Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Basic_Assn | |
imports | |
"Refine_Imperative_HOL.Sepref_HOL_Bindings" | |
"Refine_Imperative_HOL.Sepref_Basic" | |
begin | |
section "Auxilary imperative assumptions" | |
text "The following auxiliary assertion types and lemmas were provided by Peter Lammich" | |
subsection \<open>List-Assn\<close> | |
lemma list_assn_cong[fundef_cong]: | |
"\<lbrakk> xs=xs'; ys=ys'; \<And>x y. \<lbrakk> x\<in>set xs; y\<in>set ys \<rbrakk> \<Longrightarrow> A x y = A' x y \<rbrakk> \<Longrightarrow> list_assn A xs ys = list_assn A' xs' ys'" | |
by (induction xs ys arbitrary: xs' ys' rule: list_assn.induct) auto | |
lemma list_assn_app_one: "list_assn P (l1@[x]) (l1'@[y]) = list_assn P l1 l1' * P x y" | |
by simp | |
(* ------------------ ADDED by NM in course of btree_imp -------- *) | |
lemma list_assn_len: "h \<Turnstile> list_assn A xs ys \<Longrightarrow> length xs = length ys" | |
using list_assn_aux_ineq_len by fastforce | |
lemma list_assn_append_Cons_left: "list_assn A (xs@x#ys) zs = (\<exists>\<^sub>A zs1 z zs2. list_assn A xs zs1 * A x z * list_assn A ys zs2 * \<up>(zs1@z#zs2 = zs))" | |
by (sep_auto simp add: list_assn_aux_cons_conv list_assn_aux_append_conv1 intro!: ent_iffI) | |
lemma list_assn_aux_append_Cons: | |
shows "length xs = length zsl \<Longrightarrow> list_assn A (xs@x#ys) (zsl@z#zsr) = (list_assn A xs zsl * A x z * list_assn A ys zsr) " | |
by (sep_auto simp add: mult.assoc) | |
(* -------------------------------------------- *) | |
subsection \<open>Prod-Assn\<close> | |
lemma prod_assn_cong[fundef_cong]: | |
"\<lbrakk> p=p'; pi=pi'; A (fst p) (fst pi) = A' (fst p) (fst pi); B (snd p) (snd pi) = B' (snd p) (snd pi) \<rbrakk> | |
\<Longrightarrow> (A\<times>\<^sub>aB) p pi = (A'\<times>\<^sub>aB') p' pi'" | |
apply (cases p; cases pi) | |
by auto | |
end |