Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
:: On the Decomposition of the States of SCM | |
:: by Yasushi Tanaka | |
environ | |
vocabularies NUMBERS, AMI_3, SUBSET_1, AMI_2, AMI_1, STRUCT_0, XBOOLE_0, | |
FSM_1, RELAT_1, FUNCT_1, TARSKI, FINSET_1, CARD_1, XXREAL_0, FINSEQ_1, | |
GRAPHSP, ARYTM_3, ARYTM_1, INT_1, FUNCT_4, FUNCOP_1, CIRCUIT2, PARTFUN1, | |
EXTPRO_1, RECDEF_2, CAT_1, AMISTD_5, COMPOS_1, NAT_1; | |
notations TARSKI, XBOOLE_0, XTUPLE_0, SUBSET_1, ORDINAL1, CARD_1, XCMPLX_0, | |
DOMAIN_1, RELAT_1, FUNCT_1, FUNCOP_1, PARTFUN1, FUNCT_4, NUMBERS, INT_1, | |
NAT_1, RECDEF_2, STRUCT_0, FINSET_1, FINSEQ_1, MEMSTR_0, COMPOS_0, | |
SCM_INST, COMPOS_1, EXTPRO_1, AMI_3, XXREAL_0, AMISTD_5; | |
constructors DOMAIN_1, FINSEQ_4, AMI_3, PRE_POLY, AMISTD_5, FUNCT_7, RELSET_1; | |
registrations XBOOLE_0, SETFAM_1, RELAT_1, FUNCT_1, ORDINAL1, XREAL_0, INT_1, | |
AMI_3, FINSET_1, CARD_1, COMPOS_1, EXTPRO_1, FUNCT_4, FUNCOP_1, MEMSTR_0, | |
COMPOS_0, XTUPLE_0, FACIRC_1; | |
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; | |
definitions EXTPRO_1, FUNCT_1, AMISTD_5; | |
equalities EXTPRO_1, AMI_3, FUNCOP_1, AMI_2, MEMSTR_0, SCM_INST; | |
theorems AMI_3, GRFUNC_1, TARSKI, FUNCOP_1, FUNCT_4, MEMSTR_0, FUNCT_1, | |
ZFMISC_1, ENUMSET1, RELAT_1, XBOOLE_0, XBOOLE_1, PBOOLE, PARTFUN1, | |
EXTPRO_1, AMISTD_5, AMI_2, COMPOS_1; | |
begin | |
reserve x,y for set; | |
theorem Th1: | |
for dl being Data-Location ex i being Nat st dl = dl.i | |
proof | |
let dl be Data-Location; | |
dl in Data-Locations SCM by AMI_2:def 16,AMI_3:27; | |
then consider x,y being object such that | |
A1: x in {1} and | |
A2: y in NAT and | |
A3: dl = [x,y] by AMI_3:27,ZFMISC_1:84; | |
reconsider k = y as Nat by A2; | |
take k; | |
thus thesis by A1,A3,TARSKI:def 1; | |
end; | |
theorem Th2: | |
for dl being Data-Location holds dl <> IC SCM | |
by Th1,AMI_3:13; | |
theorem | |
for il being Nat, dl being Data-Location | |
holds il <> dl | |
proof | |
let il be Nat, dl be Data-Location; | |
ex j being Nat st dl = dl.j by Th1; | |
hence thesis; | |
end; | |
reserve i, j, k for Nat; | |
theorem | |
for s being State of SCM, d being Data-Location | |
holds d in dom s | |
proof | |
let s be State of SCM, d be Data-Location; | |
A1: dom s = the carrier of SCM by PARTFUN1:def 2; | |
thus d in dom s by A1; | |
end; | |
registration | |
cluster Data-Locations SCM -> infinite; | |
coherence by AMI_3:27; | |
end; | |
reserve I,J,K for Element of Segm 9, | |
a,a1 for Nat, | |
b,b1,c for Element of Data-Locations SCM; | |
Lm1: | |
b is Data-Location | |
proof | |
b in Data-Locations SCM; | |
then reconsider b as Object of SCM; | |
b is Data-Location by AMI_2:def 16,AMI_3:27; | |
hence thesis; | |
end; | |
theorem | |
for l being Instruction of SCM holds InsCode(l) <= 8 | |
proof | |
let l be Instruction of SCM; | |
l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } | |
or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then | |
A1: l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
or l in { [K,<*a1*>,<*b1*>] | |
: K in { 7,8 } } or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by | |
XBOOLE_0:def 3; | |
per cases by A1,XBOOLE_0:def 3; | |
suppose | |
l in { [SCM-Halt,{},{}] }; | |
then l = [SCM-Halt,{},{}] by TARSKI:def 1; | |
then l`1_3 = 0; | |
hence thesis; | |
end; | |
suppose | |
l in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st l = [J,<*a*>,{}] & J = 6; | |
then l`1_3 = 6; | |
hence thesis; | |
end; | |
suppose | |
l in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then ex K,a1,b1 st l = [K,<*a1*>,<*b1*>] & K in { 7,8 }; | |
then l`1_3 in { 7,8 }; | |
then l`1_3 = 7 or l`1_3 = 8 by TARSKI:def 2; | |
hence thesis; | |
end; | |
suppose | |
l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; | |
then ex I,b,c st l = [I,{},<*b,c*>] & I in { 1,2,3,4,5}; | |
then l`1_3 in { 1,2,3,4,5}; | |
then l`1_3 = 1 or l`1_3 = 2 or l`1_3 = 3 or l`1_3 = 4 or l`1_3 = 5 | |
by ENUMSET1:def 3; | |
hence thesis; | |
end; | |
end; | |
reserve a, b for Data-Location, | |
loc for Nat; | |
reserve I,J,K for Element of Segm 9, | |
a,a1 for Nat, | |
b,b1,c for Element of Data-Locations SCM, | |
da,db for Data-Location; | |
::$CT | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 0 holds ins = halt SCM | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 0; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
then InsCode ins = 6; | |
hence contradiction by A1; | |
end; | |
now | |
assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; | |
then ex I,b,c st ins = [I,{},<*b,c*>] & I in { 1,2,3,4,5}; | |
then InsCode ins in { 1,2,3,4,5}; | |
hence contradiction by A1,ENUMSET1:def 3; | |
end; | |
then | |
A3: ins in { [SCM-Halt,{},{}] } | |
\/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : | |
K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; | |
now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then ex K,a1,b1 st ins = [K,<*a1*>,<*b1*>] & K in { 7,8 }; | |
then InsCode ins in {7,8}; | |
hence contradiction by A1, TARSKI:def 2; | |
end; | |
then ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
by A3,XBOOLE_0:def 3; | |
then ins in {[SCM-Halt,{},{}]} by A2,XBOOLE_0:def 3; | |
then ins = [SCM-Halt,{},{}] by TARSKI:def 1; | |
hence thesis by AMI_3:26; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 1 holds ex da, | |
db st ins = da:=db | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 1; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
A3: now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A4: ins = [K,<*a1*>,<*b1*>] and | |
A5: K in { 7,8 }; | |
InsCode ins = K by A4; | |
hence contradiction by A1,A5,TARSKI:def 2; | |
end; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then | |
not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; | |
then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then consider I,b,c such that | |
A6: ins = [I,{},<*b,c*>] and | |
I in { 1,2,3,4,5}; | |
reconsider da = b ,db = c as Data-Location by Lm1; | |
take da,db; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 2 holds ex da, | |
db st ins = AddTo(da,db) | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 2; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
A3: now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A4: ins = [K,<*a1*>,<*b1*>] and | |
A5: K in { 7,8 }; | |
InsCode ins = K by A4; | |
hence contradiction by A1,A5,TARSKI:def 2; | |
end; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then | |
not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; | |
then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then consider I,b,c such that | |
A6: ins = [I,{},<*b,c*>] and | |
I in { 1,2,3,4,5}; | |
reconsider da = b ,db = c as Data-Location by Lm1; | |
take da,db; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 3 holds ex da, | |
db st ins = SubFrom(da,db) | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 3; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
A3: now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A4: ins = [K,<*a1*>,<*b1*>] and | |
A5: K in { 7,8 }; | |
InsCode ins = K by A4; | |
hence contradiction by A1,A5,TARSKI:def 2; | |
end; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then | |
not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; | |
then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then consider I,b,c such that | |
A6: ins = [I,{},<*b,c*>] and | |
I in { 1,2,3,4,5}; | |
reconsider da = b ,db = c as Data-Location by Lm1; | |
take da,db; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 4 holds ex da, | |
db st ins = MultBy(da,db) | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 4; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
A3: now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A4: ins = [K,<*a1*>,<*b1*>] and | |
A5: K in { 7,8 }; | |
InsCode ins = K by A4; | |
hence contradiction by A1,A5,TARSKI:def 2; | |
end; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then | |
not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; | |
then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then consider I,b,c such that | |
A6: ins = [I,{},<*b,c*>] and | |
I in { 1,2,3,4,5}; | |
reconsider da = b ,db = c as Data-Location by Lm1; | |
take da,db; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 5 holds ex da, | |
db st ins = Divide(da,db) | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 5; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
A3: now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A4: ins = [K,<*a1*>,<*b1*>] and | |
A5: K in { 7,8 }; | |
InsCode ins = K by A4; | |
hence contradiction by A1,A5,TARSKI:def 2; | |
end; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then | |
not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; | |
then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } | |
by AMI_3:27,XBOOLE_0:def 3; | |
then consider I,b,c such that | |
A6: ins = [I,{},<*b,c*>] and | |
I in { 1,2,3,4,5}; | |
reconsider da = b ,db = c as Data-Location by Lm1; | |
take da,db; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 6 holds ex loc | |
st ins = SCM-goto loc | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 6; | |
now | |
assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; | |
then consider I,b,c such that | |
A2: ins = [I,{},<*b,c*>] and | |
A3: I in { 1,2,3,4,5}; | |
InsCode ins = I by A2; | |
hence contradiction by A1,A3,ENUMSET1:def 3; | |
end; | |
then | |
A4: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : | |
K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; | |
now | |
assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; | |
then consider K,a1,b1 such that | |
A5: ins = [K,<*a1*>,<*b1*>] and | |
A6: K in { 7,8 }; | |
InsCode ins = K by A5; | |
hence contradiction by A1,A6,TARSKI:def 2; | |
end; | |
then | |
A7: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
by A4,XBOOLE_0:def 3; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then ins in { [J,<*a*>,{}] : J = 6 } by A7,XBOOLE_0:def 3; | |
then consider J,a such that | |
A8: ins = [J,<*a*>,{}] & J = 6; | |
reconsider loc = a as Nat; | |
take loc; | |
thus thesis by A8; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 7 holds ex loc | |
,da st ins = da=0_goto loc | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 7; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
now | |
assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; | |
then consider I,b,c such that | |
A3: ins = [I,{},<*b,c*>] and | |
A4: I in { 1,2,3,4,5}; | |
InsCode ins = I by A3; | |
hence contradiction by A1,A4,ENUMSET1:def 3; | |
end; | |
then | |
A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : | |
K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3; | |
then consider K,a1,b1 such that | |
A6: ins = [K,<*a1*>,<*b1*>] and | |
K in { 7,8 }; | |
reconsider da = b1 as Data-Location by Lm1; | |
reconsider loc = a1 as Nat; | |
take loc,da; | |
thus thesis by A1,A6; | |
end; | |
theorem | |
for ins being Instruction of SCM st InsCode ins = 8 holds ex loc | |
,da st ins = da>0_goto loc | |
proof | |
let ins be Instruction of SCM such that | |
A1: InsCode ins = 8; | |
A2: now | |
assume ins in { [J,<*a*>,{}] : J = 6 }; | |
then ex J,a st ins = [J,<*a*>,{}] & J = 6; | |
hence contradiction by A1; | |
end; | |
now | |
assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; | |
then consider I,b,c such that | |
A3: ins = [I,{},<*b,c*>] and | |
A4: I in { 1,2,3,4,5}; | |
InsCode ins = I by A3; | |
hence contradiction by A1,A4,ENUMSET1:def 3; | |
end; | |
then | |
A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } | |
\/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; | |
InsCode halt SCM = 0 by COMPOS_1:70; | |
then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; | |
then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, | |
XBOOLE_0:def 3; | |
then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3; | |
then consider K,a1,b1 such that | |
A6: ins = [K,<*a1*>,<*b1*>] and | |
K in { 7,8 }; | |
reconsider da = b1 as Data-Location by Lm1; | |
reconsider loc = a1 as Nat; | |
take loc,da; | |
thus thesis by A1,A6; | |
end; | |
begin :: Finite partial states of SCM | |
theorem | |
for s being State of SCM, iloc being Nat, a | |
being Data-Location holds s.a = (s +* Start-At(iloc,SCM)).a | |
proof | |
let s be State of SCM, iloc be Nat, a be | |
Data-Location; | |
a in the carrier of SCM; | |
then a in dom s by PARTFUN1:def 2; | |
then | |
A1: dom (Start-At(iloc,SCM)) = {IC SCM} & | |
a in dom s \/ dom (Start-At(iloc,SCM)) by XBOOLE_0:def 3; | |
a <> IC SCM by Th2; | |
then not a in {IC SCM} by TARSKI:def 1; | |
hence thesis by A1,FUNCT_4:def 1; | |
end; | |
begin :: Autonomic finite partial states of SCM | |
registration | |
cluster SCM -> IC-recognized; | |
coherence | |
proof | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic | |
FinPartState of SCM st DataPart p <> {} | |
holds IC SCM in dom p | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic FinPartState of SCM; | |
assume DataPart p <> {}; | |
then | |
A1: dom DataPart p <> {}; | |
assume | |
A2: not IC SCM in dom p; | |
then dom p misses {IC SCM} by ZFMISC_1:50; | |
then | |
A3: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7; | |
p is not q-autonomic | |
proof | |
set il = the Element of (NAT \ dom q); | |
set d2 = the Element of Data-Locations SCM \ dom p; | |
set d1 = the Element of dom DataPart p; | |
A4: d1 in dom DataPart p by A1; | |
DataPart p c= p by MEMSTR_0:12; | |
then | |
A5: dom DataPart p c= dom p by RELAT_1:11; | |
dom DataPart p c= the carrier of SCM by RELAT_1:def 18; | |
then reconsider d1 as Element of SCM by A4; | |
not Data-Locations SCM c= dom p; | |
then | |
A6: Data-Locations SCM \ dom p <> {} by XBOOLE_1:37; | |
then d2 in Data-Locations SCM by XBOOLE_0:def 5; | |
then reconsider d2 as Data-Location by AMI_2:def 16,AMI_3:27; | |
A7: not d2 in dom p by A6,XBOOLE_0:def 5; | |
then | |
A8: dom p misses {d2} by ZFMISC_1:50; | |
not NAT c= dom q; | |
then | |
A9: (NAT) \ dom q <> {} by XBOOLE_1:37; | |
then reconsider il as Element of NAT by XBOOLE_0:def 5; | |
A10: not il in dom q by A9,XBOOLE_0:def 5; | |
dom DataPart p c= Data-Locations SCM by RELAT_1:58; | |
then reconsider d1 as Data-Location by A4,AMI_2:def 16,AMI_3:27; | |
set p2 = p +* (( d2.--> 1) +* Start-At(il,SCM)); | |
set p1 = p +* (( d2.--> 0) +* Start-At(il,SCM)); | |
set q2 = q +* (il .--> (d1:=d2)); | |
set q1 = q +* (il .--> (d1:=d2)); | |
consider s1 being State of SCM such that | |
A11: p1 c= s1 by PBOOLE:141; | |
consider S1 being Instruction-Sequence of SCM | |
such that | |
A12: q1 c= S1 by PBOOLE:145; | |
A13: dom p misses {d2} by A7,ZFMISC_1:50; | |
A14: dom (( d2.--> 1) +* Start-At(il,SCM)) | |
= dom ( d2.--> 1) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1; | |
consider s2 being State of SCM such that | |
A15: p2 c= s2 by PBOOLE:141; | |
consider S2 being Instruction-Sequence of SCM | |
such that | |
A16: q2 c= S2 by PBOOLE:145; | |
A17: dom p c= the carrier of SCM by RELAT_1:def 18; | |
dom ( Comput(S2,s2,1)) = the carrier of SCM by PARTFUN1:def 2; | |
then | |
A18: dom ( Comput(S2,s2,1)|dom p) = dom p | |
by A17,RELAT_1:62; | |
A19: dom ( Comput(S1,s1,1)) = the carrier of SCM by PARTFUN1:def 2; | |
A20: dom ( Comput(S1,s1,1)|dom p) = dom p | |
by A17,A19,RELAT_1:62; | |
A21: dom p2 = dom p \/ dom (( d2.--> 1) +* Start-At(il,SCM)) by FUNCT_4:def 1; | |
A22: dom q2 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1; | |
A24: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1; | |
then | |
A25: IC SCM in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3; | |
then IC SCM in dom p2 by A21,XBOOLE_0:def 3; | |
then | |
A26: IC s2 = p2.IC SCM by A15,GRFUNC_1:2 | |
.= (( d2.--> 1) +* Start-At(il,SCM)).IC SCM by A25,FUNCT_4:13 | |
.= (Start-At(il,SCM)).IC SCM by A24,FUNCT_4:13 | |
.= il by FUNCOP_1:72; | |
d2 <> IC SCM by Th2; | |
then | |
A27: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1; | |
d2 in dom ( d2.--> 1) by TARSKI:def 1; | |
then | |
A28: d2 in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3; | |
then d2 in dom p2 by A21,XBOOLE_0:def 3; | |
then | |
A29: s2.d2 = p2.d2 by A15,GRFUNC_1:2 | |
.= (( d2.--> 1) +* Start-At(il,SCM)).d2 by A28,FUNCT_4:13 | |
.= (( d2.--> 1)).d2 by A27,FUNCT_4:11 | |
.= 1 by FUNCOP_1:72; | |
A31: il in dom (il .--> (d1:=d2)) by TARSKI:def 1; | |
then il in dom q2 by A22,XBOOLE_0:def 3; | |
then | |
A32: S2.il = q2.il by A16,GRFUNC_1:2 | |
.= (il .--> (d1:=d2)).il by A31,FUNCT_4:13 | |
.=(d1:=d2) by FUNCOP_1:72; | |
A33: (S2)/.IC s2 = S2.IC s2 by PBOOLE:143; | |
A34: Comput(S2,s2,0+1).d1 | |
= (Following(S2,Comput(S2,s2,0))).d1 by EXTPRO_1:3 | |
.= (Following(S2,s2)).d1 | |
.= 1 by A26,A32,A29,A33,AMI_3:2; | |
dom p misses {IC SCM} by A2,ZFMISC_1:50; | |
then | |
A35: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7; | |
take P = S1, Q = S2; | |
dom (( d2.--> 0) +* Start-At(il,SCM)) | |
= dom(( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1 | |
.= dom(( d2.--> 0)) \/ {IC SCM} | |
.= {d2} \/ {IC SCM}; | |
then | |
dom p /\ dom (( d2.--> 0) +* Start-At(il,SCM)) | |
= dom p /\ {d2} \/ {} by A35,XBOOLE_1:23 | |
.= {} by A8,XBOOLE_0:def 7; | |
then dom p misses dom (( d2.--> 0) +* Start-At(il,SCM)) | |
by XBOOLE_0:def 7; | |
then | |
p c= p1 by FUNCT_4:32; | |
then | |
A36: p c= s1 by A11,XBOOLE_1:1; | |
dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50; | |
then q c= q1 by FUNCT_4:32; | |
hence q c= P by A12,XBOOLE_1:1; | |
A37: dom p1 = dom p \/ dom (( d2.--> 0) +* Start-At( | |
il,SCM)) by FUNCT_4:def 1; | |
dom ((d2.--> 1) +* Start-At(il,SCM)) | |
= dom(( d2.--> 1)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1 | |
.= dom(( d2.--> 1)) \/ {IC SCM} | |
.= {d2} \/ {IC SCM}; | |
then | |
dom p /\ dom (( d2.--> 1) +* Start-At(il,SCM)) = dom | |
p /\ ({d2}) \/ {} by A3,XBOOLE_1:23 | |
.= {} by A13,XBOOLE_0:def 7; | |
then dom p misses | |
dom (( d2.--> 1) +* Start-At(il,SCM)) | |
by XBOOLE_0:def 7; | |
then p c= p2 by FUNCT_4:32; | |
then | |
A38: p c= s2 by A15,XBOOLE_1:1; | |
dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50; | |
then q c= q2 by FUNCT_4:32; | |
hence q c= Q by A16,XBOOLE_1:1; | |
take s1,s2; | |
thus p c= s1 by A36; | |
thus p c= s2 by A38; | |
take 1; | |
A39: dom (( d2.--> 0) +* Start-At(il,SCM)) | |
= dom (( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1; | |
A41: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1; | |
then | |
A42: IC SCM in dom (( d2.--> 0) +* Start-At(il,SCM)) | |
by A39,XBOOLE_0:def 3; | |
then IC SCM in dom p1 by A37,XBOOLE_0:def 3; | |
then | |
A43: IC s1 = p1.IC SCM by A11,GRFUNC_1:2 | |
.= (( d2.--> 0) +* Start-At(il,SCM)).IC SCM by A42,FUNCT_4:13 | |
.= (Start-At(il,SCM)).IC SCM by A41,FUNCT_4:13 | |
.= il by FUNCOP_1:72; | |
d2 <> IC SCM by Th2; | |
then | |
A44: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1; | |
d2 in dom ( d2.--> 0) by TARSKI:def 1; | |
then | |
A45: d2 in dom (( d2.--> 0) +* Start-At(il,SCM)) by A39,XBOOLE_0:def 3; | |
then d2 in dom p1 by A37,XBOOLE_0:def 3; | |
then | |
A46: s1.d2 = p1.d2 by A11,GRFUNC_1:2 | |
.= (( d2.--> 0) +* Start-At(il,SCM)).d2 by A45,FUNCT_4:13 | |
.= (( d2.--> 0)).d2 by A44,FUNCT_4:11 | |
.= 0 by FUNCOP_1:72; | |
A47: il in dom(il .--> (d1:=d2)) by TARSKI:def 1; | |
dom q1 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1; | |
then il in dom q1 by A47,XBOOLE_0:def 3; | |
then | |
A48: S1.il = q1.il by A12,GRFUNC_1:2 | |
.= (il .--> (d1:=d2)).il by A47,FUNCT_4:13 | |
.=(d1:=d2) by FUNCOP_1:72; | |
A49: (S1)/.IC s1 = S1.IC s1 by PBOOLE:143; | |
Comput(S1,s1,0+1).d1 | |
= (Following(S1,Comput(S1,s1,0))).d1 by EXTPRO_1:3 | |
.= 0 by A43,A48,A46,A49,AMI_3:2; | |
then (Comput(P,s1,1)|dom p).d1 = 0 by A4,A5,A20,FUNCT_1:47; | |
hence Comput(P,s1,1)|dom p | |
<> Comput(Q,s2,1)|dom p by A18,A34,A4,A5,FUNCT_1:47; | |
end; | |
hence contradiction; | |
end; | |
hence thesis by AMISTD_5:3; | |
end; | |
end; | |
registration | |
cluster SCM -> CurIns-recognized; | |
coherence | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s be State of SCM such that | |
A1: p c= s; | |
let P be Instruction-Sequence of SCM such that | |
A2: q c= P; | |
let i be Nat; | |
set Csi = Comput(P,s,i); | |
set loc = IC Csi; | |
assume | |
A3: not IC Comput(P,s,i) in dom q; | |
set I = dl.0 := dl.0; | |
set q1 = q +* (loc .--> I); | |
set q2 = q +* (loc .--> halt SCM); | |
reconsider P1 = P +* (loc .--> I) | |
as Instruction-Sequence of SCM; | |
reconsider P2 = P +* (loc .--> halt SCM) | |
as Instruction-Sequence of SCM; | |
A5: loc in dom (loc .--> halt SCM) by TARSKI:def 1; | |
A7: loc in dom (loc .--> I) by TARSKI:def 1; | |
A8: dom q misses dom (loc .--> halt SCM) by A3,ZFMISC_1:50; | |
A9: dom q misses dom (loc .--> I) by A3,ZFMISC_1:50; | |
A10: q1 c= P1 by A2,FUNCT_4:123; | |
A11: q2 c= P2 by A2,FUNCT_4:123; | |
set Cs2i = Comput(P2,s,i), Cs1i = Comput(P1,s,i); | |
p is not q-autonomic | |
proof | |
(loc .--> halt SCM).loc = halt SCM by FUNCOP_1:72; | |
then | |
A12: P2.loc = halt SCM by A5,FUNCT_4:13; | |
A13: (loc .--> I).loc = I by FUNCOP_1:72; | |
take P1, P2; | |
q c= q1 by A9,FUNCT_4:32; | |
hence | |
A14: q c= P1 by A10,XBOOLE_1:1; | |
q c= q2 by A8,FUNCT_4:32; | |
hence | |
A15: q c= P2 by A11,XBOOLE_1:1; | |
take s, s; | |
thus p c= s by A1; | |
A16: (Cs1i|dom p) = (Csi|dom p) by A14,A2,A1,EXTPRO_1:def 10; | |
thus p c= s by A1; | |
A17: (Cs1i|dom p) = (Cs2i|dom p) by A14,A15,A1,EXTPRO_1:def 10; | |
take k = i+1; | |
set Cs1k = Comput(P1,s,k); | |
A18: IC SCM in dom p by AMISTD_5:6; | |
IC Csi = IC(Csi|dom p) by A18,FUNCT_1:49; | |
then | |
IC Cs1i = loc by A16,A18,FUNCT_1:49; | |
then | |
A19: CurInstr(P1,Cs1i) = P1.loc by PBOOLE:143 | |
.= I by A13,A7,FUNCT_4:13; | |
A20: Cs1k = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec(I,Cs1i) by A19; | |
A21: IC Exec(I,Cs1i) = IC Cs1i + 1 by AMI_3:2; | |
A22: IC SCM in dom p by AMISTD_5:6; | |
A23: IC Csi = IC(Csi|dom p) by A22,FUNCT_1:49; | |
then | |
A24: IC Cs1k = loc+1 by A20,A21,A16,A22,FUNCT_1:49; | |
set Cs2k = Comput(P2,s,k); | |
A25: Cs2k = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
A26: P2/.IC Cs2i = P2.IC Cs2i by PBOOLE:143; | |
IC Cs2i = loc by A16,A23,A17,A22,FUNCT_1:49; | |
then | |
A27: IC Cs2k = loc by A25,A12,A26,EXTPRO_1:def 3; | |
IC(Cs1k|dom p) = IC Cs1k & IC(Cs2k|dom p) = IC Cs2k | |
by A22,FUNCT_1:49; | |
hence thesis by A24,A27; | |
end; | |
hence contradiction; | |
end; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, | |
s1, s2 being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db being Data-Location, | |
I being Instruction of SCM | |
st I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = da := db & da in dom p implies | |
Comput(P1,s1,i).db = Comput(P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = da := db and | |
A6: da in dom p & Comput(P1,s1,i).db <> Comput(P2,s2, | |
i).db; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A7: Cs2i1.da = Cs2i.db by A4,A5,AMI_3:2; | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
A8: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & | |
(Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.da = Cs1i.db by A3,A5,AMI_3:2; | |
hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db | |
being Data-Location, I being Instruction of SCM st | |
I = CurInstr(P1,Comput(P1, | |
s1,i)) | |
holds I = AddTo(da, db) & da in dom p implies Comput(P1,s1,i).da | |
+ | |
Comput(P1,s1,i).db = Comput(P2,s2,i).da + Comput( | |
P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = AddTo(da, db) and | |
A6: da in dom p & Comput(P1,s1,i).da + Comput(P1,s1,i | |
).db <> | |
Comput(P2,s2, i).da + Comput(P2,s2,i).db; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A7: Cs2i1.da = Cs2i.da + Cs2i.db by A4,A5,AMI_3:3; | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
A8: da in dom p implies | |
(Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = | |
Cs2i1.da by FUNCT_1:49; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.da = Cs1i.da + Cs1i.db by A3,A5,AMI_3:3; | |
hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db | |
being Data-Location, I being Instruction of SCM st | |
I = CurInstr(P1,Comput(P1, | |
s1,i)) | |
holds I = SubFrom(da, db) & da in dom p implies Comput(P1,s1,i). | |
da - | |
Comput(P1,s1,i).db = Comput(P2,s2,i).da - Comput( | |
P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = SubFrom(da, db) and | |
A6: da in dom p & Comput(P1,s1,i).da - Comput(P1,s1,i | |
).db <> | |
Comput(P2,s2, i).da - Comput(P2,s2,i).db; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A7: Cs2i1.da = Cs2i.da - Cs2i.db by A4,A5,AMI_3:4; | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
A8: da in dom p implies | |
(Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = | |
Cs2i1.da by FUNCT_1:49; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.da = Cs1i.da - Cs1i.db by A3,A5,AMI_3:4; | |
hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db | |
being Data-Location, I being Instruction of SCM | |
st I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = MultBy(da, db) & da in dom p implies Comput(P1,s1,i). | |
da * | |
Comput(P1,s1,i).db = Comput(P2,s2,i).da * Comput(P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = MultBy(da, db) and | |
A6: da in dom p & Comput(P1,s1,i).da * Comput(P1,s1,i | |
).db <> | |
Comput(P2,s2, i).da * Comput(P2,s2,i).db; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A7: Cs2i1.da = Cs2i.da * Cs2i.db by A4,A5,AMI_3:5; | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
A8: da in dom p implies | |
(Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = | |
Cs2i1.da by FUNCT_1:49; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.da = Cs1i.da * Cs1i.db by A3,A5,AMI_3:5; | |
hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db | |
being Data-Location, I being Instruction of SCM | |
st I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = Divide(da, db) & da in dom p & da <> db implies | |
Comput(P1,s1 | |
,i).da div Comput(P1,s1,i).db = Comput(P2,s2,i).da | |
div Comput(P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = Divide(da, db) and | |
A6: da in dom p and | |
A7: da <> db and | |
A8: Comput(P1,s1,i).da div Comput(P1,s1,i).db <> Comput(P2,s2,i). | |
da div Comput(P2,s2,i).db; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A9: Cs2i1.da = Cs2i.da div Cs2i.db by A4,A5,A7,AMI_3:6; | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
A10: da in dom p implies | |
(Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = | |
Cs2i1.da by FUNCT_1:49; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.da = Cs1i.da div Cs1i.db by A3,A5,A7,AMI_3:6; | |
hence contradiction by A10,A8,A9,A2,A6,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da, db | |
being Data-Location, I being Instruction of SCM st | |
I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = Divide(da, db) & db in dom p implies Comput(P1,s1,i). | |
da mod | |
Comput(P1,s1,i).db = Comput(P2,s2,i).da mod Comput(P2,s2,i).db | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da, db be Data-Location, I be Instruction of SCM | |
such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs1i = Comput(P1,s1,i); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A5: I = Divide(da, db) and | |
A6: db in dom p and | |
A7: Comput(P1,s1,i).da mod Comput(P1,s1,i).db <> | |
Comput(P2,s2,i). | |
da mod Comput(P2,s2,i).db; | |
A8: (Cs1i1|dom p).db = Cs1i1.db & | |
(Cs2i1|dom p).db = Cs2i1.db by A6,FUNCT_1:49; | |
I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
then | |
A9: Cs2i1.db = Cs2i.da mod Cs2i.db by A4,A5,AMI_3:6; | |
Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
then Cs1i1.db = Cs1i.da mod Cs1i.db by A3,A5,AMI_3:6; | |
hence contradiction by A7,A8,A9,A2,A1,EXTPRO_1:def 10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da being | |
Data-Location, loc being Nat, I being Instruction of | |
SCM st I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = da=0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1 | |
implies ( Comput(P1,s1,i).da = 0 iff Comput(P2,s2,i) | |
.da = 0) | |
proof | |
let q be non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of | |
SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da be Data-Location, loc be Nat | |
, I be Instruction of SCM such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs1i1 = Comput(P1,s1,i+1); | |
set Cs2i = Comput(P2,s2,i); | |
set Cs1i = Comput(P1,s1,i); | |
A4: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
A5: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
IC SCM in dom p by AMISTD_5:6; | |
then | |
A6: (Cs1i1|dom p).IC SCM = IC Cs1i1 & | |
(Cs2i1|dom p).IC SCM = IC Cs2i1 by FUNCT_1:49; | |
assume that | |
A7: I = da=0_goto loc and | |
A8: loc <> (IC Comput(P1,s1,i)) + 1; | |
A9: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
A10: now | |
assume | |
Comput(P2,s2,i).da = 0 & Comput(P1,s1,i).da <> 0; | |
then Cs2i1.IC SCM = loc & Cs1i1.IC SCM = IC Cs1i + 1 by A3,A9,A4,A5,A7, | |
AMI_3:8; | |
hence contradiction by A6,A8,A2,A1,EXTPRO_1:def 10; | |
end; | |
A11: (Cs1i1|dom p) = (Cs2i1|dom p) by A2,A1,EXTPRO_1:def 10; | |
now | |
assume | |
Comput(P1,s1,i).da = 0 & Comput(P2,s2,i).da <> 0; | |
then Cs1i1.IC SCM = loc & Cs2i1.IC SCM = IC Cs2i + 1 by A3,A9,A4,A5,A7, | |
AMI_3:8; | |
hence contradiction by A6,A11,A8,A2,A1,AMISTD_5:7; | |
end; | |
hence thesis by A10; | |
end; | |
theorem | |
for q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function | |
for p being q-autonomic non empty FinPartState of SCM, s1, s2 | |
being State of SCM st p c= s1 & p c= s2 | |
for P1,P2 being Instruction-Sequence of SCM | |
st q c= P1 & q c= P2 | |
for i being Nat, da being | |
Data-Location, loc being Nat, I being Instruction of | |
SCM st I = CurInstr(P1,Comput(P1,s1,i)) | |
holds I = da>0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1 | |
implies ( Comput(P1,s1,i).da > 0 iff Comput(P2,s2,i) | |
.da > 0) | |
proof | |
let q being non halt-free finite | |
(the InstructionsF of SCM)-valued NAT-defined Function; | |
let p be q-autonomic non empty FinPartState of SCM, | |
s1, s2 be State of SCM such that | |
A1: p c= s1 & p c= s2; | |
let P1,P2 be Instruction-Sequence of SCM | |
such that | |
A2: q c= P1 & q c= P2; | |
let i be Nat, da be Data-Location, loc be Nat | |
, I be Instruction of SCM such that | |
A3: I = CurInstr(P1,Comput(P1,s1,i)); | |
set Cs2i1 = Comput(P2,s2,i+1); | |
set Cs1i1 = Comput(P1,s1,i+1); | |
A4: Cs1i1|dom p = Cs2i1|dom p by A2,A1,EXTPRO_1:def 10; | |
set Cs2i = Comput(P2,s2,i); | |
set Cs1i = Comput(P1,s1,i); | |
A5: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P1,Cs1i), Cs1i); | |
IC SCM in dom p by AMISTD_5:6; | |
then | |
A6: (Cs1i1|dom p).IC SCM = IC Cs1i1 & | |
(Cs2i1|dom p).IC SCM = IC Cs2i1 by FUNCT_1:49; | |
A7: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 | |
.= Exec (CurInstr(P2,Cs2i), Cs2i); | |
assume that | |
A8: I = da>0_goto loc and | |
A9: loc <> (IC Comput(P1,s1,i)) + 1; | |
A10: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; | |
A11: now | |
assume that | |
A12: Comput(P2,s2,i).da > 0 and | |
A13: Comput(P1,s1,i).da <= 0; | |
Cs2i1.IC SCM = loc by A10,A7,A8,A12,AMI_3:9; | |
hence contradiction by A3,A5,A6,A4,A8,A9,A13,AMI_3:9; | |
end; | |
A14: IC Cs1i = IC Cs2i by A2,A1,AMISTD_5:7; | |
now | |
assume that | |
A15: Comput(P1,s1,i).da > 0 and | |
A16: Comput(P2,s2,i).da <= 0; | |
Cs1i1.IC SCM = loc by A3,A5,A8,A15,AMI_3:9; | |
hence contradiction by A14,A10,A7,A6,A4,A8,A9,A16,AMI_3:9; | |
end; | |
hence thesis by A11; | |
end; | |
theorem | |
for s1,s2 being State of SCM st IC(s1) = IC(s2) & | |
(for a being Data-Location holds s1.a = s2.a) | |
holds s1 = s2 | |
proof | |
let s1,s2 be State of SCM such that | |
A1: IC(s1) = IC(s2); | |
IC SCM in dom s1 & IC SCM in dom s2 by MEMSTR_0:2; | |
then | |
A2: s1 = DataPart s1 +* Start-At (IC s1,SCM) & | |
s2 = DataPart s2 +* Start-At (IC s2,SCM) by MEMSTR_0:26; | |
assume | |
A3: for a being Data-Location holds s1.a = s2.a; | |
DataPart s1 = DataPart s2 | |
proof | |
A4: dom DataPart s1 = Data-Locations SCM by MEMSTR_0:9; | |
hence | |
dom DataPart s1 = dom DataPart s2 by MEMSTR_0:9; | |
let x be object; | |
assume | |
A5: x in dom DataPart s1; | |
then | |
A6: x is Data-Location by A4,AMI_2:def 16,AMI_3:27; | |
thus (DataPart s1).x = s1.x by A5,A4,FUNCT_1:49 | |
.= s2.x by A6,A3 | |
.= (DataPart s2).x by A5,A4,FUNCT_1:49; | |
end; | |
hence thesis by A1,A2; | |
end; | |