINEAR_IMAGE_EQ = prove
(`!f s. linear f /\ (!x y. f x = f y ==> x = y)
==> (collinear (IMAGE f s) <=> collinear s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COLLINEAR_LINEAR_IMAGE));;
add_linear_invariants [COLLINEAR_LINEAR_IMAGE_EQ];;
(* ------------------------------------------------------------------------- *)
(* Take a theorem "th" with outer universal quantifiers involving real^N *)
(* and a theorem "dth" asserting |- dimindex(:M) <= dimindex(:N) and *)
(* return a theorem replacing type :N by :M in th. Neither N or M need be a *)
(* type variable. *)
(* ------------------------------------------------------------------------- *)
let GEOM_DROP_DIMENSION_RULE =
let oth = prove
(`!f:real^M->real^N.
linear f /\ (!x. norm(f x) = norm x)
==> linear f /\
(!x y. f x = f y ==> x = y) /\
(!x. norm(f x) = norm x)`,
MESON_TAC[PRESERVES_NORM_INJECTIVE])
and cth = prove
(`linear(f:real^M->real^N)
==> vec 0 = f(vec 0) /\
{} = IMAGE f {} /\
{} = IMAGE (IMAGE f) {} /\
[] = MAP f []`,
REWRITE_TAC[IMAGE_CLAUSES; MAP; GSYM LINEAR_0]) in
fun dth th ->
let ath = GEN_ALL th
and eth = MATCH_MP ISOMETRY_UNIV_UNIV dth
and avoid = variables(concl th) in
let f,bod = dest_exists(concl eth) in
let fimage = list_mk_icomb "IMAGE" [f]
and fmap = list_mk_icomb "MAP" [f]
and fcompose = list_mk_icomb "o" [f] in
let fimage2 = list_mk_icomb "IMAGE" [fimage] in
let lin,iso = CONJ_PAIR(ASSUME bod) in
let olduniv = rand(rand(concl dth))
and newuniv = rand(lhand(concl dth)) in
let oldty = fst(dest_fun_ty(type_of olduniv))
and newty = fst(dest_fun_ty(type_of newuniv)) in
let newvar v =
let n,t = dest_var v in
variant avoid (mk_var(n,tysubst[newty,oldty] t)) in
let newterm v =
try let v' = newvar v in
tryfind (fun f -> mk_comb(f,v')) [f;fimage;fmap;fcompose;fimage2]
with Failure _ -> v in
let specrule th =
let v = fst(dest_forall(concl th)) in SPEC (newterm v) th in
let sth = SUBS(CONJUNCTS(MATCH_MP cth lin)) ath in
let fth = SUBS[SYM(MATCH_MP LINEAR_0 lin)] (repeat specrule sth) in
let thps = CONJUNCTS(MATCH_MP oth (ASSUME bod)) in
let th5 = LINEAR_INVARIANTS f thps in
let th6 = GEN_REWRITE_RULE REDEPTH_CONV [th5] fth in
let th7 = PROVE_HYP eth (SIMPLE_CHOOSE f th6) in
GENL (map newvar (fst(strip_forall(concl ath)))) th7;;
(* ------------------------------------------------------------------------- *)
(* Transfer theorems automatically between same-dimension spaces. *)
(* Given dth = A |- dimindex(:M) = dimindex(:N) *)
(* and a theorem th involving variables of type real^N *)
(* returns a corresponding theorem mapped to type real^M with assumptions A. *)
(* ------------------------------------------------------------------------- *)
let GEOM_EQUAL_DIMENSION_RULE =
let bth = prove
(`dimindex(:M) = dimindex(:N)
==> ?f:real^M->real^N.
(linear f /\ (!y. ?x. f x = y)) /\
(!x. norm(f x) = norm x)`,
REWRITE_TAC[SET_RULE `(!y. ?x. f x = y) <=> IMAGE f UNIV = UNIV`] THEN
DISCH_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
MATCH_MP_TAC ISOMETRY_UNIV_SUBSPACE THEN
REWRITE_TAC[SUBSPACE_UNIV; DIM_UNIV] THEN FIRST_ASSUM ACCEPT_TAC)
and pth = prove
(`!f:real^M->real^N.
linear f /\ (!y. ?x. f x = y)
==> (vec 0 = f(vec 0) /\
{} = IMAGE f {} /\
{} = IMAGE (IMAGE f) {} /\
(:real^N) = IMAGE f (:real^M) /\
(:real^N->bool) = IMAGE (IMAGE f) (:real^M->bool) /\
[] = MAP f []) /\
((!P. (!x. P x) <=> (!x. P (f x))) /\
(!P. (?x. P x) <=> (?x. P (f x))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE f s))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE f s))) /\
(!Q. (!s. Q s) <=> (!s. Q (IMAGE (IMAGE f) s))) /\
(!Q. (?s. Q s) <=> (?s. Q (IMAGE (IMAGE f) s))) /\
(!P. (!g:real^1->real^N. P g) <=> (!g. P (f o g))) /\
(!P. (?g:real^1->real^N. P g) <=> (?g. P (f o g))) /\
(!P. (!g:num->real^N. P g) <=> (!g. P (f o g))) /\
(!P. (?g:num->real^N. P g) <=> (?g. P (f o g))) /\
(!Q. (!l. Q l) <=> (!l. Q(MAP f l))) /\
(!Q. (?l. Q l) <=> (?l. Q(MAP f l)))) /\
((!P. {x | P x} = IMAGE f {x | P(f x)}) /\
(!Q. {s | Q s} = IMAGE (IMAGE f) {s | Q(IMAGE f s)}) /\
(!R. {l | R l} = IMAGE (MAP f) {l | R(MAP f l)}))`,
GEN_TAC THEN
SIMP_TAC[SET_RULE `UNIV = IMAGE f UNIV <=> (!y. ?x. f x = y)`;
SURJECTIVE_IMAGE] THEN
MATCH_MP_TAC MONO_AND THEN
REWRITE_TAC[QUANTIFY_SURJECTION_HIGHER_THM] THEN
REWRITE_TAC[IMAGE_CLAUSES; MAP] THEN MESON_TAC[LINEAR_0]) in
fun dth th ->
let eth = EXISTS_GENVAR_RULE (MATCH_MP bth dth) in
let f,bod = dest_exists(concl eth) in
let lsth,neth = CONJ_PAIR(ASSUME bod) in
let cth,qth = CONJ_PAIR(MATCH_MP pth lsth) in
let th1 = CONV_RULE
(EXPAND_QUANTS_CONV qth THENC SUBS_CONV(CONJUNCTS cth)) th in
let ith = LINEAR_INVARIANTS f (neth::CONJUNCTS lsth) in
let th2 = GEN_REWRITE_RULE (RAND_CONV o REDEPTH_CONV) [BETA_THM;ith] th1 in
let th3 = GEN f (DISCH bod th2) in
MP (CONV_RULE (REWR_CONV LEFT_FORALL_IMP_THM) th3) eth;;