Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Loop_Freedom.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "Routing graphs and loop freedom" | |
theory Loop_Freedom | |
imports Aodv_Predicates Fresher | |
begin | |
text \<open>Define the central theorem that relates an invariant over network states to the absence | |
of loops in the associate routing graph.\<close> | |
definition | |
rt_graph :: "(ip \<Rightarrow> state) \<Rightarrow> ip \<Rightarrow> ip rel" | |
where | |
"rt_graph \<sigma> = (\<lambda>dip. | |
{(ip, ip') | ip ip' dsn dsk hops pre. | |
ip \<noteq> dip \<and> rt (\<sigma> ip) dip = Some (dsn, dsk, val, hops, ip', pre)})" | |
text \<open>Given the state of a network @{term \<sigma>}, a routing graph for a given destination | |
ip address @{term dip} abstracts the details of routing tables into nodes | |
(ip addresses) and vertices (valid routes between ip addresses).\<close> | |
lemma rt_graphE [elim]: | |
fixes n dip ip ip' | |
assumes "(ip, ip') \<in> rt_graph \<sigma> dip" | |
shows "ip \<noteq> dip \<and> (\<exists>r. rt (\<sigma> ip) = r | |
\<and> (\<exists>dsn dsk hops pre. r dip = Some (dsn, dsk, val, hops, ip', pre)))" | |
using assms unfolding rt_graph_def by auto | |
lemma rt_graph_vD [dest]: | |
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))" | |
unfolding rt_graph_def vD_def by auto | |
lemma rt_graph_vD_trans [dest]: | |
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> dip \<in> vD(rt (\<sigma> ip))" | |
by (erule converse_tranclE) auto | |
lemma rt_graph_not_dip [dest]: | |
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip \<noteq> dip" | |
unfolding rt_graph_def by auto | |
lemma rt_graph_not_dip_trans [dest]: | |
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+ \<Longrightarrow> ip \<noteq> dip" | |
by (erule converse_tranclE) auto | |
text "NB: the property below cannot be lifted to the transitive closure" | |
lemma rt_graph_nhip_is_nhop [dest]: | |
"\<And>ip ip' \<sigma> dip. (ip, ip') \<in> rt_graph \<sigma> dip \<Longrightarrow> ip' = the (nhop (rt (\<sigma> ip)) dip)" | |
unfolding rt_graph_def by auto | |
theorem inv_to_loop_freedom: | |
assumes "\<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip))" | |
shows "\<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+)" | |
using assms proof (intro allI) | |
fix \<sigma> :: "ip \<Rightarrow> state" and dip | |
assume inv: "\<forall>ip dip. | |
let nhip = the (nhop (rt (\<sigma> ip)) dip) | |
in dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip)) \<and> | |
nhip \<noteq> dip \<longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" | |
{ fix ip ip' | |
assume "(ip, ip') \<in> (rt_graph \<sigma> dip)\<^sup>+" | |
and "dip \<in> vD(rt (\<sigma> ip'))" | |
and "ip' \<noteq> dip" | |
hence "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip')" | |
proof induction | |
fix nhip | |
assume "(ip, nhip) \<in> rt_graph \<sigma> dip" | |
and "dip \<in> vD(rt (\<sigma> nhip))" | |
and "nhip \<noteq> dip" | |
from \<open>(ip, nhip) \<in> rt_graph \<sigma> dip\<close> have "dip \<in> vD(rt (\<sigma> ip))" | |
and "nhip = the (nhop (rt (\<sigma> ip)) dip)" | |
by auto | |
from \<open>dip \<in> vD(rt (\<sigma> ip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip))\<close> | |
have "dip \<in> vD(rt (\<sigma> ip)) \<inter> vD(rt (\<sigma> nhip))" .. | |
with \<open>nhip = the (nhop (rt (\<sigma> ip)) dip)\<close> | |
and \<open>nhip \<noteq> dip\<close> | |
and inv | |
show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" | |
by (clarsimp simp: Let_def) | |
next | |
fix nhip nhip' | |
assume "(ip, nhip) \<in> (rt_graph \<sigma> dip)\<^sup>+" | |
and "(nhip, nhip') \<in> rt_graph \<sigma> dip" | |
and IH: "\<lbrakk> dip \<in> vD(rt (\<sigma> nhip)); nhip \<noteq> dip \<rbrakk> \<Longrightarrow> rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" | |
and "dip \<in> vD(rt (\<sigma> nhip'))" | |
and "nhip' \<noteq> dip" | |
from \<open>(nhip, nhip') \<in> rt_graph \<sigma> dip\<close> have 1: "dip \<in> vD(rt (\<sigma> nhip))" | |
and 2: "nhip \<noteq> dip" | |
and "nhip' = the (nhop (rt (\<sigma> nhip)) dip)" | |
by auto | |
from 1 2 have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip)" by (rule IH) | |
also have "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')" | |
proof - | |
from \<open>dip \<in> vD(rt (\<sigma> nhip))\<close> and \<open>dip \<in> vD(rt (\<sigma> nhip'))\<close> | |
have "dip \<in> vD(rt (\<sigma> nhip)) \<inter> vD(rt (\<sigma> nhip'))" .. | |
with \<open>nhip' \<noteq> dip\<close> | |
and \<open>nhip' = the (nhop (rt (\<sigma> nhip)) dip)\<close> | |
and inv | |
show "rt (\<sigma> nhip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')" | |
by (clarsimp simp: Let_def) | |
qed | |
finally show "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> nhip')" . | |
qed } note fresher = this | |
show "irrefl ((rt_graph \<sigma> dip)\<^sup>+)" | |
unfolding irrefl_def proof (intro allI notI) | |
fix ip | |
assume "(ip, ip) \<in> (rt_graph \<sigma> dip)\<^sup>+" | |
moreover then have "dip \<in> vD(rt (\<sigma> ip))" | |
and "ip \<noteq> dip" | |
by auto | |
ultimately have "rt (\<sigma> ip) \<sqsubset>\<^bsub>dip\<^esub> rt (\<sigma> ip)" by (rule fresher) | |
thus False by simp | |
qed | |
qed | |
end | |