Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich | |
Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Simple operations: demotion, merging, composition\<close> | |
theory Composition imports | |
Axiomatised_BNF_CC | |
begin | |
text \<open> | |
We illustrate the composition of \BNFCC{}s with one example for each kind of parameters | |
(live/co-/contravariant/fixed). We do not show demotion and merging in isolation, as the | |
examples for composition use these operations, too. | |
\<close> | |
subsection \<open>Composition in a live position\<close> | |
type_synonym | |
('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGl = | |
"(('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f1) G, | |
'l1, 'l3, 'co1, 'co3, 'co4, 'contra1, 'contra3, 'contra4, 'f2) F" | |
text \<open>The type variables @{typ 'l1}, @{typ 'co1} and @{typ 'contra1} have each been merged.\<close> | |
definition "rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4 = | |
rel_F (rel_G L1 L2 Co1 Co2 Contra1 Contra2) L1 L3 Co1 Co3 Co4 Contra1 Contra3 Contra4" | |
definition "map_FGl l1 l2 l3 co1 co2 co3 co4 contra1 contra2 contra3 contra4 = | |
map_F (map_G l1 l2 co1 co2 contra1 contra2) l1 l3 co1 co3 co4 contra1 contra3 contra4" | |
lemma rel_FGl_mono: | |
"\<lbrakk> L1 \<le> L1'; L2 \<le> L2'; L3 \<le> L3'; Co1 \<le> Co1'; Co2 \<le> Co2'; Co3 \<le> Co3'; Co4 \<le> Co4'; | |
Contra1' \<le> Contra1; Contra2' \<le> Contra2; Contra3' \<le> Contra3; Contra4' \<le> Contra4 \<rbrakk> \<Longrightarrow> | |
rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4 \<le> | |
rel_FGl L1' L2' L3' Co1' Co2' Co3' Co4' Contra1' Contra2' Contra3' Contra4'" | |
unfolding rel_FGl_def | |
apply (rule rel_F_mono) | |
apply (rule rel_G_mono) | |
apply (assumption)+ | |
done | |
lemma rel_FGl_eq: "rel_FGl (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) = (=)" | |
unfolding rel_FGl_def by (simp add: rel_F_eq rel_G_eq) | |
lemma rel_FGl_conversep: | |
"rel_FGl L1\<inverse>\<inverse> L2\<inverse>\<inverse> L3\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Co3\<inverse>\<inverse> Co4\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> Contra3\<inverse>\<inverse> Contra4\<inverse>\<inverse> = | |
(rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4)\<inverse>\<inverse>" | |
unfolding rel_FGl_def by (simp add: rel_F_conversep rel_G_conversep) | |
lemma map_FGl_id0: "map_FGl id id id id id id id id id id id = id" | |
unfolding map_FGl_def by (simp add: map_F_id0 map_G_id0) | |
lemma map_FGl_comp: "map_FGl l1 l2 l3 co1 co2 co3 co4 contra1 contra2 contra3 contra4 \<circ> | |
map_FGl l1' l2' l3' co1' co2' co3' co4' contra1' contra2' contra3' contra4' = | |
map_FGl (l1 \<circ> l1') (l2 \<circ> l2') (l3 \<circ> l3') (co1 \<circ> co1') (co2 \<circ> co2') (co3 \<circ> co3') (co4 \<circ> co4') | |
(contra1' \<circ> contra1) (contra2' \<circ> contra2) (contra3' \<circ> contra3) (contra4' \<circ> contra4)" | |
unfolding map_FGl_def by (simp add: map_F_comp map_G_comp) | |
lemma map_FGl_parametric: | |
"rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') (rel_fun (rel_fun L3 L3') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Co3 Co3') (rel_fun (rel_fun Co4 Co4') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_fun Contra3' Contra3) (rel_fun (rel_fun Contra4' Contra4) | |
(rel_fun (rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4) | |
(rel_FGl L1' L2' L3' Co1' Co2' Co3' Co4' Contra1' Contra2' Contra3' Contra4')))))))))))) | |
map_FGl map_FGl" | |
unfolding rel_FGl_def map_FGl_def | |
apply (intro rel_funI) | |
apply (elim map_F_rel_cong map_G_rel_cong) | |
apply (erule (2) rel_funE)+ | |
done | |
definition rel_FGl_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" | |
where | |
"rel_FGl_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool) | |
(L3 :: 'l3 \<Rightarrow> 'l3' \<Rightarrow> bool) (L3' :: 'l3' \<Rightarrow> 'l3'' \<Rightarrow> bool). | |
(rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGl \<Rightarrow> _) OO | |
rel_FGl L1' L2' L3' Co1' Co2' Co3' Co4' Contra1' Contra2' Contra3' Contra4' \<le> | |
rel_FGl (L1 OO L1') (L2 OO L2') (L3 OO L3') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Co4 OO Co4') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') (Contra4 OO Contra4'))" | |
definition rel_FGl_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" | |
where | |
"rel_FGl_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool) | |
(L3 :: 'l3 \<Rightarrow> 'l3' \<Rightarrow> bool) (L3' :: 'l3' \<Rightarrow> 'l3'' \<Rightarrow> bool). | |
rel_FGl (L1 OO L1') (L2 OO L2') (L3 OO L3') | |
(Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Co4 OO Co4') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') (Contra4 OO Contra4') \<le> | |
(rel_FGl L1 L2 L3 Co1 Co2 Co3 Co4 Contra1 Contra2 Contra3 Contra4 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGl \<Rightarrow> _) OO | |
rel_FGl L1' L2' L3' Co1' Co2' Co3' Co4' Contra1' Contra2' Contra3' Contra4')" | |
text \<open>Sufficient conditions for subdistributivity over relation composition.\<close> | |
lemma rel_FGl_pos_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_F :: "(('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f1) G \<times> | |
('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f1) G \<times> | |
('l1'', 'l2'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f1) G \<times> | |
'l1 \<times> 'l1' \<times> 'l1'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f2) itself" | |
and tytok_G :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f1) itself" | |
and tytok_FGl :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> | |
'f1 \<times> 'f2) itself" | |
assumes "rel_F_pos_distr_cond Co1 Co1' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra3 Contra3' Contra4 Contra4' tytok_F" | |
and "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_FGl_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' tytok_FGl" | |
unfolding rel_FGl_pos_distr_cond_def rel_FGl_def | |
apply (intro allI) | |
apply (rule order_trans) | |
apply (rule rel_F_pos_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule rel_G_pos_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGl_neg_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_F :: "(('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f1) G \<times> | |
('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f1) G \<times> | |
('l1'', 'l2'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f1) G \<times> | |
'l1 \<times> 'l1' \<times> 'l1'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f2) itself" | |
and tytok_G :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f1) itself" | |
and tytok_FGl :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> | |
'f1 \<times> 'f2) itself" | |
assumes "rel_F_neg_distr_cond Co1 Co1' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra3 Contra3' Contra4 Contra4' tytok_F" | |
and "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_FGl_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' tytok_FGl" | |
unfolding rel_FGl_neg_distr_cond_def rel_FGl_def | |
apply (intro allI) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_F_neg_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule rel_G_neg_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGl_pos_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> | |
'f1 \<times> 'f2) itself" | |
shows "rel_FGl_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (rule rel_FGl_pos_distr_imp rel_F_pos_distr_cond_eq rel_G_pos_distr_cond_eq)+ | |
lemma rel_FGl_neg_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> | |
'f1 \<times> 'f2) itself" | |
shows "rel_FGl_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (rule rel_FGl_neg_distr_imp rel_F_neg_distr_cond_eq rel_G_neg_distr_cond_eq)+ | |
definition "rell_FGl L1 L2 L3 = rel_FGl L1 L2 L3 (=) (=) (=) (=) (=) (=) (=) (=)" | |
definition "mapl_FGl l1 l2 l3 = map_FGl l1 l2 l3 id id id id id id id id" | |
type_synonym ('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGlbd = | |
"('co1, 'co3, 'co4, 'contra1, 'contra3, 'contra4, 'f2) Fbd \<times> | |
('co1, 'co2, 'contra1, 'contra2, 'f1) Gbd + | |
('co1, 'co3, 'co4, 'contra1, 'contra3, 'contra4, 'f2) Fbd" | |
definition set1_FGl :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'co4, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGl \<Rightarrow> 'l1 set" where | |
"set1_FGl x = (\<Union>y\<in>set1_F x. set1_G y) \<union> set2_F x" | |
definition set2_FGl :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'co4, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGl \<Rightarrow> 'l2 set" where | |
"set2_FGl x = (\<Union>y\<in>set1_F x. set2_G y)" | |
definition set3_FGl :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'co4, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGl \<Rightarrow> 'l3 set" where | |
"set3_FGl x = set3_F x" | |
definition | |
bd_FGl :: "('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGlbd rel" | |
where "bd_FGl = bd_F *c bd_G +c bd_F" | |
lemma set1_FGl_map: "set1_FGl \<circ> mapl_FGl l1 l2 l3 = image l1 \<circ> set1_FGl" | |
by (simp add: fun_eq_iff set1_FGl_def mapl_FGl_def map_FGl_def | |
mapl_F_def[symmetric] mapl_G_def[symmetric] | |
set1_F_map[THEN fun_cong, simplified] set2_F_map[THEN fun_cong, simplified] | |
set1_G_map[THEN fun_cong, simplified] | |
image_Un image_UN) | |
lemma set2_FGl_map: "set2_FGl \<circ> mapl_FGl l1 l2 l3 = image l2 \<circ> set2_FGl" | |
by (simp add: fun_eq_iff set2_FGl_def mapl_FGl_def map_FGl_def | |
mapl_F_def[symmetric] mapl_G_def[symmetric] | |
set1_F_map[THEN fun_cong, simplified] set2_G_map[THEN fun_cong, simplified] image_UN) | |
lemma set3_FGl_map: "set3_FGl \<circ> mapl_FGl l1 l2 l3 = image l3 \<circ> set3_FGl" | |
by (simp add: fun_eq_iff set3_FGl_def mapl_FGl_def map_FGl_def | |
mapl_F_def[symmetric] mapl_G_def[symmetric] set3_F_map[THEN fun_cong, simplified]) | |
lemma bd_FGl_card_order: "card_order bd_FGl" | |
unfolding bd_FGl_def using bd_F_card_order bd_G_card_order | |
by (intro card_order_csum card_order_cprod) | |
lemma bd_FGl_cinfinite: "cinfinite bd_FGl" | |
unfolding bd_FGl_def using bd_F_cinfinite bd_G_cinfinite | |
by (intro cinfinite_csum disjI2) | |
lemma | |
fixes x :: "(_, _, _, 'co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGl" | |
shows set1_FGl_bound: "card_of (set1_FGl x) \<le>o | |
(bd_FGl :: ('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGlbd rel)" | |
and set2_FGl_bound: "card_of (set2_FGl x) \<le>o | |
(bd_FGl :: ('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGlbd rel)" | |
and set3_FGl_bound: "card_of (set3_FGl x) \<le>o | |
(bd_FGl :: ('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGlbd rel)" | |
unfolding set1_FGl_def set2_FGl_def set3_FGl_def bd_FGl_def | |
apply (simp) | |
apply (rule ordLeq_transitive) | |
apply (rule Un_csum) | |
apply (rule csum_mono) | |
apply (rule comp_single_set_bd[where fset=set1_G and gset=set1_F, rotated]) | |
apply (rule set1_G_bound) | |
apply (rule set1_F_bound) | |
apply (rule card_order_on_Card_order[THEN conjunct2, OF bd_G_card_order]) | |
apply (rule set2_F_bound) | |
apply (rule ordLeq_transitive) | |
apply (rule comp_single_set_bd[where fset=set2_G and gset=set1_F, rotated]) | |
apply (rule set2_G_bound) | |
apply (rule set1_F_bound) | |
apply (rule card_order_on_Card_order[THEN conjunct2, OF bd_G_card_order]) | |
apply (rule ordLeq_csum1) | |
apply (rule Card_order_cprod) | |
apply (rule ordLeq_transitive) | |
apply (rule set3_F_bound) | |
apply (rule ordLeq_csum2) | |
apply (rule card_order_on_Card_order[THEN conjunct2, OF bd_F_card_order]) | |
done | |
lemma mapl_FGl_cong: | |
assumes "\<And>z. z \<in> set1_FGl x \<Longrightarrow> l1 z = l1' z" and "\<And>z. z \<in> set2_FGl x \<Longrightarrow> l2 z = l2' z" | |
and "\<And>z. z \<in> set3_FGl x \<Longrightarrow> l3 z = l3' z" | |
shows "mapl_FGl l1 l2 l3 x = mapl_FGl l1' l2' l3' x" | |
unfolding mapl_FGl_def map_FGl_def mapl_G_def[symmetric] mapl_F_def[symmetric] | |
by (auto 0 5 intro: mapl_F_cong mapl_G_cong assms simp add: set1_FGl_def set2_FGl_def set3_FGl_def) | |
lemma rell_FGl_mono_strong: | |
assumes "rell_FGl L1 L2 L3 x y" | |
and "\<And>a b. a \<in> set1_FGl x \<Longrightarrow> b \<in> set1_FGl y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b" | |
and "\<And>a b. a \<in> set2_FGl x \<Longrightarrow> b \<in> set2_FGl y \<Longrightarrow> L2 a b \<Longrightarrow> L2' a b" | |
and "\<And>a b. a \<in> set3_FGl x \<Longrightarrow> b \<in> set3_FGl y \<Longrightarrow> L3 a b \<Longrightarrow> L3' a b" | |
shows "rell_FGl L1' L2' L3' x y" | |
using assms(1) unfolding rell_FGl_def rel_FGl_def rell_G_def[symmetric] rell_F_def[symmetric] | |
by (auto 0 5 intro: rell_F_mono_strong rell_G_mono_strong assms(2-4) | |
simp add: set1_FGl_def set2_FGl_def set3_FGl_def) | |
subsection \<open>Composition in a covariant position\<close> | |
type_synonym | |
('l1, 'co1, 'co2, 'co3, 'co4, 'co5, 'co6, 'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGco = | |
"('l1, 'co1, 'co5, ('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'f1) G, 'co3, 'co6, | |
'contra1, 'contra3, 'contra4, 'f2) F" | |
text \<open>The type variables @{typ 'co1}, @{typ 'co3} and @{typ 'contra1} have each been merged.\<close> | |
definition "rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4 = | |
rel_F L1 Co1 Co5 (rel_G Co1 Co2 Co3 Co4 Contra1 Contra2) Co3 Co6 Contra1 Contra3 Contra4" | |
definition "map_FGco l1 co1 co2 co3 co4 co5 co6 contra1 contra2 contra3 contra4 = | |
map_F l1 co1 co5 (map_G co1 co2 co3 co4 contra1 contra2) co3 co6 contra1 contra3 contra4" | |
lemma rel_FGco_mono: | |
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Co3 \<le> Co3'; Co4 \<le> Co4'; Co5 \<le> Co5'; Co6 \<le> Co6'; | |
Contra1' \<le> Contra1; Contra2' \<le> Contra2; Contra3' \<le> Contra3; Contra4' \<le> Contra4 \<rbrakk> \<Longrightarrow> | |
rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4 \<le> | |
rel_FGco L1' Co1' Co2' Co3' Co4' Co5' Co6' Contra1' Contra2' Contra3' Contra4'" | |
unfolding rel_FGco_def | |
apply (rule rel_F_mono) | |
apply (assumption)+ | |
apply (rule rel_G_mono) | |
apply (assumption)+ | |
done | |
lemma rel_FGco_eq: "rel_FGco (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) = (=)" | |
unfolding rel_FGco_def by (simp add: rel_F_eq rel_G_eq) | |
lemma rel_FGco_conversep: | |
"rel_FGco L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Co3\<inverse>\<inverse> Co4\<inverse>\<inverse> Co5\<inverse>\<inverse> Co6\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> Contra3\<inverse>\<inverse> Contra4\<inverse>\<inverse> = | |
(rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4)\<inverse>\<inverse>" | |
unfolding rel_FGco_def by (simp add: rel_F_conversep rel_G_conversep) | |
lemma map_FGco_id0: "map_FGco id id id id id id id id id id id = id" | |
unfolding map_FGco_def by (simp add: map_F_id0 map_G_id0) | |
lemma map_FGco_comp: "map_FGco l1 co1 co2 co3 co4 co5 co6 contra1 contra2 contra3 contra4 \<circ> | |
map_FGco l1' co1' co2' co3' co4' co5' co6' contra1' contra2' contra3' contra4' = | |
map_FGco (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (co3 \<circ> co3') (co4 \<circ> co4') (co5 \<circ> co5') (co6 \<circ> co6') | |
(contra1' \<circ> contra1) (contra2' \<circ> contra2) (contra3' \<circ> contra3) (contra4' \<circ> contra4)" | |
unfolding map_FGco_def by (simp add: map_F_comp map_G_comp) | |
lemma map_FGco_parametric: | |
"rel_fun (rel_fun L1 L1') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Co3 Co3') (rel_fun (rel_fun Co4 Co4') | |
(rel_fun (rel_fun Co5 Co5') (rel_fun (rel_fun Co6 Co6') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_fun Contra3' Contra3) (rel_fun (rel_fun Contra4' Contra4) | |
(rel_fun (rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4) | |
(rel_FGco L1' Co1' Co2' Co3' Co4' Co5' Co6' Contra1' Contra2' Contra3' Contra4')))))))))))) | |
map_FGco map_FGco" | |
unfolding rel_FGco_def map_FGco_def | |
apply (intro rel_funI) | |
apply (elim map_F_rel_cong map_G_rel_cong) | |
apply (erule (2) rel_funE)+ | |
done | |
definition rel_FGco_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('co5 \<Rightarrow> 'co5' \<Rightarrow> bool) \<Rightarrow> ('co5' \<Rightarrow> 'co5'' \<Rightarrow> bool) \<Rightarrow> | |
('co6 \<Rightarrow> 'co6' \<Rightarrow> bool) \<Rightarrow> ('co6' \<Rightarrow> 'co6'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" where | |
"rel_FGco_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' Co6 Co6' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
(rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGco \<Rightarrow> _) OO | |
rel_FGco L1' Co1' Co2' Co3' Co4' Co5' Co6' Contra1' Contra2' Contra3' Contra4' \<le> | |
rel_FGco (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Co4 OO Co4') (Co5 OO Co5') (Co6 OO Co6') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') (Contra4 OO Contra4'))" | |
definition rel_FGco_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('co5 \<Rightarrow> 'co5' \<Rightarrow> bool) \<Rightarrow> ('co5' \<Rightarrow> 'co5'' \<Rightarrow> bool) \<Rightarrow> | |
('co6 \<Rightarrow> 'co6' \<Rightarrow> bool) \<Rightarrow> ('co6' \<Rightarrow> 'co6'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" where | |
"rel_FGco_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' Co6 Co6' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
rel_FGco (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Co4 OO Co4') (Co5 OO Co5') (Co6 OO Co6') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') (Contra4 OO Contra4') \<le> | |
(rel_FGco L1 Co1 Co2 Co3 Co4 Co5 Co6 Contra1 Contra2 Contra3 Contra4 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGco \<Rightarrow> _) OO | |
rel_FGco L1' Co1' Co2' Co3' Co4' Co5' Co6' Contra1' Contra2' Contra3' Contra4')" | |
text \<open>Sufficient conditions for subdistributivity over relation composition.\<close> | |
lemma rel_FGco_pos_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Co5 :: "'co5 \<Rightarrow> 'co5' \<Rightarrow> bool" and Co5' :: "'co5' \<Rightarrow> 'co5'' \<Rightarrow> bool" | |
and tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'co1 \<times> 'co1' \<times> 'co1'' \<times> 'co5 \<times> 'co5' \<times> 'co5'' \<times> | |
'f2) itself" | |
and tytok_G :: "('co1 \<times> 'co1' \<times> 'co1'' \<times> 'co2 \<times> 'co2' \<times> 'co2'' \<times> 'f1) itself" | |
and tytok_FGco :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
assumes "rel_F_pos_distr_cond | |
(rel_G Co1 Co2 Co3 Co4 Contra1 Contra2 :: (_, _, _, _, _, _, 'f1) G \<Rightarrow> _) | |
(rel_G Co1' Co2' Co3' Co4' Contra1' Contra2') Co3 Co3' Co6 Co6' | |
Contra1 Contra1' Contra3 Contra3' Contra4 Contra4' tytok_F" | |
and "rel_G_pos_distr_cond Co3 Co3' Co4 Co4' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_FGco_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' Co6 Co6' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' tytok_FGco" | |
unfolding rel_FGco_pos_distr_cond_def rel_FGco_def | |
apply (intro allI) | |
apply (rule order_trans) | |
apply (rule rel_F_pos_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule order_refl)+ | |
apply (rule rel_G_pos_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGco_neg_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Co5 :: "'co5 \<Rightarrow> 'co5' \<Rightarrow> bool" and Co5' :: "'co5' \<Rightarrow> 'co5'' \<Rightarrow> bool" | |
and tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'co1 \<times> 'co1' \<times> 'co1'' \<times> 'co5 \<times> 'co5' \<times> 'co5'' \<times> 'f2) itself" | |
and tytok_G :: "('co1 \<times> 'co1' \<times> 'co1'' \<times> 'co2 \<times> 'co2' \<times> 'co2'' \<times> 'f1) itself" | |
and tytok_FGco :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
assumes "rel_F_neg_distr_cond | |
(rel_G Co1 Co2 Co3 Co4 Contra1 Contra2 :: (_, _, _, _, _, _, 'f1) G \<Rightarrow> _) | |
(rel_G Co1' Co2' Co3' Co4' Contra1' Contra2') Co3 Co3' Co6 Co6' | |
Contra1 Contra1' Contra3 Contra3' Contra4 Contra4' tytok_F" | |
and "rel_G_neg_distr_cond Co3 Co3' Co4 Co4' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_FGco_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' Co6 Co6' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' tytok_FGco" | |
unfolding rel_FGco_neg_distr_cond_def rel_FGco_def | |
apply (intro allI) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_F_neg_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule order_refl)+ | |
apply (rule rel_G_neg_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGco_pos_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
shows "rel_FGco_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
apply (rule rel_FGco_pos_distr_imp) | |
apply (simp add: rel_G_eq) | |
apply (rule rel_F_pos_distr_cond_eq rel_G_pos_distr_cond_eq)+ | |
done | |
lemma rel_FGco_neg_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
shows "rel_FGco_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
apply (rule rel_FGco_neg_distr_imp) | |
apply (simp add: rel_G_eq) | |
apply (rule rel_F_neg_distr_cond_eq rel_G_neg_distr_cond_eq)+ | |
done | |
definition "rell_FGco L1 = rel_FGco L1 (=) (=) (=) (=) (=) (=) (=) (=) (=) (=)" | |
definition "mapl_FGco l1 = map_FGco l1 id id id id id id id id id id" | |
type_synonym ('co1, 'co2, 'co3, 'co4, 'co5, 'co6, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGcobd = | |
"(('co1, 'co2, 'co3, 'co4, 'contra1, 'contra2, 'f1) G, | |
'co3, 'co6, 'contra1, 'contra3, 'contra4, 'f2) Fbd" | |
definition set1_FGco :: "('l1, 'co1, 'co2, 'co3, 'co4, 'co5, 'co6, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGco \<Rightarrow> 'l1 set" where | |
"set1_FGco x = set1_F x" | |
definition bd_FGco :: "('co1, 'co2, 'co3, 'co4, 'co5, 'co6, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGcobd rel" where | |
"bd_FGco = bd_F" | |
lemma set1_FGco_map: "set1_FGco \<circ> mapl_FGco l1 = image l1 \<circ> set1_FGco" | |
by (simp add: fun_eq_iff set1_FGco_def mapl_FGco_def map_FGco_def | |
mapl_F_def[symmetric] mapl_G_def[symmetric] mapl_G_id0 | |
set1_F_map[THEN fun_cong, simplified]) | |
lemma bd_FGco_card_order: "card_order bd_FGco" | |
unfolding bd_FGco_def using bd_F_card_order . | |
lemma bd_FGco_cinfinite: "cinfinite bd_FGco" | |
unfolding bd_FGco_def using bd_F_cinfinite . | |
lemma set1_FGco_bound: | |
fixes x :: "(_, 'co1, 'co2, 'co3, 'co4, 'co5, 'co6, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGco" | |
shows "card_of (set1_FGco x) \<le>o (bd_FGco :: ('co1, 'co2, 'co3, 'co4, 'co5, 'co6, | |
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGcobd rel)" | |
unfolding set1_FGco_def bd_FGco_def using set1_F_bound . | |
lemma mapl_FGco_cong: | |
assumes "\<And>z. z \<in> set1_FGco x \<Longrightarrow> l1 z = l1' z" | |
shows "mapl_FGco l1 x = mapl_FGco l1' x" | |
unfolding mapl_FGco_def map_FGco_def mapl_G_def[symmetric] mapl_F_def[symmetric] mapl_G_id0 | |
by (auto 0 3 intro: mapl_F_cong assms simp add: set1_FGco_def) | |
lemma rell_FGco_mono_strong: | |
assumes "rell_FGco L1 x y" | |
and "\<And>a b. a \<in> set1_FGco x \<Longrightarrow> b \<in> set1_FGco y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b" | |
shows "rell_FGco L1' x y" | |
using assms(1) unfolding rell_FGco_def rel_FGco_def rel_G_eq rell_F_def[symmetric] | |
by (auto 0 3 intro: rell_F_mono_strong assms(2) simp add: set1_FGco_def) | |
subsection \<open>Composition in a contravariant position\<close> | |
type_synonym | |
('l1, 'co1, 'co2, 'co3, 'co4, 'co5, 'contra1, | |
'contra2, 'contra3, 'contra4, 'contra5, 'f1, 'f2) FGcontra = | |
"('l1, 'co1, 'co3, 'co1, 'co4, 'co5, ('contra1, 'contra2, 'contra3, 'contra4, 'co1, 'co2, 'f1) G, | |
'contra1, 'contra5, 'f2) F" | |
text \<open>The type variables @{typ 'co1} and @{typ 'contra1} have each been merged.\<close> | |
definition "rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5 = | |
rel_F L1 Co1 Co3 Co1 Co4 Co5 (rel_G Contra1 Contra2 Contra3 Contra4 Co1 Co2) Contra1 Contra5" | |
definition "map_FGcontra l1 co1 co2 co3 co4 co5 contra1 contra2 contra3 contra4 contra5 = | |
map_F l1 co1 co3 co1 co4 co5 (map_G contra1 contra2 contra3 contra4 co1 co2) contra1 contra5" | |
lemma rel_FGcontra_mono: | |
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Co3 \<le> Co3'; Co4 \<le> Co4'; Co5 \<le> Co5'; | |
Contra1' \<le> Contra1; Contra2' \<le> Contra2; Contra3' \<le> Contra3; | |
Contra4' \<le> Contra4; Contra5' \<le> Contra5 \<rbrakk> \<Longrightarrow> | |
rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5 \<le> | |
rel_FGcontra L1' Co1' Co2' Co3' Co4' Co5' Contra1' Contra2' Contra3' Contra4' Contra5'" | |
unfolding rel_FGcontra_def | |
apply (rule rel_F_mono) | |
apply (assumption)+ | |
apply (rule rel_G_mono) | |
apply (assumption)+ | |
done | |
lemma rel_FGcontra_eq: "rel_FGcontra (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) = (=)" | |
unfolding rel_FGcontra_def by (simp add: rel_F_eq rel_G_eq) | |
lemma rel_FGcontra_conversep: | |
"rel_FGcontra L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Co3\<inverse>\<inverse> Co4\<inverse>\<inverse> Co5\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> Contra3\<inverse>\<inverse> Contra4\<inverse>\<inverse> Contra5\<inverse>\<inverse> = | |
(rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5)\<inverse>\<inverse>" | |
unfolding rel_FGcontra_def by (simp add: rel_F_conversep rel_G_conversep) | |
lemma map_FGcontra_id0: "map_FGcontra id id id id id id id id id id id = id" | |
unfolding map_FGcontra_def by (simp add: map_F_id0 map_G_id0) | |
lemma map_FGcontra_comp: | |
"map_FGcontra l1 co1 co2 co3 co4 co5 contra1 contra2 contra3 contra4 contra5 \<circ> | |
map_FGcontra l1' co1' co2' co3' co4' co5' contra1' contra2' contra3' contra4' contra5' = | |
map_FGcontra (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (co3 \<circ> co3') (co4 \<circ> co4') (co5 \<circ> co5') | |
(contra1' \<circ> contra1) (contra2' \<circ> contra2) (contra3' \<circ> contra3) | |
(contra4' \<circ> contra4) (contra5' \<circ> contra5)" | |
unfolding map_FGcontra_def by (simp add: map_F_comp map_G_comp) | |
lemma map_FGcontra_parametric: | |
"rel_fun (rel_fun L1 L1') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Co3 Co3') (rel_fun (rel_fun Co4 Co4') (rel_fun (rel_fun Co5 Co5') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_fun Contra3' Contra3) (rel_fun (rel_fun Contra4' Contra4) | |
(rel_fun (rel_fun Contra5' Contra5) | |
(rel_fun (rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5) | |
(rel_FGcontra L1' Co1' Co2' Co3' Co4' Co5' Contra1' Contra2' Contra3' Contra4' Contra5')))))))))))) | |
map_FGcontra map_FGcontra" | |
unfolding rel_FGcontra_def map_FGcontra_def | |
apply (intro rel_funI) | |
apply (elim map_F_rel_cong map_G_rel_cong) | |
apply (erule (2) rel_funE)+ | |
done | |
definition rel_FGcontra_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('co5 \<Rightarrow> 'co5' \<Rightarrow> bool) \<Rightarrow> ('co5' \<Rightarrow> 'co5'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('contra5 \<Rightarrow> 'contra5' \<Rightarrow> bool) \<Rightarrow> ('contra5' \<Rightarrow> 'contra5'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" where | |
"rel_FGcontra_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' Contra5 Contra5' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
(rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGcontra \<Rightarrow> _) OO | |
rel_FGcontra L1' Co1' Co2' Co3' Co4' Co5' Contra1' Contra2' Contra3' Contra4' Contra5' \<le> | |
rel_FGcontra (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Co4 OO Co4') (Co5 OO Co5') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') | |
(Contra4 OO Contra4') (Contra5 OO Contra5'))" | |
definition rel_FGcontra_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('co4 \<Rightarrow> 'co4' \<Rightarrow> bool) \<Rightarrow> ('co4' \<Rightarrow> 'co4'' \<Rightarrow> bool) \<Rightarrow> | |
('co5 \<Rightarrow> 'co5' \<Rightarrow> bool) \<Rightarrow> ('co5' \<Rightarrow> 'co5'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra4 \<Rightarrow> 'contra4' \<Rightarrow> bool) \<Rightarrow> ('contra4' \<Rightarrow> 'contra4'' \<Rightarrow> bool) \<Rightarrow> | |
('contra5 \<Rightarrow> 'contra5' \<Rightarrow> bool) \<Rightarrow> ('contra5' \<Rightarrow> 'contra5'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself \<Rightarrow> bool" where | |
"rel_FGcontra_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' Contra5 Contra5' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
rel_FGcontra (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') (Co4 OO Co4') (Co5 OO Co5') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') | |
(Contra4 OO Contra4') (Contra5 OO Contra5') \<le> | |
(rel_FGcontra L1 Co1 Co2 Co3 Co4 Co5 Contra1 Contra2 Contra3 Contra4 Contra5 :: | |
(_, _, _, _, _, _, _, _, _, _, _, 'f1, 'f2) FGcontra \<Rightarrow> _) OO | |
rel_FGcontra L1' Co1' Co2' Co3' Co4' Co5' Contra1' Contra2' Contra3' Contra4' Contra5')" | |
text \<open>Sufficient conditions for subdistributivity over relation composition.\<close> | |
lemma rel_FGcontra_pos_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co3 :: "'co3 \<Rightarrow> 'co3' \<Rightarrow> bool" and Co3' :: "'co3' \<Rightarrow> 'co3'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'co1 \<times> 'co1' \<times> 'co1'' \<times> 'co3 \<times> 'co3' \<times> 'co3'' \<times> | |
'f2) itself" | |
and tytok_G :: "('contra1 \<times> 'contra1' \<times> 'contra1'' \<times> 'contra2 \<times> 'contra2' \<times> 'contra2'' \<times> | |
'f1) itself" | |
and tytok_FGcontra :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
assumes "rel_F_pos_distr_cond Co1 Co1' Co4 Co4' Co5 Co5' | |
(rel_G Contra1 Contra2 Contra3 Contra4 Co1 Co2 :: (_, _, _, _, _, _, 'f1) G \<Rightarrow> _) | |
(rel_G Contra1' Contra2' Contra3' Contra4' Co1' Co2') | |
Contra1 Contra1' Contra5 Contra5' tytok_F" | |
and "rel_G_neg_distr_cond Contra3 Contra3' Contra4 Contra4' Co1 Co1' Co2 Co2' tytok_G" | |
shows "rel_FGcontra_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' Contra5 Contra5' | |
tytok_FGcontra" | |
unfolding rel_FGcontra_pos_distr_cond_def rel_FGcontra_def | |
apply (intro allI) | |
apply (rule order_trans) | |
apply (rule rel_F_pos_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule order_refl)+ | |
apply (rule rel_G_neg_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGcontra_neg_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co3 :: "'co3 \<Rightarrow> 'co3' \<Rightarrow> bool" and Co3' :: "'co3' \<Rightarrow> 'co3'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'co1 \<times> 'co1' \<times> 'co1'' \<times> 'co3 \<times> 'co3' \<times> 'co3'' \<times> | |
'f2) itself" | |
and tytok_G :: "('contra1 \<times> 'contra1' \<times> 'contra1'' \<times> 'contra2 \<times> 'contra2' \<times> 'contra2'' \<times> | |
'f1) itself" | |
and tytok_FGcontra :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
assumes "rel_F_neg_distr_cond Co1 Co1' Co4 Co4' Co5 Co5' | |
(rel_G Contra1 Contra2 Contra3 Contra4 Co1 Co2 :: (_, _, _, _, _, _, 'f1) G \<Rightarrow> _) | |
(rel_G Contra1' Contra2' Contra3' Contra4' Co1' Co2') | |
Contra1 Contra1' Contra5 Contra5' tytok_F" | |
and "rel_G_pos_distr_cond Contra3 Contra3' Contra4 Contra4' Co1 Co1' Co2 Co2' tytok_G" | |
shows "rel_FGcontra_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' Co4 Co4' Co5 Co5' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' Contra4 Contra4' Contra5 Contra5' tytok_FGcontra" | |
unfolding rel_FGcontra_neg_distr_cond_def rel_FGcontra_def | |
apply (intro allI) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_F_neg_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (rule order_refl)+ | |
apply (rule rel_G_pos_distr) | |
apply (rule assms(2)) | |
apply (rule order_refl)+ | |
done | |
lemma rel_FGcontra_pos_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
shows "rel_FGcontra_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
apply (rule rel_FGcontra_pos_distr_imp) | |
apply (simp add: rel_G_eq) | |
apply (rule rel_F_pos_distr_cond_eq rel_G_neg_distr_cond_eq)+ | |
done | |
lemma rel_FGcontra_neg_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself" | |
shows "rel_FGcontra_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) | |
(=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
apply (rule rel_FGcontra_neg_distr_imp) | |
apply (simp add: rel_G_eq) | |
apply (rule rel_F_neg_distr_cond_eq rel_G_pos_distr_cond_eq)+ | |
done | |
definition "rell_FGcontra L1 = rel_FGcontra L1 (=) (=) (=) (=) (=) (=) (=) (=) (=) (=)" | |
definition "mapl_FGcontra l1 = map_FGcontra l1 id id id id id id id id id id" | |
type_synonym ('co1, 'co2, 'co3, 'co4, 'co5, 'contra1, 'contra2, 'contra3, 'contra4, 'contra5, | |
'f1, 'f2) FGcontrabd = | |
"('co1, 'co4, 'co5, ('contra1, 'contra2, 'contra3, 'contra4, 'co1, 'co2, 'f1) G, | |
'contra1, 'contra5, 'f2) Fbd" | |
definition set1_FGcontra :: "('l1, 'co1, 'co2, 'co3, 'co4, 'co5, | |
'contra1, 'contra2, 'contra3, 'contra4, 'contra5, 'f1, 'f2) FGcontra \<Rightarrow> 'l1 set" where | |
"set1_FGcontra x = set1_F x" | |
definition bd_FGcontra :: "('co1, 'co2, 'co3, 'co4, 'co5, | |
'contra1, 'contra2, 'contra3, 'contra4, 'contra5, 'f1, 'f2) FGcontrabd rel" where | |
"bd_FGcontra = bd_F" | |
lemma set1_FGcontra_map: "set1_FGcontra \<circ> mapl_FGcontra l1 = image l1 \<circ> set1_FGcontra" | |
by (simp add: fun_eq_iff set1_FGcontra_def mapl_FGcontra_def map_FGcontra_def | |
mapl_F_def[symmetric] mapl_G_def[symmetric] mapl_G_id0 | |
set1_F_map[THEN fun_cong, simplified]) | |
lemma bd_FGcontra_card_order: "card_order bd_FGcontra" | |
unfolding bd_FGcontra_def using bd_F_card_order . | |
lemma bd_FGcontra_cinfinite: "cinfinite bd_FGcontra" | |
unfolding bd_FGcontra_def using bd_F_cinfinite . | |
lemma set1_FGcontra_bound: | |
fixes x :: "(_, 'co1, 'co2, 'co3, 'co4, 'co5, | |
'contra1, 'contra2, 'contra3, 'contra4, 'contra5, 'f1, 'f2) FGcontra" | |
shows "card_of (set1_FGcontra x) \<le>o (bd_FGcontra :: ('co1, 'co2, 'co3, 'co4, 'co5, | |
'contra1, 'contra2, 'contra3, 'contra4, 'contra5, 'f1, 'f2) FGcontrabd rel)" | |
unfolding set1_FGcontra_def bd_FGcontra_def using set1_F_bound . | |
lemma mapl_FGcontra_contrang: | |
assumes "\<And>z. z \<in> set1_FGcontra x \<Longrightarrow> l1 z = l1' z" | |
shows "mapl_FGcontra l1 x = mapl_FGcontra l1' x" | |
unfolding mapl_FGcontra_def map_FGcontra_def mapl_G_def[symmetric] mapl_F_def[symmetric] mapl_G_id0 | |
by (auto 0 3 intro: mapl_F_cong assms simp add: set1_FGcontra_def) | |
lemma rell_FGcontra_mono_strong: | |
assumes "rell_FGcontra L1 x y" | |
and "\<And>a b. a \<in> set1_FGcontra x \<Longrightarrow> b \<in> set1_FGcontra y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b" | |
shows "rell_FGcontra L1' x y" | |
using assms(1) unfolding rell_FGcontra_def rel_FGcontra_def rel_G_eq rell_F_def[symmetric] | |
by (auto 0 3 intro: rell_F_mono_strong assms(2) simp add: set1_FGcontra_def) | |
subsection \<open>Composition in a fixed position\<close> | |
type_synonym ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf = | |
"('l1, 'l2, 'f2, 'co1, 'co2, 'f4, 'contra1, 'contra2, 'f6, ('f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) G) F" | |
text \<open>The type variables @{typ 'f2}, @{typ 'f4} and @{typ 'f6} have each been merged.\<close> | |
definition "rel_FGf L1 L2 Co1 Co2 Contra1 Contra2 = | |
rel_F L1 L2 (=) Co1 Co2 (=) Contra1 Contra2 (=)" | |
definition "map_FGf l1 l2 co1 co2 contra1 contra2 = map_F l1 l2 id co1 co2 id contra1 contra2 id" | |
lemma rel_FGf_mono: | |
"\<lbrakk> L1 \<le> L1'; L2 \<le> L2'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow> | |
rel_FGf L1 L2 Co1 Co2 Contra1 Contra2 \<le> rel_FGf L1' L2' Co1' Co2' Contra1' Contra2'" | |
unfolding rel_FGf_def by (rule rel_F_mono) (auto) | |
lemma rel_FGf_eq: "rel_FGf (=) (=) (=) (=) (=) (=) = (=)" | |
unfolding rel_FGf_def by (simp add: rel_F_eq) | |
lemma rel_FGf_conversep: | |
"rel_FGf L1\<inverse>\<inverse> L2\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_FGf L1 L2 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>" | |
unfolding rel_FGf_def by (simp add: rel_F_conversep[symmetric]) | |
lemma map_FGf_id0: "map_FGf id id id id id id = id" | |
unfolding map_FGf_def by (simp add: map_F_id0) | |
lemma map_FGf_comp: "map_FGf l1 l2 co1 co2 contra1 contra2 \<circ> | |
map_FGf l1' l2' co1' co2' contra1' contra2' = | |
map_FGf (l1 \<circ> l1') (l2 \<circ> l2') (co1 \<circ> co1') (co2 \<circ> co2') (contra1' \<circ> contra1) (contra2' \<circ> contra2)" | |
unfolding map_FGf_def by (simp add: map_F_comp) | |
lemma map_FGf_parametric: | |
"rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_FGf L1 L2 Co1 Co2 Contra1 Contra2) | |
(rel_FGf L1' L2' Co1' Co2' Contra1' Contra2'))))))) | |
map_FGf map_FGf" | |
unfolding rel_FGf_def map_FGf_def | |
apply (intro rel_funI) | |
apply (elim map_F_rel_cong) | |
apply (simp_all) | |
apply (erule (2) rel_funE)+ | |
done | |
definition rel_FGf_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself \<Rightarrow> bool" where | |
"rel_FGf_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool). | |
(rel_FGf L1 L2 Co1 Co2 Contra1 Contra2 :: | |
(_, _, _, _, _, _, 'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf \<Rightarrow> _) OO | |
rel_FGf L1' L2' Co1' Co2' Contra1' Contra2' \<le> | |
rel_FGf (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2'))" | |
definition rel_FGf_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself \<Rightarrow> bool" where | |
"rel_FGf_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool). | |
rel_FGf (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') \<le> | |
(rel_FGf L1 L2 Co1 Co2 Contra1 Contra2 :: | |
(_, _, _, _, _, _,'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf \<Rightarrow> _) OO | |
rel_FGf L1' L2' Co1' Co2' Contra1' Contra2')" | |
text \<open>Sufficient conditions for subdistributivity over relation composition.\<close> | |
lemma rel_FGf_pos_distr_imp: | |
fixes tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f2 \<times> 'f2 \<times> 'f2 \<times> | |
('f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) G) itself" | |
and tytok_FGf :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself" | |
assumes "rel_F_pos_distr_cond Co1 Co1' Co2 Co2' ((=) :: 'f4 \<Rightarrow> _) ((=) :: 'f4 \<Rightarrow> _) | |
Contra1 Contra1' Contra2 Contra2' ((=) :: 'f6 \<Rightarrow> _) ((=) :: 'f6 \<Rightarrow> _) tytok_F" | |
shows "rel_FGf_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_FGf" | |
unfolding rel_FGf_pos_distr_cond_def rel_FGf_def | |
apply (intro allI) | |
apply (rule order_trans) | |
apply (rule rel_F_pos_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (simp_all add: eq_OO) | |
done | |
lemma rel_FGf_neg_distr_imp: | |
fixes tytok_F :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f2 \<times> 'f2 \<times> 'f2 \<times> | |
('f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) G) itself" | |
and tytok_FGf :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself" | |
assumes "rel_F_neg_distr_cond Co1 Co1' Co2 Co2' ((=) :: 'f4 \<Rightarrow> _) ((=) :: 'f4 \<Rightarrow> _) | |
Contra1 Contra1' Contra2 Contra2' ((=) :: 'f6 \<Rightarrow> _) ((=) :: 'f6 \<Rightarrow> _) tytok_F" | |
shows "rel_FGf_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_FGf" | |
unfolding rel_FGf_neg_distr_cond_def rel_FGf_def | |
apply (intro allI) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_F_neg_distr) | |
apply (rule assms(1)) | |
apply (rule rel_F_mono) | |
apply (simp_all add: eq_OO) | |
done | |
lemma rel_FGf_pos_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself" | |
shows "rel_FGf_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_FGf_pos_distr_imp rel_F_pos_distr_cond_eq) | |
lemma rel_FGf_neg_distr_cond_eq: | |
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> | |
'f1 \<times> 'f2 \<times> 'f3 \<times> 'f4 \<times> 'f5 \<times> 'f6 \<times> 'f7) itself" | |
shows "rel_FGf_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_FGf_neg_distr_imp rel_F_neg_distr_cond_eq) | |
definition "rell_FGf L1 L2 = rel_FGf L1 L2 (=) (=) (=) (=)" | |
definition "mapl_FGf l1 l2 = map_FGf l1 l2 id id id id" | |
type_synonym ('co1, 'co2, 'contra1, 'contra2, 'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGfbd = | |
"('co1, 'co2, 'f4, 'contra1, 'contra2, 'f6, ('f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) G) Fbd" | |
definition set1_FGf :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, | |
'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf \<Rightarrow> 'l1 set" where | |
"set1_FGf x = set1_F x" | |
definition set2_FGf :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, | |
'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf \<Rightarrow> 'l2 set" where | |
"set2_FGf x = set2_F x" | |
definition bd_FGf :: "('co1, 'co2, 'contra1, 'contra2, 'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGfbd rel" | |
where "bd_FGf = bd_F" | |
lemma set1_FGf_map: "set1_FGf \<circ> mapl_FGf l1 l2 = image l1 \<circ> set1_FGf" | |
by (simp add: fun_eq_iff set1_FGf_def mapl_FGf_def map_FGf_def mapl_F_def[symmetric] | |
set1_F_map[THEN fun_cong, simplified]) | |
lemma bd_FGf_card_order: "card_order bd_FGf" | |
unfolding bd_FGf_def using bd_F_card_order . | |
lemma bd_FGf_cinfinite: "cinfinite bd_FGf" | |
unfolding bd_FGf_def using bd_F_cinfinite . | |
lemma | |
fixes x :: "(_, _, 'co1, 'co2, 'contra1, 'contra2, 'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGf" | |
shows set1_FGf_bound: "card_of (set1_FGf x) \<le>o (bd_FGf :: ('co1, 'co2, 'contra1, 'contra2, | |
'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGfbd rel)" | |
and set2_FGf_bound: "card_of (set2_FGf x) \<le>o (bd_FGf :: ('co1, 'co2, 'contra1, 'contra2, | |
'f1, 'f2, 'f3, 'f4, 'f5, 'f6, 'f7) FGfbd rel)" | |
unfolding set1_FGf_def set2_FGf_def bd_FGf_def by (rule set1_F_bound set2_F_bound)+ | |
lemma mapl_FGf_cong: | |
assumes "\<And>z. z \<in> set1_FGf x \<Longrightarrow> l1 z = l1' z" and "\<And>z. z \<in> set2_FGf x \<Longrightarrow> l2 z = l2' z" | |
shows "mapl_FGf l1 l2 x = mapl_FGf l1' l2' x" | |
unfolding mapl_FGf_def map_FGf_def mapl_F_def[symmetric] | |
by (auto 0 3 intro: mapl_F_cong assms simp add: set1_FGf_def set2_FGf_def) | |
lemma rell_FGf_mono_strong: | |
assumes "rell_FGf L1 L2 x y" | |
and "\<And>a b. a \<in> set1_FGf x \<Longrightarrow> b \<in> set1_FGf y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b" | |
and "\<And>a b. a \<in> set2_FGf x \<Longrightarrow> b \<in> set2_FGf y \<Longrightarrow> L2 a b \<Longrightarrow> L2' a b" | |
shows "rell_FGf L1' L2' x y" | |
using assms(1) unfolding rell_FGf_def rel_FGf_def rell_F_def[symmetric] | |
by (auto 0 3 intro: rell_F_mono_strong assms(2-3) simp add: set1_FGf_def set2_FGf_def) | |
end | |