Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich | |
Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Axiomatisation\<close> | |
theory Axiomatised_BNF_CC imports | |
Preliminaries | |
"HOL-Library.Rewrite" | |
begin | |
unbundle cardinal_syntax | |
text \<open> | |
This theory axiomatises two \BNFCC{}s, which will be used to demonstrate the closedness of \BNFCC{}s | |
under various operations. | |
\<close> | |
subsection \<open>First abstract \BNFCC{}\<close> | |
subsubsection \<open>Axioms and basic definitions\<close> | |
typedecl ('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F | |
text \<open>@{type F} has each three live, co-, and contravariant parameters, and one fixed parameter.\<close> | |
consts | |
rel_F :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow> ('l2 \<Rightarrow> 'l2' \<Rightarrow> bool) \<Rightarrow> ('l3 \<Rightarrow> 'l3' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<Rightarrow> | |
('l1', 'l2', 'l3', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', 'f) F \<Rightarrow> bool" | |
map_F :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('l2 \<Rightarrow> 'l2') \<Rightarrow> ('l3 \<Rightarrow> 'l3') \<Rightarrow> | |
('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow> ('co3 \<Rightarrow> 'co3') \<Rightarrow> | |
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3) \<Rightarrow> | |
('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<Rightarrow> | |
('l1', 'l2', 'l3', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', 'f) F" | |
axiomatization where | |
rel_F_mono [mono]: | |
"\<And>L1 L1' L2 L2' L3 L3' Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3'. | |
\<lbrakk> L1 \<le> L1'; L2 \<le> L2'; L3 \<le> L3'; Co1 \<le> Co1'; Co2 \<le> Co2'; Co3 \<le> Co3'; | |
Contra1' \<le> Contra1; Contra2' \<le> Contra2; Contra3' \<le> Contra3 \<rbrakk> \<Longrightarrow> | |
rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 \<le> | |
rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3'" and | |
rel_F_eq: "rel_F (=) (=) (=) (=) (=) (=) (=) (=) (=) = (=)" and | |
rel_F_conversep: "\<And>L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3. | |
rel_F L1\<inverse>\<inverse> L2\<inverse>\<inverse> L3\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Co3\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> Contra3\<inverse>\<inverse> = | |
(rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3)\<inverse>\<inverse>" and | |
map_F_id0: "map_F id id id id id id id id id = id" and | |
map_F_comp: "\<And>l1 l1' l2 l2' l3 l3' co1 co1' co2 co2' co3 co3' | |
contra1 contra1' contra2 contra2' contra3 contra3'. | |
map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 \<circ> | |
map_F l1' l2' l3' co1' co2' co3' contra1' contra2' contra3' = | |
map_F (l1 \<circ> l1') (l2 \<circ> l2') (l3 \<circ> l3') (co1 \<circ> co1') (co2 \<circ> co2') (co3 \<circ> co3') | |
(contra1' \<circ> contra1) (contra2' \<circ> contra2) (contra3' \<circ> contra3)" and | |
map_F_parametric: | |
"\<And>L1 L1' L2 L2' L3 L3' Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3'. | |
rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') (rel_fun (rel_fun L3 L3') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') (rel_fun (rel_fun Co3 Co3') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_fun Contra3' Contra3) | |
(rel_fun (rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3) | |
(rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3')))))))))) map_F map_F" | |
definition rel_F_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_F_pos_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool) | |
(L3 :: 'l3 \<Rightarrow> 'l3' \<Rightarrow> bool) (L3' :: 'l3' \<Rightarrow> 'l3'' \<Rightarrow> bool). | |
(rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 :: | |
(_, _, _, _, _, _, _, _, _, 'f) F \<Rightarrow> _) OO | |
rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3' \<le> | |
rel_F (L1 OO L1') (L2 OO L2') (L3 OO L3') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3'))" | |
definition rel_F_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'l3 \<times> 'l3' \<times> 'l3'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool) | |
(L3 :: 'l3 \<Rightarrow> 'l3' \<Rightarrow> bool) (L3' :: 'l3' \<Rightarrow> 'l3'' \<Rightarrow> bool). | |
rel_F (L1 OO L1') (L2 OO L2') (L3 OO L3') (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') \<le> | |
(rel_F L1 L2 L3 Co1 Co2 Co3 Contra1 Contra2 Contra3 :: | |
(_, _, _, _, _, _, _, _, _, 'f) F \<Rightarrow> _) OO | |
rel_F L1' L2' L3' Co1' Co2' Co3' Contra1' Contra2' Contra3')" | |
axiomatization where | |
rel_F_pos_distr_cond_eq: | |
"\<And>tytok. rel_F_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
and | |
rel_F_neg_distr_cond_eq: | |
"\<And>tytok. rel_F_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
text \<open>Restrictions to live variables.\<close> | |
definition "rell_F L1 L2 L3 = rel_F L1 L2 L3 (=) (=) (=) (=) (=) (=)" | |
definition "mapl_F l1 l2 l3 = map_F l1 l2 l3 id id id id id id" | |
typedecl ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd | |
consts | |
set1_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<Rightarrow> 'l1 set" | |
set2_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<Rightarrow> 'l2 set" | |
set3_F :: "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<Rightarrow> 'l3 set" | |
bd_F :: "('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel" | |
axiomatization where | |
set1_F_map: "\<And>l1 l2 l3. set1_F \<circ> mapl_F l1 l2 l3 = image l1 \<circ> set1_F" and | |
set2_F_map: "\<And>l1 l2 l3. set2_F \<circ> mapl_F l1 l2 l3 = image l2 \<circ> set2_F" and | |
set3_F_map: "\<And>l1 l2 l3. set3_F \<circ> mapl_F l1 l2 l3 = image l3 \<circ> set3_F" and | |
bd_F_card_order: "card_order bd_F" and | |
bd_F_cinfinite: "cinfinite bd_F" and | |
set1_F_bound: "\<And>x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. | |
card_of (set1_F x) \<le>o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and | |
set2_F_bound: "\<And>x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. | |
card_of (set2_F x) \<le>o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and | |
set3_F_bound: "\<And>x :: (_, _, _, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F. | |
card_of (set3_F x) \<le>o (bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel)" and | |
mapl_F_cong: "\<And>l1 l1' l2 l2' l3 l3' x. | |
\<lbrakk> \<And>z. z \<in> set1_F x \<Longrightarrow> l1 z = l1' z; \<And>z. z \<in> set2_F x \<Longrightarrow> l2 z = l2' z; | |
\<And>z. z \<in> set3_F x \<Longrightarrow> l3 z = l3' z \<rbrakk> \<Longrightarrow> | |
mapl_F l1 l2 l3 x = mapl_F l1' l2' l3' x" and | |
rell_F_mono_strong: "\<And>L1 L1' L2 L2' L3 L3' x y. | |
\<lbrakk> rell_F L1 L2 L3 x y; | |
\<And>a b. a \<in> set1_F x \<Longrightarrow> b \<in> set1_F y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b; | |
\<And>a b. a \<in> set2_F x \<Longrightarrow> b \<in> set2_F y \<Longrightarrow> L2 a b \<Longrightarrow> L2' a b; | |
\<And>a b. a \<in> set3_F x \<Longrightarrow> b \<in> set3_F y \<Longrightarrow> L3 a b \<Longrightarrow> L3' a b \<rbrakk> \<Longrightarrow> | |
rell_F L1' L2' L3' x y" | |
subsubsection \<open>Derived rules\<close> | |
lemmas rel_F_mono' = rel_F_mono[THEN predicate2D, rotated -1] | |
lemma rel_F_eq_refl: "rel_F (=) (=) (=) (=) (=) (=) (=) (=) (=) x x" | |
by (simp add: rel_F_eq) | |
lemma map_F_id: "map_F id id id id id id id id id x = x" | |
by (simp add: map_F_id0) | |
lemmas map_F_rel_cong = map_F_parametric[unfolded rel_fun_def, rule_format, rotated -1] | |
lemma rell_F_mono: "\<lbrakk> L1 \<le> L1'; L2 \<le> L2'; L3 \<le> L3' \<rbrakk> \<Longrightarrow> rell_F L1 L2 L3 \<le> rell_F L1' L2' L3'" | |
unfolding rell_F_def by (rule rel_F_mono) (auto) | |
lemma mapl_F_id0: "mapl_F id id id = id" | |
unfolding mapl_F_def using map_F_id0 . | |
lemma mapl_F_id: "mapl_F id id id x = x" | |
by (simp add: mapl_F_id0) | |
lemma mapl_F_comp: "mapl_F l1 l2 l3 \<circ> mapl_F l1' l2' l3' = mapl_F (l1 \<circ> l1') (l2 \<circ> l2') (l3 \<circ> l3')" | |
unfolding mapl_F_def | |
apply (rule trans) | |
apply (rule map_F_comp) | |
apply (simp) | |
done | |
lemma map_F_mapl_F: "map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 x = | |
map_F id id id co1 co2 co3 contra1 contra2 contra3 (mapl_F l1 l2 l3 x)" | |
unfolding mapl_F_def map_F_comp[THEN fun_cong, simplified] by simp | |
lemma mapl_F_map_F: "mapl_F l1 l2 l3 (map_F id id id co1 co2 co3 contra1 contra2 contra3 x) = | |
map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3 x" | |
unfolding mapl_F_def map_F_comp[THEN fun_cong, simplified] by simp | |
text \<open>Parametric mappers are unique:\<close> | |
lemma rel_F_Grp_weak: "rel_F (Grp UNIV l1) (Grp UNIV l2) (Grp UNIV l3) | |
(Grp UNIV co1) (Grp UNIV co2) (Grp UNIV co3) | |
(Grp UNIV contra1)\<inverse>\<inverse> (Grp UNIV contra2)\<inverse>\<inverse> (Grp UNIV contra3)\<inverse>\<inverse> = | |
Grp UNIV (map_F l1 l2 l3 co1 co2 co3 contra1 contra2 contra3)" | |
apply (rule antisym) | |
apply (rule predicate2I) | |
apply (rule GrpI) | |
apply (rewrite in "_ = \<hole>" map_F_id[symmetric]) | |
apply (subst rel_F_eq[symmetric]) | |
apply (erule map_F_rel_cong; simp add: Grp_def) | |
apply (rule UNIV_I) | |
apply (rule predicate2I) | |
apply (erule GrpE) | |
apply (drule sym) | |
apply (hypsubst) | |
apply (rewrite in "rel_F _ _ _ _ _ _ _ _ _ \<hole>" map_F_id[symmetric]) | |
apply (rule map_F_rel_cong) | |
apply (rule rel_F_eq_refl) | |
apply (simp_all add: Grp_def) | |
done | |
lemmas | |
rel_F_pos_distr = rel_F_pos_distr_cond_def[THEN iffD1, rule_format] and | |
rel_F_neg_distr = rel_F_neg_distr_cond_def[THEN iffD1, rule_format] | |
lemma rell_F_compp: | |
"rell_F (L1 OO L1') (L2 OO L2') (L3 OO L3') = rell_F L1 L2 L3 OO rell_F L1' L2' L3'" | |
unfolding rell_F_def | |
apply (rule antisym) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_F_neg_distr) | |
apply (rule rel_F_neg_distr_cond_eq) | |
apply (simp add: eq_OO) | |
apply (rule order_trans) | |
apply (rule rel_F_pos_distr) | |
apply (rule rel_F_pos_distr_cond_eq) | |
apply (simp add: eq_OO) | |
done | |
subsubsection \<open>F is a BNF\<close> | |
lemma rell_F_eq_onp: "rell_F (eq_onp P1) (eq_onp P2) (eq_onp P3) = | |
eq_onp (\<lambda>x. (\<forall>z\<in>set1_F x. P1 z) \<and> (\<forall>z\<in>set2_F x. P2 z) \<and> (\<forall>z\<in>set3_F x. P3 z))" | |
(is "?rel_eq_onp = ?eq_onp_pred") | |
proof (intro ext iffI) | |
fix x y | |
assume rel: "?rel_eq_onp x y" | |
from rel have "rell_F (=) (=) (=) x y" | |
unfolding rell_F_def by (auto elim: rel_F_mono' simp add: eq_onp_def) | |
then have "y = x" unfolding rell_F_def rel_F_eq .. | |
let ?true = "\<lambda>_. True" and ?label = "\<lambda>P x. P x" | |
from rel have "rell_F (=) (=) (=) (mapl_F ?true ?true ?true x) | |
(mapl_F (?label P1) (?label P2) (?label P3) x)" | |
unfolding rell_F_def mapl_F_def \<open>y = x\<close> | |
by (auto simp add: eq_onp_def elim: map_F_rel_cong) | |
then have *: "mapl_F ?true ?true ?true x = mapl_F (?label P1) (?label P2) (?label P3) x" | |
unfolding rell_F_def rel_F_eq . | |
note \<open>y = x\<close> | |
moreover { | |
from * | |
have "set1_F (mapl_F ?true ?true ?true x) = set1_F (mapl_F (?label P1) (?label P2) (?label P3) x)" | |
by simp | |
then have "?true ` set1_F x = ?label P1 ` set1_F x" | |
unfolding set1_F_map[THEN fun_cong, simplified] . | |
then have "\<forall>z\<in>set1_F x. P1 z" by auto | |
} | |
moreover { | |
from * | |
have "set2_F (mapl_F ?true ?true ?true x) = set2_F (mapl_F (?label P1) (?label P2) (?label P3) x)" | |
by simp | |
then have "?true ` set2_F x = ?label P2 ` set2_F x" | |
unfolding set2_F_map[THEN fun_cong, simplified] . | |
then have "\<forall>z\<in>set2_F x. P2 z" by auto | |
} | |
moreover { | |
from * | |
have "set3_F (mapl_F ?true ?true ?true x) = set3_F (mapl_F (?label P1) (?label P2) (?label P3) x)" | |
by simp | |
then have "?true ` set3_F x = ?label P3 ` set3_F x" | |
unfolding set3_F_map[THEN fun_cong, simplified] . | |
then have "\<forall>z\<in>set3_F x. P3 z" by auto | |
} | |
ultimately show "?eq_onp_pred x y" by (simp add: eq_onp_def) | |
next | |
fix x y | |
assume eq_onp: "?eq_onp_pred x y" | |
then have "rell_F (=) (=) (=) x y" | |
by (auto simp add: rell_F_def rel_F_eq eq_onp_def) | |
then show "?rel_eq_onp x y" | |
using eq_onp by (auto elim!: rell_F_mono_strong simp add: eq_onp_def) | |
qed | |
lemma rell_F_Grp: "rell_F (Grp A1 f1) (Grp A2 f2) (Grp A3 f3) = | |
Grp {x. set1_F x \<subseteq> A1 \<and> set2_F x \<subseteq> A2 \<and> set3_F x \<subseteq> A3} (mapl_F f1 f2 f3)" | |
proof - | |
have "rell_F (Grp A1 f1) (Grp A2 f2) (Grp A3 f3) = rell_F (eq_onp (\<lambda>x. x \<in> A1) OO Grp UNIV f1) | |
(eq_onp (\<lambda>x. x \<in> A2) OO Grp UNIV f2) (eq_onp (\<lambda>x. x \<in> A3) OO Grp UNIV f3)" | |
by (simp add: eq_onp_compp_Grp) | |
also have "... = rell_F (eq_onp (\<lambda>x. x \<in> A1)) (eq_onp (\<lambda>x. x \<in> A2)) (eq_onp (\<lambda>x. x \<in> A3)) OO | |
rell_F (Grp UNIV f1) (Grp UNIV f2) (Grp UNIV f3)" | |
using rell_F_compp . | |
also have "... = eq_onp (\<lambda>x. set1_F x \<subseteq> A1 \<and> set2_F x \<subseteq> A2 \<and> set3_F x \<subseteq> A3) OO | |
rell_F (Grp UNIV f1) (Grp UNIV f2) (Grp UNIV f3)" | |
by (simp add: rell_F_eq_onp subset_eq) | |
also have "... = eq_onp (\<lambda>x. set1_F x \<subseteq> A1 \<and> set2_F x \<subseteq> A2 \<and> set3_F x \<subseteq> A3) OO | |
Grp UNIV (mapl_F f1 f2 f3)" | |
unfolding rell_F_def mapl_F_def | |
rel_F_Grp_weak[of _ _ _ id id id id id id, folded eq_alt, simplified] | |
.. | |
also have "... = Grp {x. set1_F x \<subseteq> A1 \<and> set2_F x \<subseteq> A2 \<and> set3_F x \<subseteq> A3} (mapl_F f1 f2 f3)" | |
by (simp add: eq_onp_compp_Grp) | |
finally show ?thesis . | |
qed | |
lemma rell_F_compp_Grp: "rell_F L1 L2 L3 = | |
(Grp {x. set1_F x \<subseteq> {(x, y). L1 x y} \<and> set2_F x \<subseteq> {(x, y). L2 x y} \<and> set3_F x \<subseteq> {(x, y). L3 x y}} | |
(mapl_F fst fst fst))\<inverse>\<inverse> OO | |
Grp {x. set1_F x \<subseteq> {(x, y). L1 x y} \<and> set2_F x \<subseteq> {(x, y). L2 x y} \<and> set3_F x \<subseteq> {(x, y). L3 x y}} | |
(mapl_F snd snd snd)" | |
apply (unfold rell_F_Grp[symmetric]) | |
apply (unfold rell_F_def) | |
apply (simp add: rel_F_conversep[symmetric]) | |
apply (fold rell_F_def) | |
apply (simp add: rell_F_compp[symmetric] Grp_fst_snd) | |
done | |
lemma F_in_rell: "rell_F L1 L2 L3 = (\<lambda>x y. \<exists>z. (set1_F z \<subseteq> {(x, y). L1 x y} \<and> | |
set2_F z \<subseteq> {(x, y). L2 x y} \<and> set3_F z \<subseteq> {(x, y). L3 x y}) \<and> | |
mapl_F fst fst fst z = x \<and> mapl_F snd snd snd z = y)" | |
using rell_F_compp_Grp by (simp add: OO_Grp_alt) | |
bnf "('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F" | |
map: mapl_F | |
sets: set1_F set2_F set3_F | |
bd: "bd_F :: ('co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) Fbd rel" | |
rel: rell_F | |
by (fact mapl_F_id0 mapl_F_comp[symmetric] mapl_F_cong set1_F_map set2_F_map set3_F_map | |
bd_F_card_order bd_F_cinfinite set1_F_bound set2_F_bound set3_F_bound | |
rell_F_compp[symmetric, THEN eq_refl] F_in_rell)+ | |
subsubsection \<open>Composition witness\<close> | |
consts | |
rel_F_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow> ('l2 \<Rightarrow> 'l2'' \<Rightarrow> bool) \<Rightarrow> ('l3 \<Rightarrow> 'l3'' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('co3 \<Rightarrow> 'co3' \<Rightarrow> bool) \<Rightarrow> ('co3' \<Rightarrow> 'co3'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra3 \<Rightarrow> 'contra3' \<Rightarrow> bool) \<Rightarrow> ('contra3' \<Rightarrow> 'contra3'' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'l2, 'l3, 'co1, 'co2, 'co3, 'contra1, 'contra2, 'contra3, 'f) F \<times> | |
('l1'', 'l2'', 'l3'', 'co1'', 'co2'', 'co3'', 'contra1'', 'contra2'', 'contra3'', 'f) F \<Rightarrow> | |
('l1 \<times> 'l1'', 'l2 \<times> 'l2'', 'l3 \<times> 'l3'', 'co1', 'co2', 'co3', 'contra1', 'contra2', 'contra3', | |
'f) F" | |
specification (rel_F_witness) | |
rel_F_witness1: "\<And>L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' | |
(tytok :: ('l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'l2 \<times> ('l2 \<times> 'l2'') \<times> 'l2'' \<times> | |
'l3 \<times> ('l3 \<times> 'l3'') \<times> 'l3'' \<times> 'f) itself) | |
(x :: ('l1, 'l2, 'l3, _, _, _, _, _, _, 'f) F) | |
(y :: ('l1'', 'l2'', 'l3'', _, _, _, _, _, _, 'f) F). | |
\<lbrakk> rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' tytok; | |
rel_F L1 L2 L3 (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') x y \<rbrakk> \<Longrightarrow> | |
rel_F (\<lambda>x (x', y). x' = x \<and> L1 x y) (\<lambda>x (x', y). x' = x \<and> L2 x y) | |
(\<lambda>x (x', y). x' = x \<and> L3 x y) Co1 Co2 Co3 Contra1 Contra2 Contra3 x | |
(rel_F_witness L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y))" | |
rel_F_witness2:"\<And>L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' | |
(tytok :: ('l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'l2 \<times> ('l2 \<times> 'l2'') \<times> 'l2'' \<times> | |
'l3 \<times> ('l3 \<times> 'l3'') \<times> 'l3'' \<times> 'f) itself) | |
(x :: ('l1, 'l2, 'l3, _, _, _, _, _, _, 'f) F) | |
(y :: ('l1'', 'l2'', 'l3'', _, _, _, _, _, _, 'f) F). | |
\<lbrakk> rel_F_neg_distr_cond Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' tytok; | |
rel_F L1 L2 L3 (Co1 OO Co1') (Co2 OO Co2') (Co3 OO Co3') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') (Contra3 OO Contra3') x y \<rbrakk> \<Longrightarrow> | |
rel_F (\<lambda>(x, y') y. y' = y \<and> L1 x y) (\<lambda>(x, y') y. y' = y \<and> L2 x y) | |
(\<lambda>(x, y') y. y' = y \<and> L3 x y) Co1' Co2' Co3' Contra1' Contra2' Contra3' | |
(rel_F_witness L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y)) y" | |
apply(rule exI[where x="\<lambda>L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' | |
Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' (x, y). SOME z. | |
rel_F (\<lambda>x (x', y). x' = x \<and> L1 x y) (\<lambda>x (x', y). x' = x \<and> L2 x y) (\<lambda>x (x', y). x' = x \<and> L3 x y) | |
Co1 Co2 Co3 Contra1 Contra2 Contra3 x z \<and> | |
rel_F (\<lambda>(x, y') y. y' = y \<and> L1 x y) (\<lambda>(x, y') y. y' = y \<and> L2 x y) (\<lambda>(x, y') y. y' = y \<and> L3 x y) | |
Co1' Co2' Co3' Contra1' Contra2' Contra3' z y"]) | |
apply(fold all_conj_distrib) | |
apply(rule allI)+ | |
apply(fold imp_conjR) | |
apply(rule impI)+ | |
apply clarify | |
apply(rule someI_ex) | |
subgoal for L1 L2 L3 Co1 Co1' Co2 Co2' Co3 Co3' Contra1 Contra1' Contra2 Contra2' Contra3 Contra3' x y | |
apply(drule rel_F_neg_distr[where | |
?L1.0 = "\<lambda>x (x', y). x' = x \<and> L1 x y" and ?L1'.0 = "\<lambda>(x, y) y'. y = y' \<and> L1 x y'" and | |
?L2.0 = "\<lambda>x (x', y). x' = x \<and> L2 x y" and ?L2'.0 = "\<lambda>(x, y) y'. y = y' \<and> L2 x y'" and | |
?L3.0 = "\<lambda>x (x', y). x' = x \<and> L3 x y" and ?L3'.0 = "\<lambda>(x, y) y'. y = y' \<and> L3 x y'"]) | |
apply(drule predicate2D) | |
apply(erule rel_F_mono[THEN predicate2D, rotated -1]; fastforce) | |
apply(erule relcomppE) | |
apply(rule exI conjI)+ | |
apply assumption+ | |
done | |
done | |
subsection \<open>Second abstract \BNFCC{}\<close> | |
subsubsection \<open>Axioms and basic definitions\<close> | |
typedecl ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G | |
text \<open>@{type G} has each two live, co, and contravariant parameters, and one fixed parameter.\<close> | |
consts | |
rel_G :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow> ('l2 \<Rightarrow> 'l2' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \<Rightarrow> | |
('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f) G \<Rightarrow> bool" | |
map_G :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('l2 \<Rightarrow> 'l2') \<Rightarrow> | |
('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow> | |
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow> | |
('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \<Rightarrow> | |
('l1', 'l2', 'co1', 'co2', 'contra1', 'contra2', 'f) G" | |
axiomatization where | |
rel_G_mono [mono]: | |
"\<And>L1 L1' L2 L2' Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2'. | |
\<lbrakk> L1 \<le> L1'; L2 \<le> L2'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow> | |
rel_G L1 L2 Co1 Co2 Contra1 Contra2 \<le> rel_G L1' L2' Co1' Co2' Contra1' Contra2'" and | |
rel_G_eq: "rel_G (=) (=) (=) (=) (=) (=) = (=)" and | |
rel_G_conversep: "\<And>L1 L2 Co1 Co2 Contra1 Contra2. | |
rel_G L1\<inverse>\<inverse> L2\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_G L1 L2 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>" and | |
map_G_id0: "map_G id id id id id id = id" and | |
map_G_comp: "\<And>l1 l1' l2 l2' co1 co1' co2 co2' contra1 contra1' contra2 contra2'. | |
map_G l1 l2 co1 co2 contra1 contra2 \<circ> map_G l1' l2' co1' co2' contra1' contra2' = | |
map_G (l1 \<circ> l1') (l2 \<circ> l2') (co1 \<circ> co1') (co2 \<circ> co2') | |
(contra1' \<circ> contra1) (contra2' \<circ> contra2)" and | |
map_G_parametric: | |
"\<And>L1 L1' L2 L2' Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2'. | |
rel_fun (rel_fun L1 L1') (rel_fun (rel_fun L2 L2') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_G L1 L2 Co1 Co2 Contra1 Contra2) | |
(rel_G L1' L2' Co1' Co2' Contra1' Contra2'))))))) | |
map_G map_G" | |
definition rel_G_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool). | |
(rel_G L1 L2 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, _, 'f) G \<Rightarrow> _) OO | |
rel_G L1' L2' Co1' Co2' Contra1' Contra2' \<le> | |
rel_G (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2'))" | |
definition rel_G_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'l2 \<times> 'l2' \<times> 'l2'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool) | |
(L2 :: 'l2 \<Rightarrow> 'l2' \<Rightarrow> bool) (L2' :: 'l2' \<Rightarrow> 'l2'' \<Rightarrow> bool). | |
rel_G (L1 OO L1') (L2 OO L2') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') \<le> | |
(rel_G L1 L2 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, _, 'f) G \<Rightarrow> _) OO | |
rel_G L1' L2' Co1' Co2' Contra1' Contra2')" | |
axiomatization where | |
rel_G_pos_distr_cond_eq: | |
"\<And>tytok. rel_G_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" and | |
rel_G_neg_distr_cond_eq: | |
"\<And>tytok. rel_G_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
text \<open>Restrictions to live variables.\<close> | |
definition "rell_G L1 L2 = rel_G L1 L2 (=) (=) (=) (=)" | |
definition "mapl_G l1 l2 = map_G l1 l2 id id id id" | |
typedecl ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd | |
consts | |
set1_G :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \<Rightarrow> 'l1 set" | |
set2_G :: "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \<Rightarrow> 'l2 set" | |
bd_G :: "('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel" | |
wit_G :: "'l2 \<Rightarrow> ('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G" | |
\<comment> \<open>non-emptiness witness for least fixpoint\<close> | |
axiomatization where | |
set1_G_map: "\<And>l1 l2. set1_G \<circ> mapl_G l1 l2 = image l1 \<circ> set1_G" and | |
set2_G_map: "\<And>l1 l2. set2_G \<circ> mapl_G l1 l2 = image l2 \<circ> set2_G" and | |
bd_G_card_order: "card_order bd_G" and | |
bd_G_cinfinite: "cinfinite bd_G" and | |
set1_G_bound: "\<And>x :: (_, _, 'co1, 'co2, 'contra1, 'contra2, 'f) G. | |
card_of (set1_G x) \<le>o (bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel)" and | |
set2_G_bound: "\<And>x :: (_, _, 'co1, 'co2, 'contra1, 'contra2, 'f) G. | |
card_of (set2_G x) \<le>o (bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel)" and | |
mapl_G_cong: "\<And>l1 l1' l2 l2' l3 l3' x. | |
\<lbrakk> \<And>z. z \<in> set1_G x \<Longrightarrow> l1 z = l1' z; \<And>z. z \<in> set2_G x \<Longrightarrow> l2 z = l2' z \<rbrakk> \<Longrightarrow> | |
mapl_G l1 l2 x = mapl_G l1' l2' x" and | |
rell_G_mono_strong: "\<And>L1 L1' L2 L2' x y. | |
\<lbrakk> rell_G L1 L2 x y; | |
\<And>a b. a \<in> set1_G x \<Longrightarrow> b \<in> set1_G y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b; | |
\<And>a b. a \<in> set2_G x \<Longrightarrow> b \<in> set2_G y \<Longrightarrow> L2 a b \<Longrightarrow> L2' a b \<rbrakk> \<Longrightarrow> | |
rell_G L1' L2' x y" and | |
wit_G_set1: "\<And>l2 x. x \<in> set1_G (wit_G l2) \<Longrightarrow> False" and | |
wit_G_set2: "\<And>l2 x. x \<in> set2_G (wit_G l2) \<Longrightarrow> x = l2" | |
subsubsection \<open>Derived rules\<close> | |
lemmas rel_G_mono' = rel_G_mono[THEN predicate2D, rotated -1] | |
lemma rel_G_eq_refl: "rel_G (=) (=) (=) (=) (=) (=) x x" | |
by (simp add: rel_G_eq) | |
lemma map_G_id: "map_G id id id id id id x = x" | |
by (simp add: map_G_id0) | |
lemmas map_G_rel_cong = map_G_parametric[unfolded rel_fun_def, rule_format, rotated -1] | |
lemma rell_G_mono: "\<lbrakk> L1 \<le> L1'; L2 \<le> L2' \<rbrakk> \<Longrightarrow> rell_G L1 L2 \<le> rell_G L1' L2'" | |
unfolding rell_G_def by (rule rel_G_mono) (auto) | |
lemma mapl_G_id0: "mapl_G id id = id" | |
unfolding mapl_G_def using map_G_id0 . | |
lemma mapl_G_id: "mapl_G id id x = x" | |
by (simp add: mapl_G_id0) | |
lemma mapl_G_comp: "mapl_G l1 l2 \<circ> mapl_G l1' l2' = mapl_G (l1 \<circ> l1') (l2 \<circ> l2')" | |
unfolding mapl_G_def | |
apply (rule trans) | |
apply (rule map_G_comp) | |
apply (simp) | |
done | |
lemma map_G_mapl_G: | |
"map_G l1 l2 co1 co2 contra1 contra2 x = map_G id id co1 co2 contra1 contra2 (mapl_G l1 l2 x)" | |
unfolding mapl_G_def map_G_comp[THEN fun_cong, simplified] by simp | |
lemma mapl_G_map_G: | |
"mapl_G l1 l2 (map_G id id co1 co2 contra1 contra2 x) = map_G l1 l2 co1 co2 contra1 contra2 x" | |
unfolding mapl_G_def map_G_comp[THEN fun_cong, simplified] by simp | |
text \<open>Parametric mappers are unique:\<close> | |
lemma rel_G_Grp_weak: "rel_G (Grp UNIV l1) (Grp UNIV l2) (Grp UNIV co1) (Grp UNIV co2) | |
(Grp UNIV contra1)\<inverse>\<inverse> (Grp UNIV contra2)\<inverse>\<inverse> = Grp UNIV (map_G l1 l2 co1 co2 contra1 contra2)" | |
apply (rule antisym) | |
apply (rule predicate2I) | |
apply (rule GrpI) | |
apply (rewrite in "_ = \<hole>" map_G_id[symmetric]) | |
apply (subst rel_G_eq[symmetric]) | |
apply (erule map_G_rel_cong; simp add: Grp_def) | |
apply (rule UNIV_I) | |
apply (rule predicate2I) | |
apply (erule GrpE) | |
apply (drule sym) | |
apply (hypsubst) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole>" map_G_id[symmetric]) | |
apply (rule map_G_rel_cong) | |
apply (rule rel_G_eq_refl) | |
apply (simp_all add: Grp_def) | |
done | |
lemmas | |
rel_G_pos_distr = rel_G_pos_distr_cond_def[THEN iffD1, rule_format] and | |
rel_G_neg_distr = rel_G_neg_distr_cond_def[THEN iffD1, rule_format] | |
lemma rell_G_compp: | |
"rell_G (L1 OO L1') (L2 OO L2') = rell_G L1 L2 OO rell_G L1' L2'" | |
unfolding rell_G_def | |
apply (rule antisym) | |
apply (rule order_trans[rotated]) | |
apply (rule rel_G_neg_distr) | |
apply (rule rel_G_neg_distr_cond_eq) | |
apply (simp add: eq_OO) | |
apply (rule order_trans) | |
apply (rule rel_G_pos_distr) | |
apply (rule rel_G_pos_distr_cond_eq) | |
apply (simp add: eq_OO) | |
done | |
subsubsection \<open>G is a BNF\<close> | |
lemma rell_G_eq_onp: | |
"rell_G (eq_onp P1) (eq_onp P2) = eq_onp (\<lambda>x. (\<forall>z\<in>set1_G x. P1 z) \<and> (\<forall>z\<in>set2_G x. P2 z))" | |
(is "?rel_eq_onp = ?eq_onp_pred") | |
proof (intro ext iffI) | |
fix x y | |
assume rel: "?rel_eq_onp x y" | |
from rel have "rell_G (=) (=) x y" | |
unfolding rell_G_def by (auto elim: rel_G_mono' simp add: eq_onp_def) | |
then have "y = x" unfolding rell_G_def rel_G_eq .. | |
let ?true = "\<lambda>_. True" and ?label = "\<lambda>P x. P x" | |
from rel have "rell_G (=) (=) (mapl_G ?true ?true x) (mapl_G (?label P1) (?label P2) x)" | |
unfolding rell_G_def mapl_G_def \<open>y = x\<close> | |
by (auto simp add: eq_onp_def elim: map_G_rel_cong) | |
then have *: "mapl_G ?true ?true x = mapl_G (?label P1) (?label P2) x" | |
unfolding rell_G_def rel_G_eq . | |
note \<open>y = x\<close> | |
moreover { | |
from * | |
have "set1_G (mapl_G ?true ?true x) = set1_G (mapl_G (?label P1) (?label P2) x)" | |
by simp | |
then have "?true ` set1_G x = ?label P1 ` set1_G x" | |
unfolding set1_G_map[THEN fun_cong, simplified] . | |
then have "\<forall>z\<in>set1_G x. P1 z" by auto | |
} | |
moreover { | |
from * | |
have "set2_G (mapl_G ?true ?true x) = set2_G (mapl_G (?label P1) (?label P2) x)" | |
by simp | |
then have "?true ` set2_G x = ?label P2 ` set2_G x" | |
unfolding set2_G_map[THEN fun_cong, simplified] . | |
then have "\<forall>z\<in>set2_G x. P2 z" by auto | |
} | |
ultimately show "?eq_onp_pred x y" by (simp add: eq_onp_def) | |
next | |
fix x y | |
assume eq_onp: "?eq_onp_pred x y" | |
then have "rell_G (=) (=) x y" | |
by (auto simp add: rell_G_def rel_G_eq eq_onp_def) | |
then show "?rel_eq_onp x y" | |
using eq_onp by (auto elim!: rell_G_mono_strong simp add: eq_onp_def) | |
qed | |
lemma rell_G_Grp: | |
"rell_G (Grp A1 f1) (Grp A2 f2) = Grp {x. set1_G x \<subseteq> A1 \<and> set2_G x \<subseteq> A2} (mapl_G f1 f2)" | |
proof - | |
have "rell_G (Grp A1 f1) (Grp A2 f2) = rell_G (eq_onp (\<lambda>x. x \<in> A1) OO Grp UNIV f1) | |
(eq_onp (\<lambda>x. x \<in> A2) OO Grp UNIV f2)" | |
by (simp add: eq_onp_compp_Grp) | |
also have "... = rell_G (eq_onp (\<lambda>x. x \<in> A1)) (eq_onp (\<lambda>x. x \<in> A2)) OO | |
rell_G (Grp UNIV f1) (Grp UNIV f2)" | |
using rell_G_compp . | |
also have "... = eq_onp (\<lambda>x. set1_G x \<subseteq> A1 \<and> set2_G x \<subseteq> A2) OO | |
rell_G (Grp UNIV f1) (Grp UNIV f2)" | |
by (simp add: rell_G_eq_onp subset_eq) | |
also have "... = eq_onp (\<lambda>x. set1_G x \<subseteq> A1 \<and> set2_G x \<subseteq> A2) OO Grp UNIV (mapl_G f1 f2)" | |
unfolding rell_G_def mapl_G_def | |
rel_G_Grp_weak[of _ _ id id id id, folded eq_alt, simplified] | |
.. | |
also have "... = Grp {x. set1_G x \<subseteq> A1 \<and> set2_G x \<subseteq> A2} (mapl_G f1 f2)" | |
by (simp add: eq_onp_compp_Grp) | |
finally show ?thesis . | |
qed | |
lemma rell_G_compp_Grp: "rell_G L1 L2 = | |
(Grp {x. set1_G x \<subseteq> {(x, y). L1 x y} \<and> set2_G x \<subseteq> {(x, y). L2 x y}} (mapl_G fst fst))\<inverse>\<inverse> OO | |
Grp {x. set1_G x \<subseteq> {(x, y). L1 x y} \<and> set2_G x \<subseteq> {(x, y). L2 x y}} (mapl_G snd snd)" | |
apply (unfold rell_G_Grp[symmetric]) | |
apply (unfold rell_G_def) | |
apply (simp add: rel_G_conversep[symmetric]) | |
apply (fold rell_G_def) | |
apply (simp add: rell_G_compp[symmetric] Grp_fst_snd) | |
done | |
lemma G_in_rell: "rell_G L1 L2 = (\<lambda>x y. \<exists>z. (set1_G z \<subseteq> {(x, y). L1 x y} \<and> | |
set2_G z \<subseteq> {(x, y). L2 x y}) \<and> mapl_G fst fst z = x \<and> mapl_G snd snd z = y)" | |
using rell_G_compp_Grp by (simp add: OO_Grp_alt) | |
bnf "('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G" | |
map: mapl_G | |
sets: set1_G set2_G | |
bd: "bd_G :: ('co1, 'co2, 'contra1, 'contra2, 'f) Gbd rel" | |
wits: wit_G | |
rel: rell_G | |
by (fact mapl_G_id0 mapl_G_comp[symmetric] mapl_G_cong set1_G_map set2_G_map | |
bd_G_card_order bd_G_cinfinite set1_G_bound set2_G_bound rell_G_compp[symmetric, THEN eq_refl] | |
G_in_rell wit_G_set1 wit_G_set2)+ | |
subsubsection \<open>Composition witness\<close> | |
consts | |
rel_G_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow> ('l2 \<Rightarrow> 'l2'' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'l2, 'co1, 'co2, 'contra1, 'contra2, 'f) G \<times> | |
('l1'', 'l2'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) G \<Rightarrow> | |
('l1 \<times> 'l1'', 'l2 \<times> 'l2'', 'co1', 'co2', 'contra1', 'contra2', 'f) G" | |
specification (rel_G_witness) | |
rel_G_witness1: "\<And>L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' | |
(tytok :: ('l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'l2 \<times> ('l2 \<times> 'l2'') \<times> 'l2'' \<times> 'f) itself) | |
(x :: ('l1, 'l2, _, _, _, _, 'f) G) (y :: ('l1'', 'l2'', _, _, _, _, 'f) G). | |
\<lbrakk> rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok; | |
rel_G L1 L2 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y \<rbrakk> \<Longrightarrow> | |
rel_G (\<lambda>x (x', y). x' = x \<and> L1 x y) (\<lambda>x (x', y). x' = x \<and> L2 x y) Co1 Co2 Contra1 Contra2 x | |
(rel_G_witness L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" | |
rel_G_witness2:"\<And>L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' | |
(tytok :: ('l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'l2 \<times> ('l2 \<times> 'l2'') \<times> 'l2'' \<times> 'f) itself) | |
(x :: ('l1, 'l2, _, _, _, _, 'f) G) (y :: ('l1'', 'l2'', _, _, _, _, 'f) G). | |
\<lbrakk> rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok; | |
rel_G L1 L2 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y \<rbrakk> \<Longrightarrow> | |
rel_G (\<lambda>(x, y') y. y' = y \<and> L1 x y) (\<lambda>(x, y') y. y' = y \<and> L2 x y) Co1' Co2' Contra1' Contra2' | |
(rel_G_witness L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y)) y" | |
apply(rule exI[where x="\<lambda>L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y). SOME z. | |
rel_G (\<lambda>x (x', y). x' = x \<and> L1 x y) (\<lambda>x (x', y). x' = x \<and> L2 x y) Co1 Co2 Contra1 Contra2 x z \<and> | |
rel_G (\<lambda>(x, y') y. y' = y \<and> L1 x y) (\<lambda>(x, y') y. y' = y \<and> L2 x y) Co1' Co2' Contra1' Contra2' z y"]) | |
apply(fold all_conj_distrib) | |
apply(rule allI)+ | |
apply(fold imp_conjR) | |
apply(rule impI)+ | |
apply clarify | |
apply(rule someI_ex) | |
subgoal for L1 L2 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y | |
apply(drule rel_G_neg_distr[where | |
?L1.0 = "\<lambda>x (x', y). x' = x \<and> L1 x y" and ?L1'.0 = "\<lambda>(x, y) y'. y = y' \<and> L1 x y'" and | |
?L2.0 = "\<lambda>x (x', y). x' = x \<and> L2 x y" and ?L2'.0 = "\<lambda>(x, y) y'. y = y' \<and> L2 x y'"]) | |
apply(drule predicate2D) | |
apply(erule rel_G_mono[THEN predicate2D, rotated -1]; fastforce) | |
apply(erule relcomppE) | |
apply(rule exI conjI)+ | |
apply assumption+ | |
done | |
done | |
end | |