Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Implementation\<close> | |
theory Affine_Code | |
imports | |
Affine_Approximation | |
Intersection | |
begin | |
text \<open>Implementing partial deviations as sorted lists of coefficients.\<close> | |
subsection \<open>Reverse Sorted, Distinct Association Lists\<close> | |
typedef (overloaded) ('a, 'b) slist = | |
"{xs::('a::linorder \<times> 'b) list. distinct (map fst xs) \<and> sorted (rev (map fst xs))}" | |
by (auto intro!: exI[where x="[]"]) | |
setup_lifting type_definition_slist | |
lift_definition map_of_slist::"(nat, 'a::zero) slist \<Rightarrow> nat \<Rightarrow> 'a option" is map_of . | |
lemma finite_dom_map_of_slist[intro, simp]: "finite (dom (map_of_slist xs))" | |
by transfer (auto simp: finite_dom_map_of) | |
abbreviation "the_default a x \<equiv> (case x of None \<Rightarrow> a | Some b \<Rightarrow> b)" | |
definition "Pdevs_raw xs i = the_default 0 (map_of xs i)" | |
lemma nonzeros_Pdevs_raw_subset: "{i. Pdevs_raw xs i \<noteq> 0} \<subseteq> dom (map_of xs)" | |
unfolding Pdevs_raw_def[abs_def] | |
by transfer (auto simp: Pdevs_raw_def split: option.split_asm) | |
lift_definition Pdevs::"(nat, 'a::zero) slist \<Rightarrow> 'a pdevs" | |
is Pdevs_raw | |
by (rule finite_subset[OF nonzeros_Pdevs_raw_subset]) (simp add: finite_dom_map_of) | |
code_datatype Pdevs | |
subsection \<open>Degree\<close> | |
primrec degree_list::"(nat \<times> 'a::zero) list \<Rightarrow> nat" where | |
"degree_list [] = 0" | |
| "degree_list (x#xs) = (if snd x = 0 then degree_list xs else Suc (fst x))" | |
lift_definition degree_slist::"(nat, 'a::zero) slist \<Rightarrow> nat" is degree_list . | |
lemma degree_list_eq_zeroD: | |
assumes "degree_list xs = 0" | |
shows "the_default 0 (map_of xs i) = 0" | |
using assms | |
by (induct xs) (auto simp: Pdevs_raw_def sorted_append split: if_split_asm) | |
lemma degree_slist_eq_zeroD: "degree_slist xs = 0 \<Longrightarrow> degree (Pdevs xs) = 0" | |
unfolding degree_eq_Suc_max | |
by transfer (auto dest: degree_list_eq_zeroD simp: Pdevs_raw_def) | |
lemma degree_slist_eq_SucD: "degree_slist xs = Suc n \<Longrightarrow> pdevs_apply (Pdevs xs) n \<noteq> 0" | |
proof (transfer, goal_cases) | |
case (1 xs n) | |
thus ?case | |
by (induct xs) | |
(auto simp: Pdevs_raw_def sorted_append map_of_eq_None_iff[symmetric] | |
split: if_split_asm option.split_asm) | |
qed | |
lemma degree_slist_zero: | |
"degree_slist xs = n \<Longrightarrow> n \<le> j \<Longrightarrow> pdevs_apply (Pdevs xs) j = 0" | |
proof (transfer, goal_cases) | |
case (1 xs n j) | |
thus ?case | |
by (induct xs) | |
(auto simp: Pdevs_raw_def sorted_append split: if_split_asm option.split) | |
qed | |
lemma compute_degree[code]: "degree (Pdevs xs) = degree_slist xs" | |
by (cases "degree_slist xs") | |
(auto dest: degree_slist_eq_zeroD degree_slist_eq_SucD intro!: degree_eqI degree_slist_zero) | |
subsection \<open>Auxiliary Definitions\<close> | |
fun binop where | |
"binop f z1 z2 [] [] = []" | |
| "binop f z1 z2 ((i, x)#xs) [] = (i, f x z2) # binop f z1 z2 xs []" | |
| "binop f z1 z2 [] ((i, y)#ys) = (i, f z1 y) # binop f z1 z2 [] ys" | |
| "binop f z1 z2 ((i, x)#xs) ((j, y)#ys) = | |
(if (i = j) then (i, f x y) # binop f z1 z2 xs ys | |
else if (i > j) then (i, f x z2) # binop f z1 z2 xs ((j, y)#ys) | |
else (j, f z1 y) # binop f z1 z2 ((i, x)#xs) ys)" | |
lemma set_binop_elemD1: | |
"(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow> (a \<in> set (map fst xs) \<or> a \<in> set (map fst ys))" | |
by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm) | |
lemma set_binop_elemD2: | |
"(a, b) \<in> set (binop f z1 z2 xs ys) \<Longrightarrow> | |
(\<exists>x\<in>set (map snd xs). b = f x z2) \<or> | |
(\<exists>y\<in>set (map snd ys). b = f z1 y) \<or> | |
(\<exists>x\<in>set (map snd xs). \<exists>y\<in>set (map snd ys). b = f x y)" | |
by (induct f z1 z2 xs ys rule: binop.induct) (auto split: if_split_asm) | |
abbreviation "rsorted\<equiv>\<lambda>x. sorted (rev x)" | |
lemma rsorted_binop: | |
fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list" | |
assumes "rsorted ((map fst xs))" | |
assumes "rsorted ((map fst ys))" | |
shows "rsorted ((map fst (binop f z1 z2 xs ys)))" | |
using assms | |
by (induct f z1 z2 xs ys rule: binop.induct) (force simp: sorted_append dest!: set_binop_elemD1)+ | |
lemma distinct_binop: | |
fixes xs::"('a::linorder * 'b) list" and ys::"('a::linorder * 'c) list" | |
assumes "distinct (map fst xs)" | |
assumes "distinct (map fst ys)" | |
assumes "rsorted ((map fst xs))" | |
assumes "rsorted ((map fst ys))" | |
shows "distinct (map fst (binop f z1 z2 xs ys))" | |
using assms | |
by (induct f z1 z2 xs ys rule: binop.induct) | |
(force dest!: set_binop_elemD1 simp: sorted_append)+ | |
lemma binop_plus: | |
fixes b::"(nat * 'a::euclidean_space) list" | |
shows | |
"(\<Sum>(i, y)\<leftarrow>binop (+) 0 0 b ba. e i *\<^sub>R y) = (\<Sum>(i, y)\<leftarrow>b. e i *\<^sub>R y) + (\<Sum>(i, y)\<leftarrow>ba. e i *\<^sub>R y)" | |
by (induct "(+) ::'a\<Rightarrow>_" "0::'a" "0::'a" b ba rule: binop.induct) | |
(auto simp: algebra_simps) | |
lemma binop_compose: | |
"binop (\<lambda>x y. f (g x y)) z1 z2 xs ys = map (apsnd f) (binop g z1 z2 xs ys)" | |
by (induct "\<lambda>x y. f (g x y)" z1 z2 xs ys rule: binop.induct) auto | |
lemma linear_cmul_left[intro, simp]: "linear ((*) x::real \<Rightarrow> _)" | |
by (auto intro!: linearI simp: algebra_simps) | |
lemma length_merge_sorted_eq: | |
"length (binop f z1 z2 xs ys) = length (binop g y1 y2 xs ys)" | |
by (induction f z1 z2 xs ys rule: binop.induct) auto | |
subsection \<open>Pointswise Addition\<close> | |
lift_definition add_slist::"(nat, 'a::{plus, zero}) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is | |
"\<lambda>xs ys. binop (+) 0 0 xs ys" | |
by (auto simp: intro!: distinct_binop rsorted_binop) | |
lemma map_of_binop[simp]: "rsorted (map fst xs) \<Longrightarrow> rsorted (map fst ys) \<Longrightarrow> | |
distinct (map fst xs) \<Longrightarrow> distinct (map fst ys) \<Longrightarrow> | |
map_of (binop f z1 z2 xs ys) i = | |
(case map_of xs i of | |
Some x \<Rightarrow> Some (f x (case map_of ys i of Some x \<Rightarrow> x | None \<Rightarrow> z2)) | |
| None \<Rightarrow> (case map_of ys i of Some y \<Rightarrow> Some (f z1 y) | None \<Rightarrow> None))" | |
by (induct f z1 z2 xs ys rule: binop.induct) | |
(auto split: option.split option.split_asm simp: sorted_append) | |
lemma pdevs_apply_Pdevs_add_slist[simp]: | |
fixes xs ys::"(nat, 'a::monoid_add) slist" | |
shows "pdevs_apply (Pdevs (add_slist xs ys)) i = | |
pdevs_apply (Pdevs xs) i + pdevs_apply (Pdevs ys) i" | |
by (transfer) (auto simp: Pdevs_raw_def split: option.split) | |
lemma compute_add_pdevs[code]: "add_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (add_slist xs ys)" | |
by (rule pdevs_eqI) simp | |
subsection \<open>prod of pdevs\<close> | |
lift_definition prod_slist::"(nat, 'a::zero) slist \<Rightarrow> (nat, 'b::zero) slist \<Rightarrow> (nat, ('a \<times> 'b)) slist" is | |
"\<lambda>xs ys. binop Pair 0 0 xs ys" | |
by (auto simp: intro!: distinct_binop rsorted_binop) | |
lemma pdevs_apply_Pdevs_prod_slist[simp]: | |
"pdevs_apply (Pdevs (prod_slist xs ys)) i = (pdevs_apply (Pdevs xs) i, pdevs_apply (Pdevs ys) i)" | |
by transfer (auto simp: Pdevs_raw_def zero_prod_def split: option.splits) | |
lemma compute_prod_of_pdevs[code]: "prod_of_pdevs (Pdevs xs) (Pdevs ys) = Pdevs (prod_slist xs ys)" | |
by (rule pdevs_eqI) simp | |
subsection \<open>Set of Coefficients\<close> | |
lift_definition set_slist::"(nat, 'a::real_vector) slist \<Rightarrow> (nat * 'a) set" is set . | |
lemma finite_set_slist[intro, simp]: "finite (set_slist xs)" | |
by transfer simp | |
subsection \<open>Domain\<close> | |
lift_definition list_of_slist::"('a::linorder, 'b::zero) slist \<Rightarrow> ('a * 'b) list" | |
is "\<lambda>xs. filter (\<lambda>x. snd x \<noteq> 0) xs" . | |
lemma compute_pdevs_domain[code]: "pdevs_domain (Pdevs xs) = set (map fst (list_of_slist xs))" | |
unfolding pdevs_domain_def | |
by transfer (force simp: Pdevs_raw_def split: option.split_asm) | |
lemma sort_rev_eq_sort: "distinct xs \<Longrightarrow> sort (rev xs) = sort xs" | |
by (rule sorted_distinct_set_unique) auto | |
lemma compute_list_of_pdevs[code]: "list_of_pdevs (Pdevs xs) = list_of_slist xs" | |
proof - | |
have "list_of_pdevs (Pdevs xs) = | |
map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev (sorted_list_of_set (pdevs_domain (Pdevs xs))))" | |
by (simp add: list_of_pdevs_def) | |
also have "(sorted_list_of_set (pdevs_domain (Pdevs xs))) = rev (map fst (list_of_slist xs))" | |
unfolding compute_pdevs_domain sorted_list_of_set_sort_remdups | |
proof (transfer, goal_cases) | |
case prems: (1 xs) | |
hence distinct: "distinct (map fst [x\<leftarrow>xs . snd x \<noteq> 0])" | |
by (auto simp: filter_map distinct_map intro: subset_inj_on) | |
with prems show ?case | |
using sort_rev_eq_sort[symmetric, OF distinct] | |
by (auto simp: rev_map rev_filter distinct_map distinct_remdups_id | |
intro!: sorted_sort_id sorted_filter) | |
qed | |
also | |
have "map (\<lambda>i. (i, pdevs_apply (Pdevs xs) i)) (rev \<dots>) = list_of_slist xs" | |
proof (transfer, goal_cases) | |
case (1 xs) | |
thus ?case | |
unfolding Pdevs_raw_def o_def rev_rev_ident map_map | |
by (subst map_cong[where g="\<lambda>x. x"]) (auto simp: map_filter_map_filter) | |
qed | |
finally show ?thesis . | |
qed | |
lift_definition slist_of_pdevs::"'a pdevs \<Rightarrow> (nat, 'a::real_vector) slist" is list_of_pdevs | |
by (auto simp: list_of_pdevs_def rev_map rev_filter | |
filter_map o_def distinct_map image_def | |
intro!: distinct_filter sorted_filter[of "\<lambda>x. x", simplified]) | |
subsection \<open>Application\<close> | |
lift_definition slist_apply::"('a::linorder, 'b::zero) slist \<Rightarrow> 'a \<Rightarrow> 'b" is | |
"\<lambda>xs i. the_default 0 (map_of xs i)" . | |
lemma compute_pdevs_apply[code]: "pdevs_apply (Pdevs x) i = slist_apply x i" | |
by transfer (auto simp: Pdevs_raw_def) | |
subsection \<open>Total Deviation\<close> | |
lift_definition tdev_slist::"(nat, 'a::ordered_euclidean_space) slist \<Rightarrow> 'a" is | |
"sum_list o map (abs o snd)" . | |
lemma tdev_slist_sum: "tdev_slist xs = sum (abs \<circ> snd) (set_slist xs)" | |
by transfer (auto simp: distinct_map sum_list_distinct_conv_sum_set[symmetric] o_def) | |
lemma pdevs_apply_set_slist: "x \<in> set_slist xs \<Longrightarrow> snd x = pdevs_apply (Pdevs xs) (fst x)" | |
by transfer (auto simp: Pdevs_raw_def) | |
lemma | |
tdev_list_eq_zeroI: | |
shows "(\<And>i. pdevs_apply (Pdevs xs) i = 0) \<Longrightarrow> tdev_slist xs = 0" | |
unfolding tdev_slist_sum | |
by (auto simp: pdevs_apply_set_slist) | |
lemma inj_on_fst_set_slist: "inj_on fst (set_slist xs)" | |
by transfer (simp add: distinct_map) | |
lemma pdevs_apply_Pdevs_eq_0: | |
"pdevs_apply (Pdevs xs) i = 0 \<longleftrightarrow> ((\<forall>x. (i, x) \<in> set_slist xs \<longrightarrow> x = 0))" | |
by transfer (safe, auto simp: Pdevs_raw_def split: option.split) | |
lemma compute_tdev[code]: "tdev (Pdevs xs) = tdev_slist xs" | |
proof - | |
have "tdev (Pdevs xs) = (\<Sum>i<degree (Pdevs xs). \<bar>pdevs_apply (Pdevs xs) i\<bar>)" | |
by (simp add: tdev_def) | |
also have "\<dots> = | |
(\<Sum>i <degree (Pdevs xs). | |
if pdevs_apply (Pdevs xs) i = 0 then 0 else \<bar>pdevs_apply (Pdevs xs) i\<bar>)" | |
by (auto intro!: sum.cong) | |
also have "\<dots> = | |
(\<Sum>i\<in>{0..<degree (Pdevs xs)} \<inter> {x. pdevs_apply (Pdevs xs) x \<noteq> 0}. | |
\<bar>pdevs_apply (Pdevs xs) i\<bar>)" | |
by (auto simp: sum.If_cases Collect_neg_eq atLeast0LessThan) | |
also have "\<dots> = (\<Sum>x\<in>fst ` set_slist xs. \<bar>pdevs_apply (Pdevs xs) x\<bar>)" | |
by (rule sum.mono_neutral_cong_left) | |
(force simp: pdevs_apply_Pdevs_eq_0 intro!: imageI degree_gt)+ | |
also have "\<dots> = (\<Sum>x\<in>set_slist xs. \<bar>pdevs_apply (Pdevs xs) (fst x)\<bar>)" | |
by (rule sum.reindex_cong[of fst]) (auto simp: inj_on_fst_set_slist) | |
also have "\<dots> = tdev_slist xs" | |
by (simp add: tdev_slist_sum pdevs_apply_set_slist) | |
finally show ?thesis . | |
qed | |
subsection \<open>Minkowski Sum\<close> | |
lemma dropWhile_rsorted_eq_filter: | |
"rsorted (map fst xs) \<Longrightarrow> dropWhile (\<lambda>(i, x). i \<ge> (m::nat)) xs = filter (\<lambda>(i, x). i < m) xs" | |
(is "_ \<Longrightarrow> ?lhs xs = ?rhs xs") | |
proof (induct xs) | |
case (Cons x xs) | |
hence "?rhs (x#xs) = ?lhs (x#xs)" | |
by (auto simp: sorted_append filter_id_conv intro: sym) | |
thus ?case .. | |
qed simp | |
lift_definition msum_slist::"nat \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" | |
is "\<lambda>m xs ys. map (apfst (\<lambda>n. n + m)) ys @ dropWhile (\<lambda>(i, x). i \<ge> m) xs" | |
proof (safe, goal_cases) | |
case (1 n l1 l2) | |
then have "set (dropWhile (\<lambda>(i, x). n \<le> i) l1) \<subseteq> set l1" | |
by (simp add: set_dropWhileD subrelI) | |
with 1 show ?case | |
by (auto simp add: distinct_map add.commute [of _ n] intro!: comp_inj_on intro: subset_inj_on) | |
(simp add: dropWhile_rsorted_eq_filter) | |
next | |
case prems: (2 n l1 l2) | |
hence "sorted (map ((\<lambda>na. na + n) \<circ> fst) (rev l2))" | |
by(simp add: sorted_iff_nth_mono rev_map) | |
with prems show ?case | |
by (auto simp: sorted_append dropWhile_rsorted_eq_filter rev_map rev_filter sorted_filter) | |
qed | |
lemma slist_apply_msum_slist: | |
"slist_apply (msum_slist m xs ys) i = | |
(if i < m then slist_apply xs i else slist_apply ys (i - m))" | |
proof (transfer, goal_cases) | |
case prems: (1 m xs ys i) | |
thus ?case | |
proof (cases "i \<in> dom (map_of (map (\<lambda>(x, y). (x + m, y)) ys))") | |
case False | |
have "\<And>a. i < m \<Longrightarrow> i \<notin> fst ` {x \<in> set xs. case x of (i, x) \<Rightarrow> i < m} \<Longrightarrow> (i, a) \<notin> set xs" | |
"\<And>a. i \<notin> fst ` set xs \<Longrightarrow> (i, a) \<notin> set xs" | |
"\<And>a. m \<le> i \<Longrightarrow> i \<notin> fst ` (\<lambda>(x, y). (x + m, y)) ` set ys \<Longrightarrow> (i - m, a) \<notin> set ys" | |
by force+ | |
thus ?thesis | |
using prems False | |
by (auto simp add: dropWhile_rsorted_eq_filter map_of_eq_None_iff distinct_map_fst_snd_eqD | |
split: option.split dest!: map_of_SomeD) | |
qed (force simp: map_of_eq_None_iff distinct_map_fst_snd_eqD | |
split: option.split | |
dest!: map_of_SomeD) | |
qed | |
lemma pdevs_apply_msum_slist: | |
"pdevs_apply (Pdevs (msum_slist m xs ys)) i = | |
(if i < m then pdevs_apply (Pdevs xs) i else pdevs_apply (Pdevs ys) (i - m))" | |
by (auto simp: compute_pdevs_apply slist_apply_msum_slist) | |
lemma compute_msum_pdevs[code]: "msum_pdevs m (Pdevs xs) (Pdevs ys) = Pdevs (msum_slist m xs ys)" | |
by (rule pdevs_eqI) (auto simp: pdevs_apply_msum_slist pdevs_apply_msum_pdevs) | |
subsection \<open>Unary Operations\<close> | |
lift_definition map_slist::"('a \<Rightarrow> 'b) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'b) slist" is "\<lambda>f. map (apsnd f)" | |
by simp | |
lemma pdevs_apply_map_slist: | |
"f 0 = 0 \<Longrightarrow> pdevs_apply (Pdevs (map_slist f xs)) i = f (pdevs_apply (Pdevs xs) i)" | |
by transfer | |
(force simp: Pdevs_raw_def map_of_eq_None_iff distinct_map_fst_snd_eqD image_def | |
split: option.split dest: distinct_map_fst_snd_eqD) | |
lemma compute_scaleR_pdves[code]: "scaleR_pdevs r (Pdevs xs) = Pdevs (map_slist (\<lambda>x. r *\<^sub>R x) xs)" | |
and compute_pdevs_scaleR[code]: "pdevs_scaleR (Pdevs rs) x = Pdevs (map_slist (\<lambda>r. r *\<^sub>R x) rs)" | |
and compute_uminus_pdevs[code]: "uminus_pdevs (Pdevs xs) = Pdevs (map_slist (\<lambda>x. - x) xs)" | |
and compute_abs_pdevs[code]: "abs_pdevs (Pdevs xs) = Pdevs (map_slist abs xs)" | |
and compute_pdevs_inner[code]: "pdevs_inner (Pdevs xs) b = Pdevs (map_slist (\<lambda>x. x \<bullet> b) xs)" | |
and compute_pdevs_inner2[code]: | |
"pdevs_inner2 (Pdevs xs) b c = Pdevs (map_slist (\<lambda>x. (x \<bullet> b, x \<bullet> c)) xs)" | |
and compute_inner_scaleR_pdevs[code]: | |
"inner_scaleR_pdevs x (Pdevs ys) = Pdevs (map_slist (\<lambda>y. (x \<bullet> y) *\<^sub>R y) ys)" | |
and compute_trunc_pdevs[code]: | |
"trunc_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x) xs)" | |
and compute_trunc_err_pdevs[code]: | |
"trunc_err_pdevs p (Pdevs xs) = Pdevs (map_slist (\<lambda>x. eucl_truncate_down p x - x) xs)" | |
by (auto intro!: pdevs_eqI simp: pdevs_apply_map_slist zero_prod_def abs_pdevs_def) | |
subsection \<open>Filter\<close> | |
lift_definition filter_slist::"(nat \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" | |
is "\<lambda>P xs. filter (\<lambda>(i, x). (P i x)) xs" | |
by (auto simp: o_def filter_map distinct_map rev_map rev_filter sorted_filter | |
intro: subset_inj_on) | |
lemma slist_apply_filter_slist: "slist_apply (filter_slist P xs) i = | |
(if P i (slist_apply xs i) then slist_apply xs i else 0)" | |
by transfer (force simp: Pdevs_raw_def o_def map_of_eq_None_iff distinct_map_fst_snd_eqD | |
dest: map_of_SomeD distinct_map_fst_snd_eqD split: option.split) | |
lemma pdevs_apply_filter_slist: "pdevs_apply (Pdevs (filter_slist P xs)) i = | |
(if P i (pdevs_apply (Pdevs xs) i) then pdevs_apply (Pdevs xs) i else 0)" | |
by (simp add: compute_pdevs_apply slist_apply_filter_slist) | |
lemma compute_filter_pdevs[code]: "filter_pdevs P (Pdevs xs) = Pdevs (filter_slist P xs)" | |
by (auto simp: pdevs_apply_filter_slist intro!: pdevs_eqI) | |
subsection \<open>Constant\<close> | |
lift_definition zero_slist::"(nat, 'a) slist" is "[]" by simp | |
lemma compute_zero_pdevs[code]: "zero_pdevs = Pdevs (zero_slist)" | |
by transfer (auto simp: Pdevs_raw_def) | |
lift_definition One_slist::"(nat, 'a::executable_euclidean_space) slist" | |
is "rev (zip [0..<length (Basis_list::'a list)] (Basis_list::'a list))" | |
by (simp add: zip_rev[symmetric]) | |
lemma | |
map_of_rev_zip_upto_length_eq_nth: | |
assumes "i < length B" "d = length B" | |
shows "(map_of (rev (zip [0..<d] B)) i) = Some (B ! i)" | |
proof - | |
have "length (rev [0..<length B]) = length (rev B)" | |
by simp | |
from map_of_zip_is_Some[OF this, of i] assms | |
obtain y where y: "map_of (zip (rev [0..<length B]) (rev B)) i = Some y" | |
by (auto simp: zip_rev) | |
hence "y = B ! i" | |
by (auto simp: in_set_zip rev_nth) | |
with y show ?thesis | |
by (simp add: zip_rev assms) | |
qed | |
lemma | |
map_of_rev_zip_upto_length_eq_None: | |
assumes "\<not>i < length B" | |
assumes "d = length B" | |
shows "(map_of (rev (zip [0..<d] B)) i) = None" | |
using assms | |
by (auto simp: map_of_eq_None_iff in_set_zip) | |
lemma pdevs_apply_One_slist: | |
"pdevs_apply (Pdevs One_slist) i = | |
(if i < length (Basis_list::'a::executable_euclidean_space list) | |
then (Basis_list::'a list) ! i | |
else 0)" | |
by transfer (auto simp: Pdevs_raw_def map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None | |
in_set_zip split: option.split) | |
lemma compute_One_pdevs[code]: "One_pdevs = Pdevs One_slist" | |
by (rule pdevs_eqI) (simp add: pdevs_apply_One_slist) | |
lift_definition coord_slist::"nat \<Rightarrow> (nat, real) slist" is "\<lambda>i. [(i, 1)]" by simp | |
lemma compute_coord_pdevs[code]: "coord_pdevs i = Pdevs (coord_slist i)" | |
by transfer (auto simp: Pdevs_raw_def) | |
subsection \<open>Update\<close> | |
primrec update_list::"nat \<Rightarrow> 'a \<Rightarrow> (nat * 'a) list \<Rightarrow> (nat * 'a) list" | |
where | |
"update_list n x [] = [(n, x)]" | |
| "update_list n x (y#ys) = | |
(if n > fst y then (n, x)#y#ys | |
else if n = fst y then (n, x)#ys | |
else y#(update_list n x ys))" | |
lemma map_of_update_list[simp]: "map_of (update_list n x ys) = (map_of ys)(n:=Some x)" | |
by (induct ys) auto | |
lemma in_set_update_listD: | |
assumes "y \<in> set (update_list n x ys)" | |
shows "y = (n, x) \<or> (y \<in> set ys)" | |
using assms | |
by (induct ys) (auto split: if_split_asm) | |
lemma in_set_update_listI: | |
"y = (n, x) \<or> (fst y \<noteq> n \<and> y \<in> set ys) \<Longrightarrow> y \<in> set (update_list n x ys)" | |
by (induct ys) (auto split: if_split_asm) | |
lemma in_set_update_list: "(n, x) \<in> set (update_list n x xs)" | |
by (induct xs) simp_all | |
lemma overwrite_update_list: "(a, b) \<in> set xs \<Longrightarrow> (a, b) \<notin> set (update_list n x xs) \<Longrightarrow> a = n" | |
by (induct xs) (auto split: if_split_asm) | |
lemma insert_update_list: | |
"distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow> (a, b) \<in> set (update_list a x xs) \<Longrightarrow> b = x" | |
by (induct xs) (force split: if_split_asm simp: sorted_append)+ | |
lemma set_update_list_eq: "distinct (map fst xs) \<Longrightarrow> rsorted (map fst xs) \<Longrightarrow> | |
set (update_list n x xs) = insert (n, x) (set xs - {x. fst x = n})" | |
by (auto intro!: in_set_update_listI dest: in_set_update_listD simp: insert_update_list) | |
lift_definition update_slist::"nat \<Rightarrow> 'a \<Rightarrow> (nat, 'a) slist \<Rightarrow> (nat, 'a) slist" is update_list | |
proof goal_cases | |
case (1 n a l) | |
thus ?case | |
by (induct l) (force simp: sorted_append distinct_map not_less dest!: in_set_update_listD)+ | |
qed | |
lemma pdevs_apply_update_slist: "pdevs_apply (Pdevs (update_slist n x xs)) i = | |
(if i = n then x else pdevs_apply (Pdevs xs) i)" | |
by transfer (auto simp: Pdevs_raw_def) | |
lemma compute_pdev_upd[code]: "pdev_upd (Pdevs xs) n x = Pdevs (update_slist n x xs)" | |
by (rule pdevs_eqI) (auto simp: pdevs_apply_update_slist) | |
subsection \<open>Approximate Total Deviation\<close> | |
lift_definition fold_slist::"('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> (nat, 'a::zero) slist \<Rightarrow> 'b \<Rightarrow> 'b" | |
is "\<lambda>f xs z. fold (f o snd) (filter (\<lambda>x. snd x \<noteq> 0) xs) z" . | |
lemma Pdevs_raw_Cons: | |
"Pdevs_raw ((a, b) # xs) = (\<lambda>i. if i = a then b else Pdevs_raw xs i)" | |
by (auto simp: Pdevs_raw_def map_of_eq_None_iff | |
dest!: map_of_SomeD | |
split: option.split) | |
lemma zeros_aux: "- (\<lambda>i. if i = a then b else Pdevs_raw xs i) -` {0} \<subseteq> | |
- Pdevs_raw xs -` {0} \<union> {a}" | |
by auto | |
lemma compute_tdev'[code]: | |
"tdev' p (Pdevs xs) = fold_slist (\<lambda>a b. eucl_truncate_up p (\<bar>a\<bar> + b)) xs 0" | |
unfolding tdev'_def sum_list'_def compute_list_of_pdevs | |
by transfer (auto simp: o_def fold_map) | |
subsection \<open>Equality\<close> | |
lemma slist_apply_list_of_slist_eq: "slist_apply a i = the_default 0 (map_of (list_of_slist a) i)" | |
by (transfer) | |
(force split: option.split simp: map_of_eq_None_iff distinct_map_fst_snd_eqD | |
dest!: map_of_SomeD) | |
lemma compute_equal_pdevs[code]: | |
"equal_class.equal (Pdevs a) (Pdevs b) \<longleftrightarrow> (list_of_slist a) = (list_of_slist b)" | |
by (auto intro!: pdevs_eqI simp: equal_pdevs_def compute_pdevs_apply slist_apply_list_of_slist_eq | |
compute_list_of_pdevs[symmetric]) | |
subsection \<open>From List of Generators\<close> | |
lift_definition slist_of_list::"'a::zero list \<Rightarrow> (nat, 'a) slist" | |
is "\<lambda>xs. rev (zip [0..<length xs] xs)" | |
by (auto simp: rev_map[symmetric] ) | |
lemma slist_apply_slist_of_list: | |
"slist_apply (slist_of_list xs) i = (if i < length xs then xs ! i else 0)" | |
by transfer (auto simp: in_set_zip map_of_rev_zip_upto_length_eq_nth map_of_rev_zip_upto_length_eq_None) | |
lemma compute_pdevs_of_list[code]: "pdevs_of_list xs = Pdevs (slist_of_list xs)" | |
by (rule pdevs_eqI) | |
(auto simp: compute_pdevs_apply slist_apply_slist_of_list pdevs_apply_pdevs_of_list) | |
text \<open>abstraction function which can be used in code equations\<close> | |
lift_definition abs_slist_if::"('a::linorder\<times>'b) list \<Rightarrow> ('a, 'b) slist" | |
is "\<lambda>list. if distinct (map fst list) \<and> rsorted (map fst list) then list else []" | |
by auto | |
definition "slist = Abs_slist" | |
lemma [code_post]: "Abs_slist = slist" | |
by (simp add: slist_def) | |
lemma [code]: "slist = (\<lambda>xs. | |
(if distinct (map fst xs) \<and> rsorted (map fst xs) then abs_slist_if xs else Code.abort (STR '''') (\<lambda>_. slist xs)))" | |
by (auto simp add: slist_def abs_slist_if.abs_eq) | |
abbreviation "pdevs \<equiv> (\<lambda>x. Pdevs (slist x))" | |
lift_definition nlex_slist::"(nat, point) slist \<Rightarrow> (nat, point) slist" is | |
"map (\<lambda>(i, x). (i, if lex 0 x then - x else x))" | |
by (auto simp: o_def split_beta') | |
lemma Pdevs_raw_map: "f 0 = 0 \<Longrightarrow> Pdevs_raw (map (\<lambda>(i, x). (i, f x)) xs) i = f (Pdevs_raw xs i)" | |
by (auto simp: Pdevs_raw_def map_of_map split: option.split) | |
lemma compute_nlex_pdevs[code]: "nlex_pdevs (Pdevs x) = Pdevs (nlex_slist x)" | |
by transfer (auto simp: Pdevs_raw_map) | |
end | |