Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
:: Formalization of the Advanced Encryption Standard -- Part {I} | |
:: by Kenichi Arai and Hiroyuki Okazaki | |
environ | |
vocabularies AESCIP_1, DESCIP_1, TARSKI, XBOOLE_0, FINSEQ_1, RELAT_1, FUNCT_1, | |
ARYTM_1, FUNCT_2, FINSEQ_2, NAT_1, MARGREL1, ZFMISC_1, SUBSET_1, NUMBERS, | |
INT_1, CARD_1, JORDAN3, XXREAL_0, ARYTM_3, ORDINAL4, FINSEQ_5, XCMPLX_0; | |
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, | |
RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, CARD_1, NUMBERS, XCMPLX_0, | |
XXREAL_0, NAT_1, INT_1, NAT_D, FINSEQ_1, FINSEQ_2, MARGREL1, FINSEQ_4, | |
FINSEQ_6, DESCIP_1; | |
constructors RELSET_1, FINSEQ_4, NAT_D, FINSEQ_6, DESCIP_1, BINOP_1; | |
registrations FINSEQ_1, RELSET_1, FINSEQ_2, FUNCT_2, ORDINAL1, MARGREL1, | |
INT_1, NAT_1, XXREAL_0, XBOOLE_0, FUNCT_1, XREAL_0, FINSEQ_4; | |
requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL; | |
equalities FINSEQ_1, FINSEQ_2; | |
theorems TARSKI, FUNCT_1, FUNCT_2, XXREAL_0, XREAL_1, FINSEQ_6, XREAL_0, | |
NAT_1, INT_1, FINSEQ_1, CARD_1, BINOP_1, NAT_D, FINSEQ_2, FINSEQ_4, | |
RFINSEQ, FINSEQ_5, XBOOLE_0, ORDINAL1, DESCIP_1, MARGREL1, NAT_2, | |
WSIERP_1, XCMPLX_1, FINSEQ_3; | |
schemes FUNCT_2, FINSEQ_1, NAT_1, BINOP_1, RECDEF_1; | |
begin :: Preliminaries | |
theorem XLMOD02: | |
for k,m be Nat st m <> 0 & (k+1) mod m <> 0 | |
holds (k+1) mod m = (k mod m)+1 | |
proof | |
let k,m be Nat; | |
assume | |
C1: m <> 0 & (k+1) mod m <> 0; | |
(k mod m)+1 <= m by NAT_D:1,C1,NAT_1:13; | |
then | |
P1: (k mod m)+1-1 <= m-1 by XREAL_1:9; | |
P2: (k+1) mod m = ((k mod m)+1) mod m by NAT_D:22; | |
k mod m < m-1 | |
proof | |
assume not k mod m < m-1; | |
then (k+1) mod m = (m-1+1) mod m by XXREAL_0:1,P1,P2 | |
.= 0 by INT_1:50; | |
hence contradiction by C1; | |
end; | |
then (k mod m)+1 < m-1+1 by XREAL_1:8; | |
hence (k+1) mod m = (k mod m)+1 by NAT_D:24,P2; | |
end; | |
theorem XLMOD01: | |
for k,m be Nat st m <> 0 & (k+1) mod m <> 0 holds (k+1) div m = k div m | |
proof | |
let k,m be Nat; | |
assume | |
C1: m <> 0 & (k+1) mod m <> 0; | |
k+1 = ((k+1) div m )*m+((k+1) mod m) by INT_1:59,C1 | |
.= ((k+1) div m )*m+((k mod m)+1) by XLMOD02,C1; | |
then | |
P1: ((k+1) div m)*m+(k mod m)-(k mod m) = (k div m )*m+(k mod m)-(k mod m) | |
by INT_1:59,C1; | |
thus ((k+1) div m) = (k div m)*m / m by XCMPLX_1:89,C1,P1 | |
.= (k div m) by XCMPLX_1:89,C1; | |
end; | |
theorem XLMOD02X: | |
for k,m be Nat st m <> 0 & (k+1) mod m = 0 holds m-1 = (k mod m) | |
proof | |
let k,m be Nat; | |
assume | |
C1: m <> 0 & (k+1) mod m = 0; | |
then (k mod m)+1 <= m by NAT_D:1,NAT_1:13; | |
then | |
P1: (k mod m)+1-1 <= m-1 by XREAL_1:9; | |
P2: (k+1) mod m = ((k mod m)+1) mod m by NAT_D:22; | |
assume not k mod m = m-1; | |
then k mod m < m-1 by XXREAL_0:1,P1; | |
then k mod m+1 < m-1+1 by XREAL_1:8; | |
hence contradiction by P2,NAT_D:24,C1; | |
end; | |
theorem XLMOD01X: | |
for k,m be Nat st m <> 0 & (k+1) mod m = 0 | |
holds (k+1) div m = (k div m)+1 | |
proof | |
let k,m be Nat; | |
assume | |
C1: m <> 0 & (k+1) mod m = 0; | |
then | |
P3: k mod m = m-1 by XLMOD02X; | |
P4: k+1 = ((k+1) div m)*m+((k+1) mod m) by INT_1:59,C1 | |
.= ((k+1) div m)*m by C1; | |
P5: k = (k div m )*m+(k mod m) by INT_1:59,C1 | |
.= (k div m)*m+m-1 by P3; | |
thus ((k+1) div m) = ((k div m)+1)*m / m by XCMPLX_1:89,C1,P4,P5 | |
.= ((k div m)+1) by XCMPLX_1:89,C1; | |
end; | |
theorem XLMOD03: | |
for k,m be Nat holds (k-m) mod m = k mod m | |
proof | |
let k,m be Nat; | |
thus (k-m) mod m = (k+m*(-1)) mod m | |
.= k mod m by NAT_D:61; | |
end; | |
theorem XLMOD04: | |
for k,m be Nat st m <> 0 holds (k-m) div m = (k div m)-1 | |
proof | |
let k,m be Nat; | |
assume | |
AS: m <> 0; | |
thus (k-m) div m = (k+m*(-1)) div m | |
.= (k div m)+-1 by AS,NAT_D:61 | |
.= (k div m)-1; | |
end; | |
definition | |
let m,n be Nat, X,D be non empty set; | |
let F be Function of X, m-tuples_on(n-tuples_on D); | |
let x be Element of X; | |
redefine func F.x -> Element of m-tuples_on(n-tuples_on D); | |
coherence | |
proof | |
F.x in m-tuples_on(n-tuples_on D); | |
hence thesis; | |
end; | |
end; | |
definition | |
let m be Nat, X,Y,D be non empty set; | |
let F be Function of [:X,Y:], m-tuples_on D; | |
let x be Element of X,y be Element of Y; | |
redefine func F.(x,y) -> Element of m-tuples_on D; | |
coherence | |
proof | |
F.(x,y) in m-tuples_on D; | |
hence thesis; | |
end; | |
end; | |
theorem LM01: | |
for m,n be Nat, D be non empty set, | |
F1,F2 be Element of m-tuples_on (n-tuples_on D) st for i,j be Nat | |
st i in Seg m & j in Seg n | |
holds (F1.i).j = (F2.i).j holds F1 = F2 | |
proof | |
let m,n be Nat, D be non empty set, | |
F1,F2 be Element of m-tuples_on (n-tuples_on D); | |
assume | |
AS: for i,j be Nat st i in Seg m & j in Seg n | |
holds (F1.i).j = (F2.i).j; | |
F1 in m-tuples_on (n-tuples_on D); | |
then | |
P1: ex s be Element of (n-tuples_on D)* st F1 = s & len s = m; | |
F2 in m-tuples_on (n-tuples_on D); | |
then | |
P2: ex s be Element of (n-tuples_on D)* st F2 = s & len s = m; | |
now let i be Nat; | |
assume 1 <= i & i <= len F1; | |
then | |
P4: i in Seg m by P1; | |
then i in dom F1 by FINSEQ_1:def 3,P1; | |
then F1.i in rng F1 by FUNCT_1:3; | |
then F1.i in n-tuples_on D; | |
then | |
P6: ex s be Element of D* st F1.i = s & len s = n; | |
then reconsider F1i = F1.i as Element of D*; | |
i in dom F2 by FINSEQ_1:def 3,P2,P4; | |
then F2.i in rng F2 by FUNCT_1:3; | |
then F2.i in n-tuples_on D; | |
then | |
R6: ex s be Element of D* st F2.i = s & len s = n; | |
then reconsider F2i = F2.i as Element of D*; | |
now let j be Nat; | |
assume 1 <= j & j <= len F1i; | |
then j in Seg n by P6; | |
hence F1i.j = F2i.j by AS,P4; | |
end; | |
hence | |
F1.i = F2.i by P6,R6,FINSEQ_1:14; | |
end; | |
hence F1 = F2 by P1,P2,FINSEQ_1:14; | |
end; | |
theorem LMGSEQ4: | |
for D be non empty set, x1,x2,x3,x4 be Element of D | |
holds <* x1,x2,x3,x4 *> is Element of (4-tuples_on D) | |
proof | |
let D be non empty set, x1,x2,x3,x4 be Element of D; | |
reconsider x1234 = <* x1,x2,x3,x4 *> as FinSequence of D; | |
P1: len x1234 = 4 by FINSEQ_4:76; | |
x1234 in D* by FINSEQ_1:def 11; | |
then x1234 in 4-tuples_on D by P1; | |
hence thesis; | |
end; | |
theorem LMGSEQ5: | |
for D be non empty set,x1,x2,x3,x4,x5 be Element of D | |
holds <* x1,x2,x3,x4,x5 *> is Element of (5-tuples_on D) | |
proof | |
let D be non empty set, x1,x2,x3,x4,x5 be Element of D; | |
reconsider x12345 = <* x1,x2,x3,x4,x5 *> as FinSequence of D; | |
P1: len x12345 = 5 by FINSEQ_4:78; | |
x12345 in D* by FINSEQ_1:def 11; | |
then x12345 in 5-tuples_on D by P1; | |
hence thesis; | |
end; | |
theorem | |
for D be non empty set, x1,x2,x3,x4,x5,x6,x7,x8 be Element of D | |
holds <* x1,x2,x3,x4 *>^<* x5,x6,x7,x8 *> is Element of (8-tuples_on D) | |
proof | |
let D be non empty set,x1,x2,x3,x4,x5,x6,x7,x8 be Element of D; | |
reconsider x1234 = <* x1,x2,x3,x4 *> as Element of 4-tuples_on D | |
by LMGSEQ4; | |
reconsider x5678 = <* x5,x6,x7,x8 *> as Element of 4-tuples_on D | |
by LMGSEQ4; | |
D c= D; | |
hence thesis by FINSEQ_2:109; | |
end; | |
theorem LMGSEQ10: | |
for D be non empty set, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 be Element of D | |
holds <* x1,x2,x3,x4,x5 *>^<* x6,x7,x8,x9,x10 *> is | |
Element of (10-tuples_on D) | |
proof | |
let D be non empty set, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 be Element of D; | |
reconsider x12345 = <* x1,x2,x3,x4,x5 *> as Element of 5-tuples_on D | |
by LMGSEQ5; | |
reconsider x67890 = <* x6,x7,x8,x9,x10 *> as Element of 5-tuples_on D | |
by LMGSEQ5; | |
D c= D; | |
hence thesis by FINSEQ_2:109; | |
end; | |
theorem LMGSEQ16: | |
for D be non empty set, x1,x2,x3,x4,x5,x6,x7,x8 be Element of (4-tuples_on D) | |
holds <* x1^x5,x2^x6,x3^x7,x4^x8 *> is | |
Element of 4-tuples_on (8-tuples_on D) | |
proof | |
let D be non empty set, | |
x1,x2,x3,x4,x5,x6,x7,x8 be Element of (4-tuples_on D); | |
X1: D c= D; | |
then | |
P1: x1^x5 is Element of 8-tuples_on D by FINSEQ_2:109; | |
P2: x2^x6 is Element of 8-tuples_on D by X1,FINSEQ_2:109; | |
P3: x3^x7 is Element of 8-tuples_on D by X1,FINSEQ_2:109; | |
x4^x8 is Element of 8-tuples_on D by X1,FINSEQ_2:109; | |
hence thesis by P1,P2,P3,LMGSEQ4; | |
end; | |
theorem | |
for D be non empty set, x be Element of 4-tuples_on(4-tuples_on D), | |
k be Element of NAT st k in Seg 4 holds | |
ex x1,x2,x3,x4 be Element of D st x1 = (x.k).1 & x2 = (x.k).2 & | |
x3 = (x.k).3 & x4 = (x.k).4 | |
proof | |
let D be non empty set, x be Element of 4-tuples_on(4-tuples_on D), | |
k be Element of NAT; | |
assume | |
AS: k in Seg 4; | |
x in 4-tuples_on(4-tuples_on D); | |
then ex s be Element of (4-tuples_on D)* st x = s & len s = 4; | |
then k in dom x by AS,FINSEQ_1:def 3; | |
then x.k in rng x by FUNCT_1:3; | |
then x.k in 4-tuples_on (D); | |
then | |
Q13: ex s be Element of D* st x.k = s & len s = 4; | |
then reconsider xk = x.k as Element of D*; | |
1 in Seg 4; | |
then 1 in dom xk by Q13,FINSEQ_1:def 3; | |
then xk.1 in rng xk by FUNCT_1:3; | |
then reconsider x1 = xk.1 as Element of D; | |
2 in Seg 4; | |
then 2 in dom xk by Q13,FINSEQ_1:def 3; | |
then xk.2 in rng xk by FUNCT_1:3; | |
then reconsider x2 = xk.2 as Element of D; | |
3 in Seg 4; | |
then 3 in dom xk by Q13,FINSEQ_1:def 3; | |
then xk.3 in rng xk by FUNCT_1:3; | |
then reconsider x3 = xk.3 as Element of D; | |
4 in Seg 4; | |
then 4 in dom xk by Q13,FINSEQ_1:def 3; | |
then xk.4 in rng xk by FUNCT_1:3; | |
then reconsider x4 = xk.4 as Element of D; | |
take x1,x2,x3,x4; | |
thus thesis; | |
end; | |
theorem INV00: | |
for X,Y be non empty set, f be Function of X,Y, g be Function of Y,X | |
st (for x be Element of X holds g.(f.x) = x) & | |
(for y be Element of Y holds f.(g.y) = y) | |
holds f is one-to-one & f is onto & g is one-to-one & g is onto & | |
g = f" & f = g" | |
proof | |
let X,Y be non empty set, f be Function of X,Y, g be Function of Y,X; | |
assume | |
A1: for x be Element of X holds g.(f.x) = x; | |
assume | |
A2: for y be Element of Y holds f.(g.y) = y; | |
now let x be Element of X; | |
thus (g*f).x = g.(f.x) by FUNCT_2:15 | |
.= x by A1; | |
end; | |
then | |
P2: g*f = id X by FUNCT_2:124; | |
now let y be Element of Y; | |
thus (f*g).y = f.(g.y) by FUNCT_2:15 | |
.= y by A2; | |
end; | |
then | |
P4: f*g = id Y by FUNCT_2:124; | |
thus | |
P5: f is one-to-one & f is onto by P2,P4,FUNCT_2:23; | |
thus | |
P6: g is one-to-one & g is onto by P2,P4,FUNCT_2:23; | |
rng f = Y by P5,FUNCT_2:def 3; | |
hence g = f" by FUNCT_2:30,P2,FUNCT_2:23; | |
rng g = X by P6,FUNCT_2:def 3; | |
hence f = g" by FUNCT_2:30,P4,FUNCT_2:23; | |
end; | |
begin :: State array | |
definition | |
func AES-Statearray -> Function of 128-tuples_on BOOLEAN, | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefStatearray: | |
for input be Element of 128-tuples_on BOOLEAN | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ((it.input).i).j = mid (input,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7); | |
existence | |
proof | |
defpred P0[Element of 128-tuples_on BOOLEAN,set] means | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st $2 = z & for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds (z.i).j = mid ($1,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7); | |
A1: for x being Element of 128-tuples_on BOOLEAN | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[x,z] | |
proof | |
let x be Element of 128-tuples_on BOOLEAN; | |
x in 128-tuples_on BOOLEAN; | |
then | |
A01: ex s be Element of (BOOLEAN)* st x = s & len s = 128; | |
defpred P[Nat,set] means | |
ex zi be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st $2 = zi & for j be Nat st j in Seg 4 | |
holds zi.j = mid (x,1+($1-'1)*8+(j-'1)*32,1+($1-'1)*8+(j-'1)*32+7); | |
Q1: for k be Nat st k in Seg 4 | |
ex x being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,x] | |
proof | |
let k be Nat; | |
assume k in Seg 4; | |
then | |
Q110: 1 <= k & k <= 4 by FINSEQ_1:1; | |
then 1-1 <= k-1 by XREAL_1:9; | |
then k-'1 = k-1 by XREAL_0:def 2; | |
then k-'1 <= 4-1 by Q110,XREAL_1:9; | |
then | |
Q112: (k-'1)*8 <= 3*8 by XREAL_1:64; | |
defpred Pi[Nat,set] means | |
$2 = mid (x,1+(k-'1)*8+($1-'1)*32,1+(k-'1)*8+($1-'1)*32+7); | |
Q12: for j be Nat st j in Seg 4 | |
ex xi being Element of (8-tuples_on BOOLEAN) st Pi[j,xi] | |
proof | |
let j be Nat; | |
assume j in Seg 4; | |
then | |
Q130: 1 <= j & j <= 4 by FINSEQ_1:1; | |
then 1-1 <= j-1 by XREAL_1:9; | |
then j-'1 = j-1 by XREAL_0:def 2; | |
then j-'1 <= 4-1 by Q130,XREAL_1:9; | |
then | |
Q133: (j-'1)*32 <= 3*32 by XREAL_1:64; | |
(k-'1)*8+(j-'1)*32 <= 24+96 by Q133,Q112,XREAL_1:7; | |
then | |
Q134: 1+((k-'1)*8+(j-'1)*32) <= 1+120 by XREAL_1:7; | |
Q136: (1+(k-'1)*8+(j-'1)*32)+7 <= 121+7 by Q134,XREAL_1:7; | |
1+0 <= 1+((k-'1)*8+(j-'1)*32) by XREAL_1:7; | |
then | |
Q14: 1 <= 1+(k-'1)*8+(j-'1)*32 & 1+(k-'1)*8+(j-'1)*32 <= len x | |
by Q134,XXREAL_0:2,A01; | |
Q150: 1+0 <= 1+(k-'1)*8+(j-'1)*32+7 by XREAL_1:7; | |
reconsider mmd = mid (x,1+(k-'1)*8+(j-'1)*32, | |
1+(k-'1)*8+(j-'1)*32+7) as Element of (BOOLEAN)* by FINSEQ_1:def 11; | |
1+(k-'1)*8+(j-'1)*32+0 <= 1+(k-'1)*8+(j-'1)*32+7 by XREAL_1:6; | |
then len mid (x,1+(k-'1)*8+(j-'1)*32,1+(k-'1)*8+(j-'1)*32+7) = | |
(1+(k-'1)*8+(j-'1)*32+7)-'(1+(k-'1)*8+(j-'1)*32)+1 | |
by FINSEQ_6:118,Q14,Q136,A01,Q150 | |
.= 7+1 by NAT_D:34 | |
.= 8; | |
then mmd in (8-tuples_on BOOLEAN); | |
then reconsider xi = mid (x,1+(k-'1)*8+(j-'1)*32, | |
1+(k-'1)*8+(j-'1)*32+7) as Element of (8-tuples_on BOOLEAN); | |
xi = mid (x,1+(k-'1)*8+(j-'1)*32,1+(k-'1)*8+(j-'1)*32+7); | |
hence thesis; | |
end; | |
consider zi be FinSequence of (8-tuples_on BOOLEAN) such that | |
Q13: dom zi = Seg 4 & for i be Nat st i in Seg 4 | |
holds Pi[i,zi.i] from FINSEQ_1:sch 5(Q12); | |
Q14: len zi = 4 by Q13,FINSEQ_1:def 3; | |
reconsider zi as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zi in 4-tuples_on (8-tuples_on BOOLEAN) by Q14; | |
then reconsider zi as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
for j be Nat st j in Seg 4 | |
holds zi.j = mid (x,1+(k-'1)*8+(j-'1)*32,1+(k-'1)*8+(j-'1)*32+7) | |
by Q13; | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & | |
for i be Nat st i in Seg 4 holds P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))by Q3; | |
then reconsider z as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds (z.i).j = mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) | |
proof | |
let i,j be Nat; | |
assume | |
P11: i in Seg 4 & j in Seg 4; | |
then consider zi be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
P12: z.i = zi & for j be Nat st j in Seg 4 | |
holds zi.j = mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) by Q2; | |
thus (z.i).j = mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) | |
by P11,P12; | |
end; | |
hence ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[x,z]; | |
end; | |
consider I be Function of 128-tuples_on BOOLEAN, | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x being Element of 128-tuples_on BOOLEAN | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
now let input be Element of 128-tuples_on BOOLEAN; | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st I.input = z & for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds (z.i).j = mid (input,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) | |
by A2; | |
hence for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ((I.input).i).j = mid (input,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7); | |
end; | |
hence thesis; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Function of 128-tuples_on BOOLEAN, | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for input be Element of 128-tuples_on BOOLEAN | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ((H1.input).i).j = mid (input,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7); | |
assume | |
A2: for input be Element of 128-tuples_on BOOLEAN | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ((H2.input).i).j = mid (input,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7); | |
now let input be Element of 128-tuples_on BOOLEAN; | |
(H1.input) in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st (H1.input) = s & len s = 4; | |
(H2.input) in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P4: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st (H2.input) = s & len s = 4; | |
now let i be Nat; | |
assume 1 <=i & i <= len (H1.input); | |
then | |
P6: i in Seg 4 by P3; | |
then i in dom(H1.input) by FINSEQ_1:def 3,P3; | |
then (H1.input).i in rng (H1.input) by FUNCT_1:3; | |
then (H1.input).i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P8: ex s be Element of (8-tuples_on BOOLEAN)* | |
st (H1.input).i = s & len s = 4; | |
reconsider H1i = (H1.input).i as | |
Element of (8-tuples_on BOOLEAN)* by P8; | |
i in dom(H2.input) by FINSEQ_1:def 3,P4,P6; | |
then (H2.input).i in rng (H2.input) by FUNCT_1:3; | |
then (H2.input).i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P11: ex s be Element of (8-tuples_on BOOLEAN)* | |
st (H2.input).i = s & len s = 4; | |
reconsider H2i = (H2.input).i as | |
Element of (8-tuples_on BOOLEAN)* by P11; | |
now let j be Nat; | |
assume 1 <=j & j <= len H1i; | |
then | |
P14: j in Seg 4 by P8; | |
then ((H1.input).i).j = mid (input,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7) by A1,P6; | |
hence H1i.j = H2i.j by A2,P6,P14; | |
end; | |
hence (H1.input).i = (H2.input).i by P8,P11,FINSEQ_1:def 17; | |
end; | |
hence H1.input = H2.input by P3,P4,FINSEQ_1:def 17; | |
end; | |
hence H1 = H2 by FUNCT_2:63; | |
end; | |
end; | |
theorem LMStat0: | |
for k be Nat st 1 <= k & k <= 128 ex i,j be Nat st i in Seg 4 & j in Seg 4 & | |
1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 | |
proof | |
let k be Nat; | |
assume | |
A1: 1 <= k & k <= 128; | |
A3: k = 32*(k div 32)+(k mod 32) by NAT_D:2; | |
reconsider m = k div 32 as Nat; | |
reconsider n = k mod 32 as Nat; | |
k div 32 <= (32*4) div 32 by A1,NAT_2:24; | |
then | |
M1: m <= 4 by NAT_D:18; | |
per cases; | |
suppose | |
A4: n = 0; | |
A5: 1 <= m | |
proof | |
assume not 1 <= m; | |
then m = 0 by NAT_1:14; | |
hence contradiction by A1,A3,A4; | |
end; | |
set j = m; | |
A8: j in Seg 4 by M1,A5; | |
set i = 4; | |
A10: i in Seg 4; | |
A11: j-'1 = j-1 by XREAL_1:233,A5; | |
A13: k = 32*(k div 32)+(k mod 32) by NAT_D:2 | |
.= 32*(j-'1)+8*((i-1)+1) by A4,A11 | |
.= 32*(j-'1)+8*((i-'1)+1) by XREAL_1:233 | |
.= 1+(i-'1)*8+(j-'1)*32+7; | |
1+(i-'1)*8+(j-'1)*32+0 <= 1+(i-'1)*8+(j-'1)*32+7 by XREAL_1:7; | |
hence ex i,j be Nat st i in Seg 4 & j in Seg 4 & | |
1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 by A8,A10,A13; | |
end; | |
suppose | |
A14: n <> 0; | |
then | |
XX0: 1 <= n by NAT_1:14; | |
XX1: n <= 32 by NAT_D:1; | |
m <> 4 | |
proof | |
assume | |
U1: m = 4; | |
U2: k = 32*4+n by NAT_D:2,U1 | |
.= 128+n; | |
128+1 <= 128+n by XX0,XREAL_1:7; | |
hence contradiction by U2,XXREAL_0:2,A1; | |
end; | |
then m < 4 by XXREAL_0:1,M1; | |
then | |
A15: m+1 <= 4 by NAT_1:13; | |
A16: 1 <= m+1 by NAT_1:11; | |
set j = m+1; | |
A18: j in Seg 4 by A15,A16; | |
A19: j-'1 = j-1 by XREAL_1:233,NAT_1:11 | |
.=m; | |
A20: k = 32*(j-'1)+n by NAT_D:2,A19; | |
A22: n = 8*(n div 8)+(n mod 8) by NAT_D:2; | |
reconsider s = n div 8 as Nat; | |
reconsider t = n mod 8 as Nat; | |
n div 8 <= (8*4) div 8 by XX1,NAT_2:24; | |
then | |
M2: n div 8 <= 4 by NAT_D:18; | |
now per cases; | |
suppose | |
A23: t = 0; | |
A24: 1 <= s | |
proof | |
assume not 1 <= s; | |
then n = 8*0+0 by NAT_1:14,A22,A23; | |
hence contradiction by A14; | |
end; | |
set i = s; | |
A28: i in Seg 4 by M2,A24; | |
A29: i-'1 = i-1 by XREAL_1:233,A24; | |
A30: n = 8*s+0 by NAT_D:2,A23 | |
.= 8*(i-'1)+8*1 by A29; | |
1+(i-'1)*8+(j-'1)*32+0 <= 1+(i-'1)*8+(j-'1)*32+7 by XREAL_1:7; | |
hence ex i,j be Nat st i in Seg 4 & j in Seg 4 & | |
1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 | |
by A28,A18,A20,A30; | |
end; | |
suppose | |
t <> 0; | |
then | |
XX0: 1 <= t by NAT_1:14; | |
XXX1: t <= 8 by NAT_D:1; | |
s <> 4 | |
proof | |
assume | |
U1: s = 4; | |
U2: n = 8*4+t by NAT_D:2,U1 | |
.= 32+t; | |
32+1 <= 32+t by XX0,XREAL_1:7; | |
hence contradiction by U2,XXREAL_0:2,XX1; | |
end; | |
then s < 4 by XXREAL_0:1,M2; | |
then | |
B15: s+1 <= 4 by NAT_1:13; | |
B16: 1 <= s+1 by NAT_1:11; | |
set i = s+1; | |
B18: i in Seg 4 by B15,B16; | |
B19: i-'1 = i-1 by XREAL_1:233,NAT_1:11 | |
.=s; | |
B20: n = 8*(i-'1)+t by NAT_D:2,B19; | |
B220: 32*(j-'1)+8*(i-'1)+1 <= 32*(j-'1)+8*(i-'1)+t by XX0,XREAL_1:7; | |
32*(j-'1)+8*(i-'1)+t <= 32*(j-'1)+8*(i-'1)+8 by XXX1,XREAL_1:7; | |
then k <= 1+8*(i-'1)+32*(j-'1)+7 by A20,B20; | |
hence ex i,j be Nat st i in Seg 4 & j in Seg 4 & | |
1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 | |
by B220,A20,B20,B18,A18; | |
end; | |
end; | |
hence ex i,j be Nat st i in Seg 4 & j in Seg 4 & 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 1+(i-'1)*8+(j-'1)*32+7; | |
end; | |
end; | |
theorem LMStat2A: | |
for i,j,i0,j0 be Nat st i in Seg 4 & j in Seg 4 & i0 in Seg 4 & | |
j0 in Seg 4 & not (i = i0 & j = j0) | |
holds {k where k is Nat : 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 8+(i-'1)*8+(j-'1)*32} /\ {k where k is Nat : | |
1+(i0-'1)*8+(j0-'1)*32 <= k & k <= 8+(i0-'1)*8+(j0-'1)*32} = {} | |
proof | |
let i,j,i0,j0 be Nat; | |
assume | |
AS: i in Seg 4 & j in Seg 4 & i0 in Seg 4 & | |
j0 in Seg 4 & not (i = i0 & j = j0); | |
set A = {k where k is Nat : 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 8+(i-'1)*8+(j-'1)*32}; | |
set B = {k where k is Nat : 1+(i0-'1)*8+(j0-'1)*32 <= k & | |
k <= 8+(i0-'1)*8+(j0-'1)*32}; | |
A1: 1 <= j & j <= 4 by AS,FINSEQ_1:1; | |
A2: 1 <= i & i <= 4 by AS,FINSEQ_1:1; | |
B1: 1 <= j0 & j0 <= 4 by AS,FINSEQ_1:1; | |
B2: 1 <= i0 & i0 <= 4 by AS,FINSEQ_1:1; | |
P1: (j-'1) = j-1 by XREAL_1:233,A1; | |
P2: (i-'1) = i-1 by XREAL_1:233,A2; | |
P3: (j0-'1) = j0-1 by XREAL_1:233,B1; | |
P4: (i0-'1) = i0-1 by XREAL_1:233,B2; | |
i-1 <= 4-1 by A2,XREAL_1:9; | |
then | |
R2: i-'1 <= 3 by XREAL_1:233,A2; | |
i0-1 <= 4-1 by B2,XREAL_1:9; | |
then | |
R4: i0-'1 <= 3 by XREAL_1:233,B2; | |
per cases; | |
suppose | |
A2: j <> j0; | |
now per cases by A2,XXREAL_0:1; | |
suppose | |
j < j0; | |
then (j-'1) < (j0-'1) by XREAL_1:14,P1,P3; | |
then (j-'1)+1 <= (j0-'1) by NAT_1:13; | |
then | |
A12: ((j-'1)+1)*32 <= (j0-'1)*32 by XREAL_1:64; | |
(i-'1)*8 <= 3*8 by R2,XREAL_1:64; | |
then 8+(i-'1)*8 <= 8+24 by XREAL_1:6; | |
then 8+(i-'1)*8+(j-'1)*32 <= 32+(j-'1)*32 by XREAL_1:6; | |
then | |
A13: 8+(i-'1)*8+(j-'1)*32 <= (j0-'1)*32 by A12,XXREAL_0:2; | |
0+(j0-'1)*32 <= (i0-'1)*8+(j0-'1)*32 by XREAL_1:6; | |
then (j0-'1)*32+0 < (i0-'1)*8+(j0-'1)*32+1 by XREAL_1:8; | |
then | |
A14: 8+(i-'1)*8+(j-'1)*32 < 1+(i0-'1)*8+(j0-'1)*32 by A13,XXREAL_0:2; | |
thus A /\ B = {} | |
proof | |
assume A /\ B <> {}; | |
then consider x be object such that | |
A150: x in A /\ B by XBOOLE_0:def 1; | |
A15: x in A & x in B by XBOOLE_0:def 4,A150; | |
consider k1 be Nat such that | |
A16: x = k1 & 1+(i-'1)*8+(j-'1)*32 <= k1 & k1 <= 8+(i-'1)*8+(j-'1)*32 | |
by A15; | |
consider k2 be Nat such that | |
A17: x = k2 & 1+(i0-'1)*8+(j0-'1)*32 <= k2 & k2 <= 8+(i0-'1)*8+(j0-'1)*32 | |
by A15; | |
reconsider x as Nat by A16; | |
thus contradiction by A17,A14,XXREAL_0:2,A16; | |
end; | |
end; | |
suppose | |
j0 < j; | |
then (j0-'1) < (j-'1) by XREAL_1:14,P1,P3; | |
then (j0-'1)+1 <= (j-'1) by NAT_1:13; | |
then | |
A12: ((j0-'1)+1)*32 <= (j-'1)*32 by XREAL_1:64; | |
(i0-'1)*8 <= 3*8 by R4,XREAL_1:64; | |
then 8+(i0-'1)*8 <= 8+24 by XREAL_1:6; | |
then 8+(i0-'1)*8+(j0-'1)*32 <= 32+(j0-'1)*32 by XREAL_1:6; | |
then | |
A13: 8+(i0-'1)*8+(j0-'1)*32 <= (j-'1)*32 by A12,XXREAL_0:2; | |
0+(j-'1)*32 <= (i-'1)*8+(j-'1)*32 by XREAL_1:6; | |
then (j-'1)*32+0 < (i-'1)*8+(j-'1)*32+1 by XREAL_1:8; | |
then | |
A14: 8+(i0-'1)*8+(j0-'1)*32 < 1+(i-'1)*8+(j-'1)*32 by A13,XXREAL_0:2; | |
thus A /\ B = {} | |
proof | |
assume A /\ B <> {}; | |
then consider x be object such that | |
A150: x in A /\ B by XBOOLE_0:def 1; | |
A15: x in A & x in B by XBOOLE_0:def 4,A150; | |
consider k1 be Nat such that | |
A16: x = k1 & 1+(i-'1)*8+(j-'1)*32 <= k1 & k1 <= 8+(i-'1)*8+(j-'1)*32 | |
by A15; | |
consider k2 be Nat such that | |
A17: x = k2 & 1+(i0-'1)*8+(j0-'1)*32 <= k2 & k2 <= 8+(i0-'1)*8+(j0-'1)*32 | |
by A15; | |
reconsider x as Nat by A16; | |
thus contradiction by A16,A14,XXREAL_0:2,A17; | |
end; | |
end; | |
end; | |
hence A /\ B = {}; | |
end; | |
suppose | |
A2: j = j0; | |
now per cases by A2,AS,XXREAL_0:1; | |
suppose i < i0; | |
then (i-'1) < (i0-'1) by XREAL_1:14,P2,P4; | |
then (i-'1)+1 <= (i0-'1) by NAT_1:13; | |
then ((i-'1)+1)*8 <= (i0-'1)*8 by XREAL_1:64; | |
then | |
A13: (i-'1)*8+8+(j-'1)*32 <= (i0-'1)*8+(j0-'1)*32 by A2,XREAL_1:6; | |
(i0-'1)*8+(j0-'1)*32+0 < (i0-'1)*8+(j0-'1)*32+1 by XREAL_1:8; | |
then | |
A14: 8+(i-'1)*8+(j-'1)*32 < 1+(i0-'1)*8+(j0-'1)*32 by A13,XXREAL_0:2; | |
thus A /\ B = {} | |
proof | |
assume A /\ B <> {}; | |
then consider x be object such that | |
A150: x in A /\ B by XBOOLE_0:def 1; | |
A15: x in A & x in B by XBOOLE_0:def 4,A150; | |
consider k1 be Nat such that | |
A16: x = k1 & 1+(i-'1)*8+(j-'1)*32 <= k1 & k1 <= 8+(i-'1)*8+(j-'1)*32 | |
by A15; | |
consider k2 be Nat such that | |
A17: x = k2 & 1+(i0-'1)*8+(j0-'1)*32 <= k2 & k2 <= 8+(i0-'1)*8+(j0-'1)*32 | |
by A15; | |
reconsider x as Nat by A16; | |
thus contradiction by A16,A17,A14,XXREAL_0:2; | |
end; | |
end; | |
suppose | |
i0 < i; | |
then (i0-'1) < (i-'1) by XREAL_1:14,P2,P4; | |
then (i0-'1)+1 <= (i-'1) by NAT_1:13; | |
then ((i0-'1)+1)*8 <= (i-'1)*8 by XREAL_1:64; | |
then | |
A13: (i0-'1)*8+8+(j0-'1)*32 <= (i-'1)*8+(j-'1)*32 by A2,XREAL_1:6; | |
(i-'1)*8+(j-'1)*32+0 < (i-'1)*8+(j-'1)*32+1 by XREAL_1:8; | |
then | |
A14: 8+(i0-'1)*8+(j0-'1)*32 < 1+(i-'1)*8+(j-'1)*32 by A13,XXREAL_0:2; | |
thus A /\ B = {} | |
proof | |
assume A /\ B <> {}; | |
then consider x be object such that | |
A150: x in A /\ B by XBOOLE_0:def 1; | |
A15: x in A & x in B by XBOOLE_0:def 4,A150; | |
consider k1 be Nat such that | |
A16: x = k1 & 1+(i-'1)*8+(j-'1)*32 <= k1 & k1 <= 8+(i-'1)*8+(j-'1)*32 | |
by A15; | |
consider k2 be Nat such that | |
A17: x = k2 & 1+(i0-'1)*8+(j0-'1)*32 <= k2 & k2 <= 8+(i0-'1)*8+(j0-'1)*32 | |
by A15; | |
reconsider x as Nat by A16; | |
thus contradiction by A16,A14,XXREAL_0:2,A17; | |
end; | |
end; | |
end; | |
hence A /\ B = {}; | |
end; | |
end; | |
theorem LMStat2: | |
for k,i,j,i0,j0 be Nat st 1 <= k & k <= 128 & i in Seg 4 & j in Seg 4 & | |
i0 in Seg 4 & j0 in Seg 4 & 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 1+(i-'1)*8+(j-'1)*32+7 & 1+(i0-'1)*8+(j0-'1)*32 <= k & | |
k <= 1+(i0-'1)*8+(j0-'1)*32+7 holds i = i0 & j = j0 | |
proof | |
let k,i,j,i0,j0 be Nat; | |
assume | |
AS: 1 <= k & k <= 128 & i in Seg 4 & j in Seg 4 & i0 in Seg 4 & j0 in Seg 4 & | |
1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 & | |
1+(i0-'1)*8+(j0-'1)*32 <= k & k <= 1+(i0-'1)*8+(j0-'1)*32+7; | |
assume not (i = i0 & j = j0); | |
then | |
A2: {n where n is Nat : 1+(i-'1)*8+(j-'1)*32 <= n & n <= 8+(i-'1)*8+(j-'1)*32} | |
/\ {n where n is Nat : 1+(i0-'1)*8+(j0-'1)*32 <= n & | |
n <= 8+(i0-'1)*8+(j0-'1)*32} = {} by LMStat2A,AS; | |
A3: k in {n where n is Nat : 1+(i-'1)*8+(j-'1)*32 <= n & | |
n <= 8+(i-'1)*8+(j-'1)*32} by AS; | |
k in {n where n is Nat : 1+(i0-'1)*8+(j0-'1)*32 <= n & | |
n <= 8+(i0-'1)*8+(j0-'1)*32} by AS; | |
hence contradiction by A3,XBOOLE_0:def 4,A2; | |
end; | |
theorem LMStat1: | |
AES-Statearray is one-to-one | |
proof | |
for x1,x2 be object st x1 in 128-tuples_on BOOLEAN & | |
x2 in 128-tuples_on BOOLEAN & | |
(AES-Statearray).x1 = (AES-Statearray).x2 holds x1 = x2 | |
proof | |
let x1,x2 be object; | |
assume | |
A1: x1 in 128-tuples_on BOOLEAN & x2 in 128-tuples_on BOOLEAN & | |
(AES-Statearray).x1 = (AES-Statearray).x2; | |
then reconsider xx1 = x1,xx2 = x2 as Element of 128-tuples_on BOOLEAN; | |
P1: ex s be Element of (BOOLEAN)* st xx1 = s & len s = 128 by A1; | |
P2: ex s be Element of (BOOLEAN)* st xx2 = s & len s = 128 by A1; | |
now let k be Nat; | |
assume | |
P5: 1 <= k & k <= len xx1; | |
consider i,j be Nat such that | |
A4: i in Seg 4 & j in Seg 4 & 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 1+(i-'1)*8+(j-'1)*32+7 by LMStat0,P5,P1; | |
mid (xx1,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) is | |
Element of (BOOLEAN)* by FINSEQ_1:def 11; | |
then reconsider A1ij = (((AES-Statearray).xx1).i).j as | |
FinSequence of (BOOLEAN) by DefStatearray,A4; | |
mid (xx2,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) is | |
Element of (BOOLEAN)* by FINSEQ_1:def 11; | |
then reconsider A2ij = (((AES-Statearray).xx2).i).j as | |
FinSequence of (BOOLEAN) by DefStatearray,A4; | |
A50: 1+(i-'1)*8+(j-'1)*32-((i-'1)*8+(j-'1)*32) <= k-((i-'1)*8+(j-'1)*32) | |
by A4,XREAL_1:9; | |
then reconsider n = k-((i-'1)*8+(j-'1)*32) as Element of NAT by INT_1:3; | |
F41: k-((i-'1)*8+(j-'1)*32) <= 1+(i-'1)*8+(j-'1)*32+7-((i-'1)*8+(j-'1)*32) | |
by A4,XREAL_1:9; | |
F1: 1 <= 1+((i-'1)*8+(j-'1)*32) by NAT_1:11; | |
F2: 1+(i-'1)*8+(j-'1)*32 <= 1+(i-'1)*8+(j-'1)*32+7 by NAT_1:11; | |
Q110: 1 <= i & i <= 4 by A4,FINSEQ_1:1; | |
then 1-1 <= i-1 by XREAL_1:9; | |
then i-'1 = i-1 by XREAL_0:def 2; | |
then i-'1 <= 4-1 by Q110,XREAL_1:9; | |
then | |
Q112: (i-'1)*8 <= 3*8 by XREAL_1:64; | |
Q130: 1 <= j & j <= 4 by A4,FINSEQ_1:1; | |
then 1-1 <= j-1 by XREAL_1:9; | |
then j-'1 = j-1 by XREAL_0:def 2; | |
then j-'1 <= 4-1 by Q130,XREAL_1:9; | |
then | |
Q133: (j-'1)*32 <= 3*32 by XREAL_1:64; | |
(i-'1)*8+(j-'1)*32 <= 24+96 by Q133,Q112,XREAL_1:7; | |
then 1+((i-'1)*8+(j-'1)*32) <= 1+120 by XREAL_1:7; | |
then | |
Q135: 1+(i-'1)*8+(j-'1)*32+7 <= 121+7 by XREAL_1:6; | |
F5: n <= (1+(i-'1)*8+(j-'1)*32+7)-(1+(i-'1)*8+(j-'1)*32)+1 by F41; | |
A6: k = n-1+(1+(i-'1)*8+(j-'1)*32); | |
thus xx1.k = (mid (xx1,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7)).n | |
by F1,F2,Q135,P1,A50,F5,A6,FINSEQ_6:122 | |
.= A2ij.n by DefStatearray,A4,A1 | |
.= (mid (xx2,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7)).n | |
by DefStatearray,A4 | |
.= xx2.k by F1,F2,P2,Q135,A50,F5,A6,FINSEQ_6:122; | |
end; | |
hence thesis by P1,P2,FINSEQ_1:def 17; | |
end; | |
hence thesis by FUNCT_2:19; | |
end; | |
theorem LMStat3: | |
AES-Statearray is onto | |
proof | |
for y be object st y in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex x be object st x in 128-tuples_on BOOLEAN & y = AES-Statearray.x | |
proof | |
let y be object; | |
assume y in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
B10:ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st y = s & len s = 4; | |
then reconsider z = y as Element of (4-tuples_on (8-tuples_on BOOLEAN))*; | |
defpred PK[Nat,set] means | |
ex i,j,n be Nat, zij be Element of (8-tuples_on BOOLEAN) | |
st i in Seg 4 & j in Seg 4 & n in Seg 8 & 1+(i-'1)*8+(j-'1)*32 <= $1 & | |
$1 <= 1+(i-'1)*8+(j-'1)*32+7 & n = $1-((i-'1)*8+(j-'1)*32) & zij = (z.i).j | |
& $2 = zij.n; | |
Q12: for k be Nat st k in Seg 128 ex z being Element of BOOLEAN st PK[k,z] | |
proof | |
let k be Nat; | |
assume k in Seg 128; | |
then 1 <= k & k <= 128 by FINSEQ_1:1; | |
then consider i,j be Nat such that | |
A4: i in Seg 4 & j in Seg 4 & 1+(i-'1)*8+(j-'1)*32 <= k & | |
k <= 1+(i-'1)*8+(j-'1)*32+7 by LMStat0; | |
i in dom z by FINSEQ_1:def 3,A4,B10; | |
then z.i in rng z by FUNCT_1:3; | |
then z.i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
B10: ex s be Element of (8-tuples_on BOOLEAN)* st z.i = s & len s = 4; | |
then reconsider zi = z.i as Element of (8-tuples_on BOOLEAN)*; | |
j in dom zi by B10,FINSEQ_1:def 3,A4; | |
then (zi).j in rng zi by FUNCT_1:3; | |
then reconsider zij = (z.i).j as Element of 8-tuples_on BOOLEAN; | |
A50: 1+(i-'1)*8+(j-'1)*32-((i-'1)*8+(j-'1)*32) <= k-((i-'1)*8+(j-'1)*32) | |
by A4,XREAL_1:9; | |
then reconsider n = k-((i-'1)*8+(j-'1)*32) as Element of NAT by INT_1:3; | |
k-((i-'1)*8+(j-'1)*32) <= 1+(i-'1)*8+(j-'1)*32+7-((i-'1)*8+(j-'1)*32) | |
by A4,XREAL_1:9; | |
then | |
G4: n in Seg 8 by A50; | |
reconsider z = zij.n as Element of BOOLEAN; | |
take z; | |
thus thesis by A4,G4; | |
end; | |
consider x be FinSequence of BOOLEAN | |
such that | |
Q13: dom x = Seg 128 & for i be Nat st i in Seg 128 | |
holds PK[i,x.i] from FINSEQ_1:sch 5(Q12); | |
Q14: len x = 128 by Q13,FINSEQ_1:def 3; | |
reconsider x as Element of (BOOLEAN)* by FINSEQ_1:def 11; | |
x in 128-tuples_on BOOLEAN by Q14; | |
then reconsider x as Element of 128-tuples_on BOOLEAN; | |
P2: for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds (z.i).j = mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7) | |
proof | |
let i,j be Nat; | |
assume | |
P21: i in Seg 4 & j in Seg 4; | |
then i in dom z by FINSEQ_1:def 3,B10; | |
then z.i in rng z by FUNCT_1:3; | |
then z.i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P8: ex s be Element of (8-tuples_on BOOLEAN)* st z.i = s & len s = 4; | |
reconsider zi = z.i as Element of (8-tuples_on BOOLEAN)* by P8; | |
j in dom zi by P8,FINSEQ_1:def 3,P21; | |
then zi.j in rng zi by FUNCT_1:3; | |
then zi.j in (8-tuples_on BOOLEAN); | |
then | |
P11: ex s be Element of (BOOLEAN)* st zi.j = s & len s = 8; | |
reconsider zij = zi.j as Element of (BOOLEAN)* by P11; | |
Q110: 1 <= i & i <= 4 by P21,FINSEQ_1:1; | |
then 1-1 <= i-1 by XREAL_1:9; | |
then i-'1 = i-1 by XREAL_0:def 2; | |
then i-'1 <= 4-1 by Q110,XREAL_1:9; | |
then | |
Q112: (i-'1)*8 <= 3*8 by XREAL_1:64; | |
Q130: 1 <= j & j <= 4 by P21,FINSEQ_1:1; | |
then 1-1 <= j-1 by XREAL_1:9; | |
then j-'1 = j-1 by XREAL_0:def 2; | |
then j-'1 <= 4-1 by Q130,XREAL_1:9; | |
then | |
Q133: (j-'1)*32 <= 3*32 by XREAL_1:64; | |
(i-'1)*8+(j-'1)*32 <= 24+96 by Q133,Q112,XREAL_1:7; | |
then | |
Q134: 1+((i-'1)*8+(j-'1)*32) <= 1+120 by XREAL_1:7; | |
then | |
G1: 1+((i-'1)*8+(j-'1)*32) <= len x by XXREAL_0:2,Q14; | |
G0: 1 <= 1+((i-'1)*8+(j-'1)*32) by NAT_1:11; | |
G2: 1 <= 1+((i-'1)*8+(j-'1)*32+7) by NAT_1:11; | |
G3: 1+((i-'1)*8+(j-'1)*32)+0 <= 1+(i-'1)*8+(j-'1)*32+7 by XREAL_1:7; | |
Q135: 1+(i-'1)*8+(j-'1)*32+7 <= 121+7 by XREAL_1:6,Q134; | |
then | |
F3: 1+(i-'1)*8+(j-'1)*32+7 <= len x by Q13,FINSEQ_1:def 3; | |
P13: len (mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7)) = | |
(1+(i-'1)*8+(j-'1)*32+7)-'(1+(i-'1)*8+(j-'1)*32)+1 | |
by G1,G2,G3,G0,F3,FINSEQ_6:118 | |
.= (1+(i-'1)*8+(j-'1)*32+7)-(1+(i-'1)*8+(j-'1)*32)+1 by G3,XREAL_1:233 | |
.= 8; | |
now let n be Nat; | |
assume | |
F40: 1 <= n & n <= len zij; | |
F1: 1 <= 1+((i-'1)*8+(j-'1)*32) by NAT_1:11; | |
F2: 1+(i-'1)*8+(j-'1)*32 <= 1+(i-'1)*8+(j-'1)*32+7 by NAT_1:11; | |
F5: n <= (1+(i-'1)*8+(j-'1)*32+7)-(1+(i-'1)*8+(j-'1)*32)+1 by F40,P11; | |
reconsider k = n+((i-'1)*8+(j-'1)*32) as Nat; | |
A6: k = n-1+(1+(i-'1)*8+(j-'1)*32); | |
n <= n+((i-'1)*8+(j-'1)*32) by NAT_1:11; | |
then | |
H1: 1 <= k by F40,XXREAL_0:2; | |
reconsider k = n+((i-'1)*8+(j-'1)*32) as Nat; | |
H3: k <= 8+((i-'1)*8+(j-'1)*32) by F40,P11,XREAL_1:7; | |
then | |
H2: k <= 128 by Q135,XXREAL_0:2; | |
then k in Seg 128 by H1; | |
then consider i0,j0,n0 be Nat, | |
zi0j0 be Element of (8-tuples_on BOOLEAN) such that | |
AA1: i0 in Seg 4 & j0 in Seg 4 & n0 in Seg 8 & 1+(i0-'1)*8+(j0-'1)*32 <= k & | |
k <= 1+(i0-'1)*8+(j0-'1)*32+7 & n0 = k-((i0-'1)*8+(j0-'1)*32) & | |
zi0j0 = (z.i0).j0 & x.k = zi0j0.n0 by Q13; | |
1+((i-'1)*8+(j-'1)*32) <= n+((i-'1)*8+(j-'1)*32) by F40,XREAL_1:7; | |
then 1+(i-'1)*8+(j-'1)*32 <= k & k <= 1+(i-'1)*8+(j-'1)*32+7 by H3; | |
then i = i0 & j = j0 by LMStat2,AA1,P21,H1,H2; | |
hence zij.n = (mid (x,1+(i-'1)*8+(j-'1)*32,1+(i-'1)*8+(j-'1)*32+7)).n | |
by AA1,F1,F2,F3,F40,F5,A6,FINSEQ_6:122; | |
end; | |
hence thesis by FINSEQ_1:def 17,P11,P13; | |
end; | |
(AES-Statearray.x) in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st (AES-Statearray.x) = s & len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len (AES-Statearray.x); | |
then | |
P6: i in Seg 4 by P3; | |
then i in dom(AES-Statearray.x) by FINSEQ_1:def 3,P3; | |
then (AES-Statearray.x).i in rng (AES-Statearray.x) by FUNCT_1:3; | |
then (AES-Statearray.x).i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P8: ex s be Element of (8-tuples_on BOOLEAN)* | |
st (AES-Statearray.x).i = s & len s = 4; | |
reconsider H1i = (AES-Statearray.x).i as | |
Element of (8-tuples_on BOOLEAN)* by P8; | |
i in dom z by FINSEQ_1:def 3,B10,P6; | |
then z.i in rng z by FUNCT_1:3; | |
then z.i in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P11: ex s be Element of (8-tuples_on BOOLEAN)* | |
st z.i = s & len s = 4; | |
reconsider H2i = z.i as Element of (8-tuples_on BOOLEAN)* by P11; | |
now let j be Nat; | |
assume 1 <= j & j <= len H1i; | |
then | |
P14: j in Seg 4 by P8; | |
then ((AES-Statearray.x).i).j = mid (x,1+(i-'1)*8+(j-'1)*32, | |
1+(i-'1)*8+(j-'1)*32+7) by DefStatearray,P6; | |
hence H1i.j = H2i.j by P2,P6,P14; | |
end; | |
hence (AES-Statearray.x).i = z.i by P8,P11,FINSEQ_1:def 17; | |
end; | |
hence thesis by P3,B10,FINSEQ_1:def 17; | |
end; | |
then 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) = | |
rng AES-Statearray by FUNCT_2:10; | |
hence thesis by FUNCT_2:def 3; | |
end; | |
registration | |
cluster AES-Statearray -> bijective; | |
correctness by LMStat1,LMStat3; | |
end; | |
theorem LMINV1: | |
for cipher be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds AES-Statearray.((AES-Statearray)".(cipher)) = cipher | |
proof | |
let cipher be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
set f = AES-Statearray; | |
L0: rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then reconsider g = f" as Function of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),128-tuples_on BOOLEAN | |
by FUNCT_2:25; | |
L2: (f")*f = id (128-tuples_on BOOLEAN) & f*(f") = | |
id (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) by FUNCT_2:29,L0; | |
then g is one-to-one & rng g = 128-tuples_on BOOLEAN by FUNCT_2:18; | |
then f = g" by FUNCT_2:30,L2; | |
hence thesis by FUNCT_2:26; | |
end; | |
begin :: SubBytes | |
reserve SBT for Permutation of (8-tuples_on BOOLEAN); | |
definition | |
let SBT; | |
func SubBytes(SBT) -> | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefSubBytes: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex inputij be Element of 8-tuples_on BOOLEAN | |
st inputij = (input.i).j & ((it.input).i).j = SBT.(inputij); | |
existence | |
proof | |
defpred P0[Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))] means | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex inputij be Element of 8-tuples_on BOOLEAN | |
st inputij = ($1.i).j & ($2.i).j = SBT.(inputij); | |
A1: for text being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[text,z] | |
proof | |
let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
text in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q01: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st text = s & len s = 4; | |
defpred P[Nat,set] means | |
ex zk be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st $2 = zk & for j be Nat st j in Seg 4 | |
holds ex textij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.$1).j & zk.j = SBT.(textij); | |
Q1: for k be Nat st k in Seg 4 ex zk being | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,zk] | |
proof | |
let k be Nat; | |
assume k in Seg 4; | |
then k in dom text by Q01,FINSEQ_1:def 3; | |
then text.k in rng text by FUNCT_1:3; | |
then text.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q13: ex s be Element of (8-tuples_on BOOLEAN)* st text.k = s & len s = 4; | |
then reconsider textk = text.k as Element of (8-tuples_on BOOLEAN)*; | |
defpred Pi[Nat,set] means | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (textk).$1 & | |
$2 = SBT.(textij); | |
Q18: for j be Nat st j in Seg 4 ex xi being Element of (8-tuples_on BOOLEAN) | |
st Pi[j,xi] | |
proof | |
let j be Nat; | |
assume j in Seg 4; | |
then j in dom(textk) by Q13,FINSEQ_1:def 3; | |
then (textk).j in rng (textk) by FUNCT_1:3; | |
then reconsider textkj = (textk).j as Element of 8-tuples_on BOOLEAN; | |
SBT.(textkj) = SBT.(textkj); | |
hence thesis; | |
end; | |
consider zk be FinSequence of (8-tuples_on BOOLEAN) such that | |
Q22: dom zk = Seg 4 & for j be Nat st j in Seg 4 | |
holds Pi[j,zk.j] from FINSEQ_1:sch 5(Q18); | |
Q23: len zk = 4 by Q22,FINSEQ_1:def 3; | |
reconsider zk as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zk in 4-tuples_on (8-tuples_on BOOLEAN) by Q23; | |
then reconsider zk as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
for j be Nat st j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (textk).j & | |
zk.j = SBT.(textij) by Q22; | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & for i be Nat st i in Seg 4 | |
holds P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by Q3; | |
then reconsider z as Element of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
take z; | |
for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
(z.i).j = SBT.(textij) | |
proof | |
let i,j be Nat; | |
assume | |
Q4: i in Seg 4 & j in Seg 4; | |
then ex zi be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st z.i = zi & for j be Nat st j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
zi.j = SBT.(textij) by Q2; | |
hence ex textij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & (z.i).j = SBT.(textij) by Q4; | |
end; | |
hence thesis; | |
end; | |
consider I be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let F1,F2 be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F1.text).i).j = SBT.(textij); | |
assume | |
A2: for text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F2.text).i).j = SBT.(textij); | |
now let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then | |
A4: ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F1.text).i).j = SBT.(textij) by A1; | |
A5: ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F2.text).i).j = SBT.(textij) by A3,A2; | |
thus ((F1.text).i).j = ((F2.text).i).j by A4,A5; | |
end; | |
hence F1.text = F2.text by LM01; | |
end; | |
hence F1 = F2 by FUNCT_2:63; | |
end; | |
end; | |
definition | |
let SBT; | |
func InvSubBytes(SBT) -> | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefInvSubBytes: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex inputij be Element of 8-tuples_on BOOLEAN st inputij = (input.i).j & | |
((it.input).i).j = (SBT").(inputij); | |
existence | |
proof | |
defpred P0[Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))] means | |
for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex inputij be Element of 8-tuples_on BOOLEAN st inputij = ($1.i).j & | |
($2.i).j = (SBT").(inputij); | |
A1: for text being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[text,z] | |
proof | |
let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
text in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q01: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st text = s & | |
len s = 4; | |
defpred P[Nat,set] means | |
ex zk be Element of (4-tuples_on (8-tuples_on BOOLEAN)) st $2 = zk & | |
for j be Nat st j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.$1).j & | |
zk.j = (SBT").(textij); | |
Q1: for k be Nat st k in Seg 4 | |
ex zk being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,zk] | |
proof | |
let k be Nat; | |
assume k in Seg 4; | |
then k in dom text by Q01,FINSEQ_1:def 3; | |
then text.k in rng text by FUNCT_1:3; | |
then text.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q13: ex s be Element of (8-tuples_on BOOLEAN)* st text.k = s & len s = 4; | |
then reconsider textk = text.k as Element of (8-tuples_on BOOLEAN)*; | |
defpred Pi[Nat,set] means | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (textk).$1 & | |
$2 = (SBT").(textij); | |
Q18: for j be Nat st j in Seg 4 ex xi being Element of (8-tuples_on BOOLEAN) | |
st Pi[j,xi] | |
proof | |
let j be Nat; | |
assume j in Seg 4; | |
then j in dom(textk) by Q13,FINSEQ_1:def 3; | |
then (textk).j in rng (textk) by FUNCT_1:3; | |
then reconsider textkj = (textk).j as Element of 8-tuples_on BOOLEAN; | |
(SBT").(textkj) = (SBT").(textkj); | |
hence thesis; | |
end; | |
consider zk be FinSequence of (8-tuples_on BOOLEAN) such that | |
Q22: dom zk = Seg 4 & for j be Nat st j in Seg 4 | |
holds Pi[j,zk.j ] from FINSEQ_1:sch 5(Q18); | |
Q23: len zk = 4 by Q22,FINSEQ_1:def 3; | |
reconsider zk as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zk in 4-tuples_on (8-tuples_on BOOLEAN) by Q23; | |
then reconsider zk as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
for j be Nat st j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (textk).j & | |
zk.j = (SBT").(textij) by Q22; | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & for i be Nat st i in Seg 4 | |
holds P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by Q3; | |
then reconsider z as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
take z; | |
for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
(z.i).j = (SBT").(textij) | |
proof | |
let i,j be Nat; | |
assume | |
Q4: i in Seg 4 & j in Seg 4; | |
then ex zi be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st z.i = zi & for j be Nat st j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
zi.j = (SBT").(textij) by Q2; | |
hence ex textij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & (z.i).j = (SBT").(textij) by Q4; | |
end; | |
hence thesis; | |
end; | |
consider I be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let F1,F2 be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F1.text).i).j = (SBT").(textij); | |
assume | |
A2: for text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F2.text).i).j = (SBT").(textij); | |
now let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then | |
A4: ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F1.text).i).j = (SBT").(textij) by A1; | |
A5: ex textij be Element of 8-tuples_on BOOLEAN st textij = (text.i).j & | |
((F2.text).i).j = (SBT").(textij) by A3,A2; | |
thus ((F1.text).i).j = ((F2.text).i).j by A4,A5; | |
end; | |
hence F1.text = F2.text by LM01; | |
end; | |
hence F1 = F2 by FUNCT_2:63; | |
end; | |
end; | |
INV07A: | |
for input be Element of 8-tuples_on BOOLEAN | |
holds (SBT").(SBT.(input)) = input | |
proof | |
let input be Element of 8-tuples_on BOOLEAN; | |
thus (SBT").(SBT.(input)) = ((SBT")*SBT).input by FUNCT_2:15 | |
.= (id (8-tuples_on BOOLEAN)).input by FUNCT_2:61 | |
.= input; | |
end; | |
INV08A: | |
for input be Element of 8-tuples_on BOOLEAN | |
holds SBT.((SBT").(input)) = input | |
proof | |
let input be Element of 8-tuples_on BOOLEAN; | |
thus SBT.((SBT").(input)) = (SBT*(SBT")).input by FUNCT_2:15 | |
.= (id (8-tuples_on BOOLEAN)).input by FUNCT_2:61 | |
.= input; | |
end; | |
theorem INV07: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (InvSubBytes(SBT)).((SubBytes(SBT)).input) = input | |
proof | |
let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then consider outputij be Element of 8-tuples_on BOOLEAN such that | |
A4: outputij = (((SubBytes(SBT)).input).i).j & | |
(((InvSubBytes(SBT)).((SubBytes(SBT)).input)).i).j = (SBT").(outputij) | |
by DefInvSubBytes; | |
consider inputij be Element of 8-tuples_on BOOLEAN such that | |
A5: inputij = (input.i).j & (((SubBytes(SBT)).input).i).j = SBT.(inputij) | |
by DefSubBytes,A3; | |
thus (((InvSubBytes(SBT)).((SubBytes(SBT)).input)).i).j = (input.i).j | |
by A4,A5,INV07A; | |
end; | |
hence (InvSubBytes(SBT)).((SubBytes(SBT)).input) = input by LM01; | |
end; | |
theorem INV08: | |
for output be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (SubBytes(SBT)).((InvSubBytes(SBT)).output) = output | |
proof | |
let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then consider outputij be Element of 8-tuples_on BOOLEAN such that | |
A4: outputij = (((InvSubBytes(SBT)).input).i).j & | |
(((SubBytes(SBT)).((InvSubBytes(SBT)).input)).i).j = SBT.(outputij) | |
by DefSubBytes; | |
consider inputij be Element of 8-tuples_on BOOLEAN such that | |
A5: inputij = (input.i).j & | |
(((InvSubBytes(SBT)).input).i).j = (SBT").(inputij) by DefInvSubBytes,A3; | |
thus (((SubBytes(SBT)).((InvSubBytes(SBT)).input)).i).j = (input.i).j | |
by A4,A5,INV08A; | |
end; | |
hence (SubBytes(SBT)).((InvSubBytes(SBT)).input) = input by LM01; | |
end; | |
theorem | |
SubBytes(SBT) is one-to-one & SubBytes(SBT) is onto & | |
InvSubBytes(SBT) is one-to-one & InvSubBytes(SBT) is onto & | |
InvSubBytes(SBT) = (SubBytes(SBT))" & SubBytes(SBT) = (InvSubBytes(SBT))" | |
proof | |
set f = SubBytes(SBT); | |
set g = InvSubBytes(SBT); | |
P1: for x be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds g.(f.x) = x by INV07; | |
P2: for y be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds f.(g.y) = y by INV08; | |
thus f is one-to-one & f is onto & g is one-to-one & g is onto & | |
g = f" & f = g" by INV00,P1,P2; | |
end; | |
begin :: ShiftRows | |
definition | |
func ShiftRows -> | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefShiftRows: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(it.input).i = Op-Shift(xi,5-i)); | |
existence | |
proof | |
defpred P0[Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))] means | |
for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = $1.i & | |
$2.i = Op-Shift(xi,5-i); | |
A1: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[x,z] | |
proof | |
let x be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
x in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q01: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st x = s & | |
len s = 4; | |
defpred P[Nat,set] means | |
ex xk be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xk = x.$1 & | |
$2 = Op-Shift(xk,5-$1); | |
Q1: for k be Nat st k in Seg 4 | |
ex zk being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,zk] | |
proof | |
let k be Nat; | |
assume k in Seg 4; | |
then k in dom x by Q01,FINSEQ_1:def 3; | |
then | |
Q11: x.k in rng x by FUNCT_1:3; | |
then x.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q13: ex s be Element of (8-tuples_on BOOLEAN)* st x.k = s & len s = 4; | |
then reconsider xk = x.k as Element of (8-tuples_on BOOLEAN)*; | |
reconsider xk1 = xk as Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
by Q11; | |
reconsider zk = Op-Shift(xk,5-k) as | |
FinSequence of (8-tuples_on BOOLEAN); | |
Q15: len zk = 4 by Q13,DESCIP_1:def 3; | |
reconsider zk as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zk in 4-tuples_on (8-tuples_on BOOLEAN) by Q15; | |
then reconsider zk as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
ex xk be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xk = x.k & | |
zk = Op-Shift(xk1,5-k); | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & for i be Nat st i in Seg 4 | |
holds P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by Q3; | |
hence thesis by Q2; | |
end; | |
consider I be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H1.input).i = Op-Shift(xi,5-i)); | |
assume | |
A2: for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H2.input).i = Op-Shift(xi,5-i)); | |
now let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
H1.input in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* st H1.input = s & | |
len s = 4; | |
H2.input in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P4: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* st H2.input = s & | |
len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len (H1.input); | |
then | |
XX2: i in Seg 4 by P3; | |
then | |
XX3: ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st xi = input.i & (H1.input).i = Op-Shift(xi,5-i) by A1; | |
XX4: ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st xi = input.i & (H2.input).i = Op-Shift(xi,5-i) by A2,XX2; | |
thus (H1.input).i = (H2.input).i by XX3,XX4; | |
end; | |
hence H1.input = H2.input by P3,P4,FINSEQ_1:14; | |
end; | |
hence H1 = H2 by FUNCT_2:63; | |
end; | |
end; | |
definition | |
func InvShiftRows -> | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefInvShiftRows: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(it.input).i = Op-Shift(xi,i-1)); | |
existence | |
proof | |
defpred P0[Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))] means | |
for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = $1.i & | |
$2.i = Op-Shift(xi,i-1); | |
A1: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[x,z] | |
proof | |
let x be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
x in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q01: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st x = s & | |
len s = 4; | |
defpred P[Nat,set] means | |
ex xk be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xk = x.$1 & | |
$2 = Op-Shift(xk,$1-1); | |
Q1: for k be Nat st k in Seg 4 | |
ex zk being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,zk] | |
proof | |
let k be Nat; | |
assume k in Seg 4; | |
then k in dom x by Q01,FINSEQ_1:def 3; | |
then | |
Q11: x.k in rng x by FUNCT_1:3; | |
then x.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q13: ex s be Element of (8-tuples_on BOOLEAN)* st x.k = s & len s = 4; | |
then reconsider xk = x.k as Element of (8-tuples_on BOOLEAN)*; | |
reconsider xk1 = xk as Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
by Q11; | |
reconsider zk = Op-Shift(xk,k-1) as | |
FinSequence of (8-tuples_on BOOLEAN); | |
Q15: len zk = 4 by Q13,DESCIP_1:def 3; | |
reconsider zk as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zk in 4-tuples_on (8-tuples_on BOOLEAN) by Q15; | |
then reconsider zk as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
ex xk be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xk = x.k & | |
zk = Op-Shift(xk1,k-1); | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & for i be Nat st i in Seg 4 holds | |
P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by Q3; | |
hence thesis by Q2; | |
end; | |
consider I be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H1.input).i = Op-Shift(xi,i-1)); | |
assume | |
A2: for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Nat st i in Seg 4 holds | |
ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H2.input).i = Op-Shift(xi,i-1)); | |
now let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
H1.input in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* st H1.input = s & | |
len s = 4; | |
H2.input in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P4: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* st H2.input = s & | |
len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len (H1.input); | |
then | |
XX2: i in Seg 4 by P3; | |
then | |
XX3: ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H1.input).i = Op-Shift(xi,i-1) by A1; | |
XX4: ex xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) st xi = input.i & | |
(H2.input).i = Op-Shift(xi,i-1) by A2,XX2; | |
thus (H1.input).i = (H2.input).i by XX3,XX4; | |
end; | |
hence H1.input = H2.input by P3,P4,FINSEQ_1:14; | |
end; | |
hence H1 = H2 by FUNCT_2:63; | |
end; | |
end; | |
theorem INV04: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds InvShiftRows.(ShiftRows.input) = input | |
proof | |
let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
InvShiftRows.(ShiftRows.input) in | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* | |
st InvShiftRows.(ShiftRows.input) = s & len s = 4; | |
input in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P4: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* | |
st input = s & len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len (InvShiftRows.(ShiftRows.input)); | |
then | |
XX2: i in Seg 4 by P3; | |
then consider xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
XX3: xi = input.i & (ShiftRows.input).i = Op-Shift(xi,5-i) by DefShiftRows; | |
xi in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
YY1: ex s be Element of (8-tuples_on BOOLEAN)* st xi = s & len s = 4; | |
consider yi be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
XX4: yi = (ShiftRows.input).i & | |
(InvShiftRows.(ShiftRows.input)).i = Op-Shift(yi,i-1) | |
by DefInvShiftRows,XX2; | |
thus (InvShiftRows.(ShiftRows.input)).i = Op-Shift(xi,5-i+(i-1)) | |
by XX3,XX4,DESCIP_1:10,YY1 | |
.= input.i by DESCIP_1:12,YY1,XX3; | |
end; | |
hence (InvShiftRows.(ShiftRows.input)) = input by P3,P4,FINSEQ_1:14; | |
end; | |
theorem INV05: | |
for output be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds ShiftRows.(InvShiftRows.output) = output | |
proof | |
let output be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
ShiftRows.(InvShiftRows.output) in | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P3: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* | |
st ShiftRows.(InvShiftRows.output) = s & len s = 4; | |
output in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
P4: ex s be Element of (4-tuples_on(8-tuples_on BOOLEAN))* | |
st output = s & len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len (ShiftRows.(InvShiftRows.output)); | |
then | |
XX2: i in Seg 4 by P3; | |
then consider xi be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
such that | |
XX3: xi = output.i & | |
(InvShiftRows.output).i = Op-Shift(xi,i-1) by DefInvShiftRows; | |
xi in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
YY1: ex s be Element of (8-tuples_on BOOLEAN)* st xi = s & len s = 4; | |
consider yi be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
XX4: yi = (InvShiftRows.output).i & | |
(ShiftRows.(InvShiftRows.output)).i = Op-Shift(yi,5-i) by DefShiftRows,XX2; | |
thus (ShiftRows.(InvShiftRows.output)).i = Op-Shift(xi,i-1+(5-i)) | |
by XX3,XX4,DESCIP_1:10,YY1 | |
.= output.i by DESCIP_1:12,YY1,XX3; | |
end; | |
hence (ShiftRows.(InvShiftRows.output)) = output by P3,P4,FINSEQ_1:14; | |
end; | |
theorem | |
ShiftRows is one-to-one & ShiftRows is onto & | |
InvShiftRows is one-to-one & InvShiftRows is onto & | |
InvShiftRows = (ShiftRows)" & ShiftRows = (InvShiftRows)" | |
by INV00,INV04,INV05; | |
begin :: AddRoundKey | |
definition | |
func AddRoundKey -> | |
Function of [:4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)):], | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:DefAddRoundKey: | |
for text, key be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
((it.(text,key)).i).j = Op-XOR(textij,keyij); | |
existence | |
proof | |
defpred P0[Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))] means | |
for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = ($1.i).j & keyij = ($2.i).j & ($3.i).j = Op-XOR(textij,keyij); | |
A1: for text,key | |
being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[text,key,z] | |
proof | |
let text, key | |
be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
text in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q01: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st text = s & len s = 4; | |
key in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
Q02: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st key = s & len s = 4; | |
defpred P[Nat,set] means | |
ex zk be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st $2 = zk & for j be Nat st j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.$1).j & keyij = (key.$1).j & | |
zk.j = Op-XOR(textij,keyij); | |
Q1: for k be Nat st k in Seg 4 ex zk being | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)) st P[k,zk] | |
proof | |
let k be Nat; | |
assume | |
Q11: k in Seg 4; | |
then k in dom text by Q01,FINSEQ_1:def 3; | |
then text.k in rng text by FUNCT_1:3; | |
then text.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q13: ex s be Element of (8-tuples_on BOOLEAN)* | |
st text.k = s & len s = 4; | |
then reconsider textk = text.k as Element of (8-tuples_on BOOLEAN)*; | |
k in dom(key) by Q02,FINSEQ_1:def 3,Q11; | |
then key.k in rng key by FUNCT_1:3; | |
then key.k in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
Q16: ex s be Element of (8-tuples_on BOOLEAN)* | |
st key.k = s & len s = 4; | |
then reconsider keyk = key.k as Element of (8-tuples_on BOOLEAN)*; | |
defpred Pi[Nat,set] means | |
ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (textk).$1 & keyij = (keyk).$1 & $2 = Op-XOR(textij,keyij); | |
Q18: for j be Nat st j in Seg 4 ex xi being Element of (8-tuples_on BOOLEAN) | |
st Pi[j,xi] | |
proof | |
let j be Nat; | |
assume | |
Q19: j in Seg 4; | |
then j in dom(textk) by Q13,FINSEQ_1:def 3; | |
then (textk).j in rng (textk) by FUNCT_1:3; | |
then reconsider textkj = (textk).j as Element of 8-tuples_on BOOLEAN; | |
j in dom(keyk) by Q16,FINSEQ_1:def 3,Q19; | |
then (keyk).j in rng (keyk) by FUNCT_1:3; | |
then reconsider keykj = (key.k).j as Element of 8-tuples_on BOOLEAN; | |
Op-XOR(textkj,keykj) = Op-XOR(textkj,keykj); | |
hence thesis; | |
end; | |
consider zk be FinSequence of (8-tuples_on BOOLEAN) such that | |
Q22: dom zk = Seg 4 & for j be Nat st j in Seg 4 | |
holds Pi[j,zk.j] from FINSEQ_1:sch 5(Q18); | |
Q23: len zk = 4 by Q22,FINSEQ_1:def 3; | |
reconsider zk as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
zk in 4-tuples_on (8-tuples_on BOOLEAN) by Q23; | |
then reconsider zk as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
for j be Nat st j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (textk).j & keyij = (keyk).j & zk.j = Op-XOR(textij,keyij) | |
by Q22; | |
hence thesis; | |
end; | |
consider z be FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
Q2: dom z = Seg 4 & for i be Nat st i in Seg 4 | |
holds P[i,z.i] from FINSEQ_1:sch 5(Q1); | |
Q3: len z = 4 by Q2,FINSEQ_1:def 3; | |
reconsider z as Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
by FINSEQ_1:def 11; | |
z in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by Q3; | |
then reconsider z as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
take z; | |
for i,j be Nat st i in Seg 4 & j in Seg 4 holds | |
ex textij,keyij be Element of 8-tuples_on BOOLEAN st textij = | |
(text.i).j & keyij = (key.i).j & (z.i).j = Op-XOR(textij,keyij) | |
proof | |
let i,j be Nat; | |
assume | |
Q4: i in Seg 4 & j in Seg 4; | |
then ex zi be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st z.i = zi & for j be Nat st j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
zi.j = Op-XOR(textij,keyij) by Q2; | |
hence ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
(z.i).j = Op-XOR(textij,keyij) by Q4; | |
end; | |
hence thesis; | |
end; | |
consider I be Function of [:4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)):], | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: for x,y being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,y,I.(x,y)] from BINOP_1:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let F1,F2 be Function of [:4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)):], | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: for text,key be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
((F1.(text,key)).i).j = Op-XOR(textij,keyij); | |
assume | |
A2: for text,key be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds for i,j be Nat st i in Seg 4 & j in Seg 4 | |
holds ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
((F2.(text,key)).i).j = Op-XOR(textij,keyij); | |
now let text,key be | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then | |
A4: ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
((F1.(text,key)).i).j = Op-XOR(textij,keyij) by A1; | |
A5: ex textij,keyij be Element of 8-tuples_on BOOLEAN | |
st textij = (text.i).j & keyij = (key.i).j & | |
((F2.(text,key)).i).j = Op-XOR(textij,keyij) by A3,A2; | |
thus ((F1.(text,key)).i).j = ((F2.(text,key)).i).j by A4,A5; | |
end; | |
hence F1.(text,key) = F2.(text,key) by LM01; | |
end; | |
hence F1 = F2 by BINOP_1:2; | |
end; | |
end; | |
begin :: Key Expansion | |
definition | |
let SBT; | |
let x be Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
func SubWord(SBT,x) -> Element of 4-tuples_on (8-tuples_on BOOLEAN) means | |
for i be Element of Seg 4 holds it.i = SBT.(x.i); | |
existence | |
proof | |
defpred P[Nat,set] means ex xi be Element of 8-tuples_on BOOLEAN | |
st xi = x.$1 & $2 = SBT.(xi); | |
P1: for k be Nat st k in Seg 4 ex z being Element of 8-tuples_on BOOLEAN | |
st P[k,z] | |
proof | |
let k be Nat; | |
assume | |
AS: k in Seg 4; | |
x in 4-tuples_on (8-tuples_on BOOLEAN); | |
then ex s be Element of (8-tuples_on BOOLEAN)* st x = s & len s = 4; | |
then k in dom x by FINSEQ_1:def 3,AS; | |
then x.k in rng x by FUNCT_1:3; | |
then reconsider xk = x.k as Element of 8-tuples_on BOOLEAN; | |
SBT.(xk) is Element of 8-tuples_on BOOLEAN; | |
hence thesis; | |
end; | |
consider p being FinSequence of 8-tuples_on BOOLEAN such that | |
P3: dom p = Seg 4 & for k be Nat st k in Seg 4 holds | |
P[k,p.k] from FINSEQ_1:sch 5(P1); | |
reconsider p as Element of (8-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
len p = 4 by P3,FINSEQ_1:def 3; | |
then p in 4-tuples_on (8-tuples_on BOOLEAN); | |
then reconsider p as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
take p; | |
now let i be Element of Seg 4; | |
ex xi be Element of 8-tuples_on BOOLEAN st xi = x.i & p.i = SBT.(xi) | |
by P3; | |
hence p.i = SBT.(x.i); | |
end; | |
hence thesis; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
assume | |
A1: for i be Element of Seg 4 holds H1.i = SBT.(x.i); | |
assume | |
A2: for i be Element of Seg 4 holds H2.i = SBT.(x.i); | |
H1 in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P1: ex s be Element of (8-tuples_on BOOLEAN)* st H1 = s & len s = 4; | |
H2 in 4-tuples_on (8-tuples_on BOOLEAN); | |
then | |
P2: ex s be Element of (8-tuples_on BOOLEAN)* st H2 = s & len s = 4; | |
now let i be Nat; | |
assume 1 <= i & i <= len H1; | |
then i in Seg 4 by P1; | |
then reconsider j = i as Element of Seg 4; | |
thus H1.i = (SBT).(x.j) by A1 | |
.= H2.i by A2; | |
end; | |
hence H1 = H2 by P1,P2,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let x be Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
func RotWord(x) -> Element of 4-tuples_on (8-tuples_on BOOLEAN) equals | |
Op-LeftShift(x); | |
correctness by DESCIP_1:6; | |
end; | |
definition | |
let n,m be non zero Element of NAT; | |
let s,t be Element of m-tuples_on (n-tuples_on BOOLEAN); | |
func Op-WXOR(s,t) -> Element of m-tuples_on (n-tuples_on BOOLEAN) means | |
for i be Element of Seg m holds it.i = Op-XOR(s.i,t.i); | |
existence | |
proof | |
defpred P[Nat,set] means | |
ex si,ti be Element of (n-tuples_on BOOLEAN) st si = s.$1 & ti = t.$1 & | |
$2 = Op-XOR(si,ti); | |
P1: for k be Nat st k in Seg m ex z being Element of n-tuples_on BOOLEAN | |
st P[k,z] | |
proof | |
let k be Nat; | |
assume | |
AS: k in Seg m; | |
s in m-tuples_on (n-tuples_on BOOLEAN); | |
then ex v be Element of (n-tuples_on BOOLEAN)* st s = v & len v = m; | |
then k in dom s by FINSEQ_1:def 3,AS; | |
then s.k in rng s by FUNCT_1:3; | |
then reconsider sk = s.k as Element of n-tuples_on BOOLEAN; | |
t in m-tuples_on (n-tuples_on BOOLEAN); | |
then ex v be Element of (n-tuples_on BOOLEAN)* st t = v & len v = m; | |
then k in dom t by FINSEQ_1:def 3,AS; | |
then t.k in rng t by FUNCT_1:3; | |
then reconsider tk = t.k as Element of n-tuples_on BOOLEAN; | |
Op-XOR(sk,tk) is Element of n-tuples_on BOOLEAN; | |
hence thesis; | |
end; | |
consider p being FinSequence of n-tuples_on BOOLEAN such that | |
P3: dom p = Seg m & for k be Nat st k in Seg m holds P[k,p.k] | |
from FINSEQ_1:sch 5(P1); | |
P4: len p = m by P3,FINSEQ_1:def 3; | |
p in (n-tuples_on BOOLEAN)* by FINSEQ_1:def 11; | |
then p in m-tuples_on (n-tuples_on BOOLEAN) by P4; | |
then reconsider p as Element of m-tuples_on (n-tuples_on BOOLEAN); | |
take p; | |
now let i be Element of Seg m; | |
ex si,ti be Element of n-tuples_on BOOLEAN st si = s.i & ti = t.i & | |
p.i = Op-XOR(si,ti) by P3; | |
hence p.i = Op-XOR(s.i,t.i); | |
end; | |
hence thesis; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Element of m-tuples_on (n-tuples_on BOOLEAN); | |
assume | |
A1: for i be Element of Seg m holds H1.i = Op-XOR(s.i,t.i); | |
assume | |
A2: for i be Element of Seg m holds H2.i = Op-XOR(s.i,t.i); | |
H1 in m-tuples_on (n-tuples_on BOOLEAN); | |
then | |
P1: ex v be Element of (n-tuples_on BOOLEAN)* st H1 = v & len v = m; | |
H2 in m-tuples_on (n-tuples_on BOOLEAN); | |
then | |
P2: ex v be Element of (n-tuples_on BOOLEAN)* st H2 = v & len v = m; | |
now let i be Nat; | |
assume 1 <= i & i <= len H1; | |
then i in Seg m by P1; | |
then reconsider j = i as Element of Seg m; | |
thus H1.i = Op-XOR(s.j,t.j) by A1 | |
.= H2.i by A2; | |
end; | |
hence H1 = H2 by P1,P2,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
func Rcon -> Element of 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
means | |
it.1 = <* <*0,0,0,0*>^<*0,0,0,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.2 = <* <*0,0,0,0*>^<*0,0,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.3 = <* <*0,0,0,0*>^<*0,1,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.4 = <* <*0,0,0,0*>^<*1,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.5 = <* <*0,0,0,1*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.6 = <* <*0,0,1,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.7 = <* <*0,1,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.8 = <* <*1,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.9 = <* <*0,0,0,1*>^<*1,0,1,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
it.10 = <* <*0,0,1,1*>^<*0,1,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *>; | |
existence | |
proof | |
X0: 0 in BOOLEAN by TARSKI:def 2,MARGREL1:def 11; | |
X1: 1 in BOOLEAN by TARSKI:def 2,MARGREL1:def 11; | |
P1: <*0,0,0,0*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0; | |
P2: <*0,0,0,1*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
P3: <*0,0,1,0*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
P4: <*0,1,0,0*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
P5: <*1,0,0,0*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
R1: <*1,0,1,1*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
R2: <*0,0,1,1*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
R3: <*0,1,1,0*> is Element of (4-tuples_on BOOLEAN) by LMGSEQ4,X0,X1; | |
reconsider PP6 = <* <*0,0,0,0*>^<*0,0,0,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P2,LMGSEQ16; | |
reconsider PP7 = <* <*0,0,0,0*>^<*0,0,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P3,LMGSEQ16; | |
reconsider PP8 = <* <*0,0,0,0*>^<*0,1,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P4,LMGSEQ16; | |
reconsider PP9 = <* <*0,0,0,0*>^<*1,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P5,LMGSEQ16; | |
reconsider PP10 = <* <*0,0,0,1*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P2,LMGSEQ16; | |
reconsider PP11 = <* <*0,0,1,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P3,LMGSEQ16; | |
reconsider PP12 = <* <*0,1,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P4,LMGSEQ16; | |
reconsider PP13 = <* <*1,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P5,LMGSEQ16; | |
reconsider PP14 = <* <*0,0,0,1*>^<*1,0,1,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,P2,R1,LMGSEQ16; | |
reconsider PP15 = <* <*0,0,1,1*>^<*0,1,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN) by P1,R2,R3,LMGSEQ16; | |
reconsider Q0 = <*PP6,PP7,PP8,PP9,PP10*> as FinSequence; | |
reconsider Q1 = <*PP11,PP12,PP13,PP14,PP15*> as FinSequence; | |
reconsider IT = Q0^Q1 as | |
Element of 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) by LMGSEQ10; | |
A1: len Q0 = 5 & Q0.1 = PP6 & Q0.2 = PP7 & Q0.3 = PP8 & Q0.4 = PP9 & | |
Q0.5 = PP10 by FINSEQ_4:78; | |
A2: len Q1 = 5 & Q1.1 = PP11 & Q1.2 = PP12 & Q1.3 = PP13 & Q1.4 = PP14 & | |
Q1.5 = PP15 by FINSEQ_4:78; | |
1 in Seg 5; | |
then 1 in dom Q0 by FINSEQ_1:def 3,A1; | |
then | |
R1: IT.1 = PP6 by A1,FINSEQ_1:def 7; | |
2 in Seg 5; | |
then 2 in dom Q0 by FINSEQ_1:def 3,A1; | |
then | |
R2: IT.2 = PP7 by A1,FINSEQ_1:def 7; | |
3 in Seg 5; | |
then 3 in dom Q0 by FINSEQ_1:def 3,A1; | |
then | |
R3: IT.3 = PP8 by A1,FINSEQ_1:def 7; | |
4 in Seg 5; | |
then 4 in dom Q0 by FINSEQ_1:def 3,A1; | |
then | |
R4: IT.4 = PP9 by A1,FINSEQ_1:def 7; | |
5 in Seg 5; | |
then 5 in dom Q0 by FINSEQ_1:def 3,A1; | |
then | |
R5: IT.5 = PP10 by A1,FINSEQ_1:def 7; | |
1 in Seg 5; | |
then 1 in dom Q1 by FINSEQ_1:def 3,A2; | |
then | |
R10: IT.(5+1) = Q1.1 by A1,FINSEQ_1:def 7 | |
.= PP11 by FINSEQ_4:78; | |
2 in Seg 5; | |
then 2 in dom Q1 by FINSEQ_1:def 3,A2; | |
then | |
R20: IT.(5+2) = Q1.2 by A1,FINSEQ_1:def 7 | |
.= PP12 by FINSEQ_4:78; | |
3 in Seg 5; | |
then 3 in dom Q1 by FINSEQ_1:def 3,A2; | |
then | |
R30: IT.(5+3) = Q1.3 by A1,FINSEQ_1:def 7 | |
.= PP13 by FINSEQ_4:78; | |
4 in Seg 5; | |
then 4 in dom Q1 by FINSEQ_1:def 3,A2; | |
then | |
R40: IT.(5+4) = Q1.4 by A1,FINSEQ_1:def 7 | |
.= PP14 by FINSEQ_4:78; | |
5 in Seg 5; | |
then 5 in dom Q1 by FINSEQ_1:def 3,A2; | |
then | |
R50: IT.(5+5) = Q1.5 by A1,FINSEQ_1:def 7 | |
.= PP15 by FINSEQ_4:78; | |
thus thesis by R1,R2,R3,R4,R5,R10,R20,R30,R40,R50; | |
end; | |
uniqueness | |
proof | |
let R1,R2 be Element of 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A1: R1.1 = <* <*0,0,0,0*>^<*0,0,0,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.2 = <* <*0,0,0,0*>^<*0,0,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.3 = <* <*0,0,0,0*>^<*0,1,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.4 = <* <*0,0,0,0*>^<*1,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.5 = <* <*0,0,0,1*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.6 = <* <*0,0,1,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.7 = <* <*0,1,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.8 = <* <*1,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.9 = <* <*0,0,0,1*>^<*1,0,1,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R1.10 = <* <*0,0,1,1*>^<*0,1,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *>; | |
assume | |
A2: R2.1 = <* <*0,0,0,0*>^<*0,0,0,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.2 = <* <*0,0,0,0*>^<*0,0,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.3 = <* <*0,0,0,0*>^<*0,1,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.4 = <* <*0,0,0,0*>^<*1,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.5 = <* <*0,0,0,1*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.6 = <* <*0,0,1,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.7 = <* <*0,1,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.8 = <* <*1,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.9 = <* <*0,0,0,1*>^<*1,0,1,1*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *> & | |
R2.10 = <* <*0,0,1,1*>^<*0,1,1,0*>,<*0,0,0,0*>^<*0,0,0,0*>, | |
<*0,0,0,0*>^<*0,0,0,0*>,<*0,0,0,0*>^<*0,0,0,0*> *>; | |
R1 in 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
XP1: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st R1 = v & | |
len v = 10; | |
R2 in 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
XP2: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st R2 = v & | |
len v = 10; | |
for i be Nat st 1 <= i & i <= len R1 holds R1.i = R2.i | |
proof | |
let i be Nat; | |
assume 1 <= i & i <= len R1; | |
then i = 1 or ... or i = 10 by XP1; | |
hence thesis by A1,A2; | |
end; | |
hence R1 = R2 by XP1,XP2,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let SBT; | |
let m,i be Nat, w be Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
assume AS: (m = 4 or m = 6 or m = 8) & i < 4*(7+m) & m <= i; | |
func KeyExTemp(SBT,m,i,w) -> Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
means | |
(ex T3 be Element of (4-tuples_on (8-tuples_on BOOLEAN)) st T3 = Rcon.(i/m) & | |
it = Op-WXOR(SubWord(SBT,RotWord(w)),T3)) if ((i mod m) = 0), | |
(it = SubWord(SBT,w)) if (m = 8 & (i mod 8) = 4) otherwise it = w; | |
existence | |
proof | |
thus (i mod m) = 0 implies ex A | |
being Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st (ex T3 be Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st T3 = Rcon.(i/m) & A = Op-WXOR(SubWord(SBT,RotWord(w)),T3)) | |
proof | |
assume | |
A1: (i mod m) = 0; | |
m <> 0 & m divides i by A1,INT_1:62,AS; | |
then | |
LTT0: i/m is Integer by WSIERP_1:17; | |
LTT1: (4*(7+m))/m = (28/m)+4 by AS; | |
LTT2: m/m <= i/m by AS,XREAL_1:72; | |
LTT4: i/m in NAT by INT_1:3,LTT0; | |
LTT5: i/m < 28/m+4 by AS,XREAL_1:74,LTT1; | |
i/m <= 10 | |
proof | |
now per cases by AS; | |
case m = 4; | |
then i/m <10+1 by AS,XREAL_1:74,LTT1; | |
hence thesis by NAT_1:13,LTT4; | |
end; | |
case m = 6; | |
hence thesis by LTT5,XXREAL_0:2; | |
end; | |
case m = 8; | |
hence thesis by LTT5,XXREAL_0:2; | |
end; | |
end; | |
hence thesis; | |
end; | |
then | |
Q0: i/m in Seg 10 by AS,LTT2,LTT4; | |
reconsider j = i/m as Nat by LTT4; | |
Rcon in 10-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN)) * | |
st Rcon = v & len v = 10; | |
then dom Rcon = Seg 10 by FINSEQ_1:def 3; | |
then Rcon.j in rng Rcon by Q0,FUNCT_1:3; | |
then reconsider T3 = Rcon.j as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
Op-WXOR(SubWord(SBT,RotWord(w)),T3) is | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
hence thesis; | |
end; | |
thus m = 8 & (i mod 8) = 4 implies ex A being | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)) st (A = SubWord(SBT,w)); | |
thus not ((i mod m) = 0) & not (m = 8 & (i mod 8) = 4) implies | |
ex A being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st A = w; | |
end; | |
uniqueness; | |
consistency; | |
end; | |
definition | |
let SBT; | |
let m be Nat; | |
assume AS: (m = 4 or m = 6 or m = 8); | |
func KeyExpansionX(SBT,m) -> | |
Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) means | |
for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Element of NAT st i < m holds (it.Key).(i+1) = Key.(i+1)) | |
& (for i be Element of NAT st m <= i & i < 4*(7+m) holds | |
ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = (it.Key).((i-m)+1) & Q = (it.Key).i & | |
(it.Key).(i+1) = Op-WXOR(P,KeyExTemp(SBT,m,i,Q))); | |
existence | |
proof | |
defpred P0[Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))] means | |
(for i be Element of NAT st i < m holds $2.(i+1) = $1.(i+1))& | |
(for i be Element of NAT st m <= i & i < 4*(7+m) holds | |
ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = $2.((i-m)+1) & Q = ($2).i & | |
$2.(i+1) = Op-WXOR(P,KeyExTemp(SBT,m,i,Q))); | |
A1: for x being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st P0[x,z] | |
proof | |
let x be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
defpred PP[Nat,set,set] means | |
ex r,t be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st r = $2 & t = $3 & | |
(ex P0,Q0 be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P0 = r.1 & Q0 = r.m & t.1 = Op-WXOR(P0,KeyExTemp(SBT,m,m*$1,Q0))) & | |
for i be Nat st 1 <= i & i < m holds | |
ex P be Element of 4-tuples_on (8-tuples_on BOOLEAN), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = r.(i+1) & Q = t.i & | |
t.(i+1) = Op-WXOR(P,KeyExTemp(SBT,m,m*$1+i,Q)); | |
0+m <= 7+m by XREAL_1:6; | |
then | |
LMMLT47M: 1*m <= 4*(7+m) by XREAL_1:66; | |
reconsider N2 = (4*(7+m) div m )+1 as Nat; | |
YY1: for k being Nat st 1 <= k & k < N2 | |
for s being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex y being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st PP[k,s,y] | |
proof | |
let k be Nat; | |
assume 1 <= k & k < N2; | |
let s be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
defpred PX[Nat,set,set] means | |
ex P,Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = s.($1+1) & Q = $2 & | |
$3 = Op-WXOR(P,KeyExTemp(SBT,m,m*k+$1,Q)); | |
s in m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st s = v & len v = m; | |
then | |
QQ3: dom s = Seg m by FINSEQ_1:def 3; | |
XX1: for i being Nat st 1 <= i & i < m | |
for z being Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
ex w being Element of (4-tuples_on (8-tuples_on BOOLEAN)) | |
st PX[i,z,w] | |
proof | |
let i be Nat; | |
assume | |
AA1: 1 <= i & i < m; | |
let z be Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
1 <= i+1 & i+1 <= m by NAT_1:13,AA1; | |
then i+1 in Seg m; | |
then s.(i+1) in rng s by QQ3,FUNCT_1:3; | |
then reconsider P = s.(i+1) as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
reconsider Q = z as Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
Op-WXOR(P,KeyExTemp(SBT,m,m*k+i,Q)) is | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
hence thesis; | |
end; | |
1 in dom s by AS,QQ3; | |
then s.1 in rng s by FUNCT_1:3; | |
then reconsider P0 = s.1 as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
m in dom s by AS,QQ3; | |
then s.m in rng s by FUNCT_1:3; | |
then reconsider Q0 = s.m as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
reconsider A0 = Op-WXOR(P0,KeyExTemp(SBT,m,m*k,Q0)) as | |
Element of 4-tuples_on (8-tuples_on BOOLEAN); | |
consider y being FinSequence of (4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
A2: len y = m & (y.1 = A0 or m = 0) & for i be Nat st 1 <= i & | |
i < m holds PX[i,y.i,y.(i+1)] from RECDEF_1:sch 4 (XX1); | |
y in (4-tuples_on (8-tuples_on BOOLEAN))* by FINSEQ_1:def 11; | |
then y in m-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) by A2; | |
hence thesis by AS,A2; | |
end; | |
consider z being | |
FinSequence of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
A2: len z = N2 & (z.1 = x or N2 = 0) & for k be Nat st 1 <= k & | |
k < N2 holds PP[k,z.k,z.(k+1)] from RECDEF_1:sch 4 (YY1); | |
defpred Q0[Nat,set] means | |
ex i,j be Element of NAT, | |
zi be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (($1 mod m) <> 0 implies i = ($1 div m)+1 & j = $1 mod m) & | |
(($1 mod m) = 0 implies i = ($1 div m) & j = m) & zi = z.i & $2 = zi.j; | |
YY2: for k be Nat st k in Seg (4*(7+m)) | |
ex w being Element of (4-tuples_on (8-tuples_on BOOLEAN)) st Q0[k,w] | |
proof | |
let k be Nat; | |
assume | |
A1: k in Seg (4*(7+m)); | |
QQ1: 1 <= k & k <= 4*(7+m) by A1,FINSEQ_1:1; | |
then | |
QQ2: k div m <= (4*(7+m)) div m by NAT_2:24; | |
per cases; | |
suppose | |
C1: (k mod m) <> 0; | |
reconsider j = (k mod m) as Element of NAT; | |
reconsider i = (k div m)+1 as Element of NAT; | |
1 <= i & i <= N2 by QQ2,XREAL_1:6,NAT_1:11; | |
then i in Seg N2; | |
then i in dom z by A2,FINSEQ_1:def 3; | |
then z.i in rng z by FUNCT_1:3; | |
then reconsider zi = z.i as | |
Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
zi in m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st zi = v & len v = m; | |
then | |
Q0: dom zi = Seg m by FINSEQ_1:def 3; | |
1 <= j & j <= m by C1,INT_1:58,AS,NAT_1:14; | |
then j in dom zi by Q0; | |
then zi.j in rng zi by FUNCT_1:3; | |
then reconsider w = zi.j as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
((k mod m) <> 0 implies i = (k div m)+1 & j = k mod m) & | |
((k mod m) = 0 implies i = (k div m) & j = m) & zi = z.i & | |
w = zi.j by C1; | |
hence thesis; | |
end; | |
suppose | |
C2: (k mod m) = 0; | |
reconsider j = m as Element of NAT by ORDINAL1:def 12; | |
reconsider i = (k div m) as Element of NAT; | |
QQ3: 1 <= i by NAT_D:24,QQ1,C2,NAT_2:13,AS; | |
(k div m)+0 <= ((4*(7+m)) div m)+1 by QQ2,XREAL_1:7; | |
then i in Seg N2 by QQ3; | |
then i in dom z by A2,FINSEQ_1:def 3; | |
then z.i in rng z by FUNCT_1:3; | |
then reconsider zi = z.i as | |
Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
zi in m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st zi = v & len v = m; | |
then | |
Q0: dom zi = Seg m by FINSEQ_1:def 3; | |
j in Seg m by AS; | |
then zi.j in rng zi by Q0,FUNCT_1:3; | |
then reconsider w = zi.j as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
((k mod m) <> 0 implies i = (k div m)+1 & j = k mod m) & | |
((k mod m) = 0 implies i = (k div m) & j = m) & zi = z.i & | |
w = zi.j by C2; | |
hence thesis; | |
end; | |
end; | |
consider u being FinSequence of (4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
YY3: dom u = Seg (4*(7+m)) & for k be Nat st k in Seg (4*(7+m)) | |
holds Q0[k,u.k] from FINSEQ_1:sch 5(YY2); | |
4*(7+m) is Element of NAT by ORDINAL1:def 12; | |
then | |
YY4: len u = 4*(7+m) by YY3,FINSEQ_1:def 3; | |
u in ((4-tuples_on (8-tuples_on BOOLEAN)))* by FINSEQ_1:def 11; | |
then u in (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
by YY4; | |
then reconsider u as | |
Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
take u; | |
LX3: for i be Element of NAT st i < m holds u.(i+1) = x.(i+1) | |
proof | |
let k be Element of NAT; | |
assume k < m; | |
then | |
LX31: 1 <= k+1 & k+1 <= m by NAT_1:11,NAT_1:13; | |
then 1 <= k+1 & k+1 <= 4*(7+m) by LMMLT47M,XXREAL_0:2; | |
then k+1 in Seg (4*(7+m)); | |
then consider i,j be Element of NAT, | |
zi be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
LX34: (((k+1) mod m) <> 0 implies i = ((k+1) div m)+1 & | |
j = (k+1) mod m) & (((k+1) mod m) = 0 implies | |
i = ((k+1) div m) & j = m) & zi = z.i & u.(k+1) = zi.j by YY3; | |
per cases; | |
suppose | |
C1: ((k+1) mod m) <> 0; | |
C11: (k+1) < m | |
proof | |
assume not (k+1) < m; | |
then (k+1) = m by XXREAL_0:1,LX31; | |
hence contradiction by NAT_D:25,C1; | |
end; | |
then (k+1) div m = 0 by NAT_D:27; | |
hence u.(k+1) = x.(k+1) by C11,NAT_D:24,LX34,A2; | |
end; | |
suppose | |
C2: ((k+1) mod m) = 0; | |
(k+1) = m | |
proof | |
assume not (k+1) = m; | |
then k+1 < m by LX31,XXREAL_0:1; | |
hence contradiction by NAT_D:24,C2; | |
end; | |
hence u.(k+1) = x.(k+1) by LX34,C2,INT_1:49,A2; | |
end; | |
end; | |
for k be Element of NAT st m <= k & k < 4*(7+m) holds | |
ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = u.((k-m)+1) & Q = u.k & u.(k+1) = Op-WXOR(P,KeyExTemp(SBT,m,k,Q)) | |
proof | |
let k be Element of NAT; | |
assume | |
AS1: m <= k & k < 4*(7+m); | |
then 1 <= k & k <= 4*(7+m) by XXREAL_0:2,AS; | |
then k in Seg (4*(7+m)); | |
then consider i,j be Element of NAT, | |
zi be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
LX34: ((k mod m) <> 0 implies i = (k div m)+1 & j = k mod m) & | |
((k mod m) = 0 implies i = (k div m) & j = m) & zi = z.i & | |
u.k = zi.j by YY3; | |
NLX32: 1 <= k+1 & k+1 <= 4*(7+m) by AS1,NAT_1:11,NAT_1:13; | |
then k+1 in Seg (4*(7+m)); | |
then consider i1,j1 be Element of NAT, | |
zi1 be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
NLX34: (((k+1) mod m) <> 0 implies i1 = ((k+1) div m)+1 & | |
j1 = (k+1) mod m) & (((k+1) mod m) = 0 implies i1 = ((k+1) div m) & | |
j1 = m) & zi1 = z.i1 & u.(k+1) = zi1.j1 by YY3; | |
reconsider km0 = k-m as Element of NAT by AS1,XREAL_1:48,INT_1:3; | |
reconsider km1 = km0+1 as Element of NAT; | |
k+1-m <= 4*(7+m)-0 by NLX32,XREAL_1:13; | |
then 1 <= km1 & km1 <= 4*(7+m) by NAT_1:11; | |
then km1 in Seg (4*(7+m)); | |
then consider i2,j2 be Element of NAT, | |
zi2 be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
LLX34: ((km1 mod m) <> 0 implies i2 = (km1 div m)+1 & j2 = km1 mod m) & | |
((km1 mod m) = 0 implies i2 = (km1 div m) & j2 = m) & | |
zi2 = z.i2 & u.km1 = zi2.j2 by YY3; | |
per cases; | |
suppose | |
C1: (k mod m) <> 0; | |
reconsider i0 = k div m as Element of NAT; | |
DD1: ((4*(7+m)) div m)+0 < ((4*(7+m)) div m)+1 by XREAL_1:8; | |
k div m <= (4*(7+m)) div m by AS1,NAT_2:24; | |
then 1 <= i0 & i0 < N2 by DD1,XXREAL_0:2,AS,NAT_2:13,AS1; | |
then consider r,t be | |
Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
C16: r = z.i0 & t = z.(i0+1) & | |
(ex P0,Q0 be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P0 = r.1 & Q0 = r.m & t.1 = Op-WXOR(P0,KeyExTemp(SBT,m,m*i0,Q0))) | |
& for n be Nat st 1 <= n & n < m holds | |
ex P be Element of 4-tuples_on (8-tuples_on BOOLEAN), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = r.(n+1) & Q = t.n & | |
t.(n+1) = Op-WXOR(P,KeyExTemp(SBT,m,i0*m+n,Q)) by A2; | |
1 <= j & j < m by AS,INT_1:58,LX34,C1,NAT_1:14; | |
then consider P be Element of 4-tuples_on (8-tuples_on BOOLEAN), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
C18: P = r.(j+1) & Q = t.j & | |
t.(j+1) = Op-WXOR(P,KeyExTemp(SBT,m,i0*m+j,Q)) by C16; | |
per cases; | |
suppose | |
NC1: ((k+1) mod m) <> 0; | |
NC16: zi1 = zi by NLX34,NC1,AS,XLMOD01,LX34,C1; | |
C21: u.(k+1) = t.(j+1) by NLX34,NC16,NC1,AS,XLMOD02,LX34,C1,C16; | |
C22X: km1 = (k+1)-m; | |
LC12: i2 = ((k+1) div m)-1+1 by NC1,XLMOD03,C22X,LLX34,AS,XLMOD04 | |
.= i0 by AS,XLMOD01,NC1; | |
LC13: j2 = j1 by LLX34,C22X,XLMOD03,NLX34; | |
C19: u.(k-m+1) = r.(j+1) | |
by LLX34,LC13,LC12,C16,NLX34,NC1,AS,XLMOD02,LX34,C1; | |
C22: k = i0*m+j by AS,INT_1:59,LX34,C1; | |
thus ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = u.((k-m)+1) & Q = u.k & | |
u.(k+1) = Op-WXOR(P,KeyExTemp(SBT,m,k,Q)) | |
by C18,C19,C16,LX34,C1,C21,C22; | |
end; | |
suppose | |
MC1: ((k+1) mod m) = 0; | |
NC13: j1 = m-1+1 by NLX34,MC1 | |
.= j+1 by AS,XLMOD02X,MC1,LX34; | |
C21: u.(k+1) = t.(j+1) by NLX34,MC1,XLMOD01X,NC13,C16; | |
C22X: km1 = (k+1)-m; | |
LC12: i2 = ((k+1) div m)-1 by C22X,MC1,XLMOD03,LLX34,AS,XLMOD04 | |
.= (k div m)+1-1 by AS,XLMOD01X,MC1 | |
.= i0; | |
C19: u.(k-m+1) = r.(j+1) by LLX34,C22X,XLMOD03,NLX34,LC12,C16,NC13; | |
C22: k = i0*m+j by AS,INT_1:59,LX34,C1; | |
thus ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = u.((k-m)+1) & Q = u.k & | |
u.(k+1) = Op-WXOR(P,KeyExTemp(SBT,m,k,Q)) | |
by C18,C19,LX34,C16,C1,C21,C22; | |
end; | |
end; | |
suppose | |
C2: (k mod m) = 0; | |
DD1: ((4*(7+m)) div m)+0 < ((4*(7+m)) div m)+1 by XREAL_1:8; | |
k div m <= (4*(7+m)) div m by AS1,NAT_2:24; | |
then 1 <= i & i < N2 by DD1,XXREAL_0:2,C2,LX34,AS,NAT_2:13,AS1; | |
then consider r,t be | |
Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
C16: r = z.i & t = z.(i+1) & | |
(ex P0,Q0 be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P0 = r.1 & Q0 = r.m & t.1 = Op-WXOR(P0,KeyExTemp(SBT,m,m*i,Q0))) | |
& for n be Nat st 1 <= n & n < m holds | |
ex P be Element of 4-tuples_on (8-tuples_on BOOLEAN), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = r.(n+1) & Q = t.n & | |
t.(n+1) = Op-WXOR(P,KeyExTemp(SBT,m,i*m+n,Q)) by A2; | |
NC1X: ((k+1) mod m) = ((0 qua Nat)+1) mod m by C2,NAT_D:23 | |
.= 1 by NAT_D:14,AS; | |
C21: u.(k+1) = t.1 by NLX34,NC1X,AS,XLMOD01,C2,LX34,C16; | |
C22X: km1 = (k+1)-m; | |
LC12: i2 = ((k+1) div m)-1+1 by NC1X,XLMOD03,C22X,LLX34,AS,XLMOD04 | |
.= i by AS,XLMOD01,NC1X,C2,LX34; | |
C19: u.(k-m+1) = r.1 by LLX34,XLMOD03,C22X,LC12,C16,NC1X; | |
C22: k = (k div m)*m+(k mod m) by AS,INT_1:59 | |
.= i*m by C2,LX34; | |
thus ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = u.((k-m)+1) & Q = u.k & | |
u.(k+1) = Op-WXOR(P,KeyExTemp(SBT,m,k,Q)) | |
by C19,LX34,C16,C2,C21,C22; | |
end; | |
end; | |
hence P0[x,u] by LX3; | |
end; | |
consider I be Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
A2: for x being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AA1: for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Element of NAT st i < m holds (H1.Key).(i+1) = Key.(i+1)) | |
& (for i be Element of NAT st m <= i & i < 4*(7+m) holds | |
ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = (H1.Key).((i-m)+1) & Q = (H1.Key).i & | |
(H1.Key).(i+1) = Op-WXOR(P,KeyExTemp(SBT,m,i,Q))); | |
assume | |
AA2: for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (for i be Element of NAT st i < m holds (H2.Key).(i+1) = Key.(i+1)) | |
& (for i be Element of NAT st m <= i & i < 4*(7+m) holds | |
ex P be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
Q be Element of 4-tuples_on (8-tuples_on BOOLEAN) | |
st P = (H2.Key).((i-m)+1) & Q = (H2.Key).i & | |
(H2.Key).(i+1) = Op-WXOR(P,KeyExTemp(SBT,m,i,Q))); | |
now let input be | |
Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
(H1.input) in (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
XX1: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st (H1.input) = s & len s = (4*(7+m)); | |
reconsider H1i = (H1.input) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN))* by XX1; | |
(H2.input) in (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
XX2: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st (H2.input) = s & len s = (4*(7+m)); | |
reconsider H2i = (H2.input) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN))* by XX2; | |
defpred PN[Nat] means | |
(m <= $1 & $1 <= 4*(7+m)) implies for k be Element of NAT | |
st 1 <= k & k <= $1 holds (H1.input).k = (H2.input).k; | |
PN0: PN[0]; | |
PN1: for i be Nat st PN[i] holds PN[i+1] | |
proof | |
let i be Nat; | |
assume | |
A1: PN[i]; | |
assume | |
A2: m <= i+1 & i+1 <= 4*(7+m); | |
per cases; | |
suppose | |
C10: m = i+1; | |
thus for k be Element of NAT st 1 <= k & k <= i+1 holds | |
(H1.input).k = (H2.input).k | |
proof | |
let k be Element of NAT; | |
assume | |
B1: 1 <= k & k <= i+1; | |
k-1 < k by XREAL_1:44; | |
then | |
B2: k-1 < m by C10,B1,XXREAL_0:2; | |
reconsider k1 = k-1 as Element of NAT by XREAL_1:48,B1,INT_1:3; | |
thus (H1.input).k = input.(k1+1) by B2,AA1 | |
.= (H2.input).k by B2,AA2; | |
end; | |
end; | |
suppose m <> i+1; | |
then | |
C10X: m < i+1 by A2,XXREAL_0:1; | |
i < i+1 by XREAL_1:29; | |
then | |
C11Z: i < 4*(7+m) by A2,XXREAL_0:2; | |
thus for k be Element of NAT st 1 <= k & k <= i+1 holds | |
(H1.input).k = (H2.input).k | |
proof | |
let k be Element of NAT; | |
assume | |
C13: 1 <= k & k <= i+1; | |
then reconsider k1 = k-1 as Element of NAT by XREAL_1:48,INT_1:3; | |
per cases; | |
suppose | |
C14: k1 < m; | |
thus (H1.input).k = input.(k1+1) by C14,AA1 | |
.= (H2.input).k by C14,AA2; | |
end; | |
suppose | |
C15: m <= k1; | |
k-1 <= i+1-1 by C13,XREAL_1:9; | |
then | |
C16: m <= k1 & k1 < 4*(7+m) by C11Z,XXREAL_0:2,C15; | |
then consider PP1 be | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
QQ1 be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
C17: PP1 = (H1.input).((k1-m)+1) & QQ1 = (H1.input).k1 & | |
(H1.input).(k1+1) = Op-WXOR(PP1,KeyExTemp(SBT,m,k1,QQ1)) by AA1; | |
consider PP2 be Element of (4-tuples_on (8-tuples_on BOOLEAN)), | |
QQ2 be Element of 4-tuples_on (8-tuples_on BOOLEAN) such that | |
C18: PP2 = (H2.input).((k1-m)+1) & QQ2 = (H2.input).k1 & | |
(H2.input).(k1+1) = Op-WXOR(PP2,KeyExTemp(SBT,m,k1,QQ2)) | |
by AA2,C16; | |
C190: k-1 <= i+1-1 by XREAL_1:9,C13; | |
then | |
C191: 1 <= k1 & k1 <= i by C15,AS,XXREAL_0:2; | |
C24X: 0 <= k1-m by C15,XREAL_1:48; | |
then | |
C25X: 1+0 <= k1-m+1 by XREAL_1:6; | |
k1-(m-1) <= k1 by AS,XREAL_1:43; | |
then | |
C25: 1 <= (k1-m)+1 & (k1-m)+1 <= i by C190,XXREAL_0:2,C25X; | |
reconsider k1m1 = (k1-m)+1 as Element of NAT by C24X,INT_1:3; | |
C21: (H1.input).k1m1 = (H2.input).k1m1 by A2,C10X,NAT_1:13,A1,C25; | |
thus (H1.input).k = (H2.input).k | |
by C21,C17,C18,C191,A2,C10X,NAT_1:13,A1; | |
end; | |
end; | |
end; | |
end; | |
L10: for i be Nat holds PN[i] from NAT_1:sch 2(PN0,PN1); | |
L1: now let i be Element of NAT; | |
assume | |
A1: m <=i & i <= 4*(7+m); | |
1 <= i & i <= i by AS,A1,XXREAL_0:2; | |
hence (H1.input).i = (H2.input).i by L10,A1; | |
end; | |
now let i0 be Nat; | |
assume | |
P13: 1 <= i0 & i0 <= len H1i; | |
then reconsider i = i0-1 as Element of NAT by XREAL_1:48,INT_1:3; | |
now per cases; | |
suppose | |
C1: i0 <= m; | |
i < i0 by XREAL_1:44; | |
then | |
C11: i < m by C1,XXREAL_0:2; | |
thus H1i.i0 = input.(i+1) by C11,AA1 | |
.= H2i.i0 by C11,AA2; | |
end; | |
suppose | |
C3: m < i0; | |
i+1 in Seg len H1i by P13; | |
hence H1i.i0 = H2i.i0 by L1,C3,XX1,P13; | |
end; | |
end; | |
hence H1i.i0 = H2i.i0; | |
end; | |
hence H1.input = H2.input by XX1,XX2,FINSEQ_1:def 17; | |
end; | |
hence H1 = H2 by FUNCT_2:63; | |
end; | |
end; | |
definition | |
let SBT; | |
let m be Nat; | |
func KeyExpansion(SBT,m) -> | |
Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) means | |
for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) holds | |
ex w be Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st w = (KeyExpansionX(SBT,m)).Key & for i be Nat st i < 7+m | |
holds (it.Key).(i+1) = <*w.(4*i+1),w.(4*i+2),w.(4*i+3),w.(4*i+4)*>; | |
existence | |
proof | |
defpred P0[Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Element of (7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)))] | |
means | |
ex w be Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st w = (KeyExpansionX(SBT,m)).$1 & for i be Nat st i < 7+m holds | |
$2.(i+1) = <*w.(4*i+1),w.(4*i+2),w.(4*i+3),w.(4*i+4)*>; | |
A1: for x being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
ex z be | |
Element of (7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st P0[x,z] | |
proof | |
let x be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider w = (KeyExpansionX(SBT,m)).x as | |
Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
w in (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
XX1: ex s be Element of (4-tuples_on (8-tuples_on BOOLEAN))* | |
st w = s & len s = (4*(7+m)); | |
reconsider w0 = w as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN))* by XX1; | |
reconsider m7 = 7+m as Element of NAT by ORDINAL1:def 12; | |
reconsider m47 = (4*(7+m)) as Element of NAT by ORDINAL1:def 12; | |
defpred P[Nat,set] means | |
ex n be Element of NAT st n = $1-1 & | |
$2 = <*w.(4*n+1),w.(4*n+2),w.(4*n+3),w.(4*n+4)*>; | |
P1: for k be Nat st k in Seg m7 | |
ex z being Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st P[k,z] | |
proof | |
let k be Nat; | |
assume k in Seg m7; | |
then | |
ZZ1: 1 <= k & k <= m7 by FINSEQ_1:1; | |
then reconsider n = k-1 as Element of NAT by XREAL_1:48,INT_1:3; | |
ZZ3: 4*(n+1) <= 4*m7 by ZZ1,XREAL_1:64; | |
ZZ4: 0+1 <= 4*n+1 by XREAL_1:7; | |
ZZ7: 4*n+1 <= 4*n+4 by XREAL_1:7; | |
ZZ8: 4*n+2 <= 4*n+4 by XREAL_1:7; | |
ZZ9: 4*n+3 <= 4*n+4 by XREAL_1:7; | |
4*n+1 <= 4*m7 by ZZ7,ZZ3,XXREAL_0:2; | |
then | |
X1: (4*n+1) in Seg m47 by ZZ4; | |
ZZ10: 1 <= 4*n+2 by ZZ4,XREAL_1:7; | |
4*n+2 <= 4*m7 by ZZ8,ZZ3,XXREAL_0:2; | |
then | |
X2: (4*n+2) in Seg m47 by ZZ10; | |
ZZ11: 1 <= 4*n+3 by ZZ4,XREAL_1:7; | |
4*n+3 <= 4*m7 by ZZ9,ZZ3,XXREAL_0:2; | |
then | |
X3: (4*n+3) in Seg m47 by ZZ11; | |
ZZ12: 1 <= 4*n+4 by ZZ4,XREAL_1:7; | |
X4: (4*n+4) in Seg m47 by ZZ3,ZZ12; | |
X5: dom w = Seg m47 by FINSEQ_1:def 3,XX1; | |
w.(4*n+1) in rng w by X5,X1,FUNCT_1:3; | |
then reconsider w1 = w.(4*n+1) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
w.(4*n+2) in rng w by X5,X2,FUNCT_1:3; | |
then reconsider w2 = w.(4*n+2) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
w.(4*n+3) in rng w by X5,X3,FUNCT_1:3; | |
then reconsider w3 = w.(4*n+3) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
w.(4*n+4) in rng w by X5,X4,FUNCT_1:3; | |
then reconsider w4 = w.(4*n+4) as | |
Element of (4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider z = <*w1,w2,w3,w4*> as | |
Element of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) by LMGSEQ4; | |
z = <*w.(4*n+1),w.(4*n+2),w.(4*n+3),w.(4*n+4)*>; | |
hence thesis; | |
end; | |
consider p being | |
FinSequence of 4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) such that | |
P3: dom p = Seg m7 & for k be Nat st k in Seg m7 holds P[k,p.k] | |
from FINSEQ_1:sch 5(P1); | |
P4: len p = m7 by P3,FINSEQ_1:def 3; | |
p in (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
by FINSEQ_1:def 11; | |
then p in m7-tuples_on (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))) | |
by P4; | |
then reconsider p as Element of | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
take p; | |
now let i be Nat; | |
assume i < 7+m; | |
then | |
AA2: i+1 <= 7+m by NAT_1:13; | |
1 <= i+1 by NAT_1:11; | |
then i+1 in Seg m7 by AA2; | |
then ex n be Element of NAT st n = (i+1)-1 & | |
p.(i+1) = <*w.(4*n+1),w.(4*n+2),w.(4*n+3),w.(4*n+4)*> by P3; | |
hence p.(i+1) = <*w.(4*i+1),w.(4*i+2),w.(4*i+3),w.(4*i+4)*>; | |
end; | |
hence thesis; | |
end; | |
consider I be Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
A2: for x being Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds P0[x,I.x] from FUNCT_2:sch 3(A1); | |
take I; | |
thus thesis by A2; | |
end; | |
uniqueness | |
proof | |
let H1,H2 be Function of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
assume | |
A1: for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) holds | |
ex w be Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st w = (KeyExpansionX(SBT,m)).Key & for i be Nat st i < 7+m holds | |
(H1.Key).(i+1) = <*w.(4*i+1),w.(4*i+2),w.(4*i+3),w.(4*i+4)*>; | |
assume | |
A2: for Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) holds | |
ex w be Element of (4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) | |
st w = (KeyExpansionX(SBT,m)).Key & for i be Nat st i <7+m holds | |
(H2.Key).(i+1) = <*w.(4*i+1),w.(4*i+2),w.(4*i+3),w.(4*i+4)*>; | |
now let input be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
consider w1 be Element of | |
(4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) such that | |
P1: w1 = (KeyExpansionX(SBT,m)).input & | |
for i be Nat st i < 7+m holds | |
(H1.input).(i+1) = <*w1.(4*i+1),w1.(4*i+2),w1.(4*i+3),w1.(4*i+4)*> by A1; | |
consider w2 be Element of | |
(4*(7+m))-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)) such that | |
P2: w2 = (KeyExpansionX(SBT,m)).input & | |
for i be Nat st i < 7+m holds | |
(H2.input).(i+1) = <*w2.(4*i+1),w2.(4*i+2),w2.(4*i+3),w2.(4*i+4)*> by A2; | |
(H1.input) in | |
(7+m)-tuples_on(4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))); | |
then | |
P3: ex s be Element of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
st (H1.input) = s & len s = (7+m); | |
(H2.input) in | |
(7+m)-tuples_on (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
then | |
P4: ex s be Element of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
st (H2.input) = s & len s = (7+m); | |
now let i be Nat; | |
assume | |
P5: 1 <= i & i <= len (H1.input); | |
then i-1 in NAT by XREAL_1:48,INT_1:3; | |
then reconsider i0 = i-1 as Nat; | |
i < (7+m)+1 by P3,P5,NAT_1:13; | |
then | |
P6: i-1 < (7+m)+1-1 by XREAL_1:14; | |
thus (H1.input).i = (H1.input).(i0+1) | |
.= <*w2.(4*i0+1),w2.(4*i0+2),w2.(4*i0+3),w2.(4*i0+4)*> by P6,P1,P2 | |
.= (H2.input).(i0+1) by P6,P2 | |
.= (H2.input).i; | |
end; | |
hence | |
(H1.input) = (H2.input) by P3,P4,FINSEQ_1:def 17; | |
end; | |
hence H1 = H2 by FUNCT_2:63; | |
end; | |
end; | |
begin :: Encryption and Decryption | |
reserve MCFunc for Permutation of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reserve MixColumns for | |
Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
definition | |
let SBT; | |
let MCFunc; | |
let m be Nat; | |
let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
let Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
func AES-ENC(SBT,MCFunc,text,Key) -> | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:defENC: | |
ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & (ex Keyi1 be Element of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
seq.1 = AddRoundKey.(text,Keyi1)) & | |
(for i be Nat st 1 <= i & i < 7+m-1 holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & | |
seq.(i+1) = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq.i),Keyi)) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
it = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq.(7+m-1)),KeyNr); | |
existence | |
proof | |
1+0 < 7+m by XREAL_1:8; | |
then | |
N1: 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider Nr = 7+m-1 as Nat; | |
ZZ1: (KeyExpansion(SBT,m)).(Key) in | |
(Nr+1)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
reconsider kky = (KeyExpansion(SBT,m)).(Key) as Element of | |
(Nr+1)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
XX12: ex s be Element of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)))* | |
st kky = s & len s = (Nr+1) by ZZ1; | |
defpred P[Nat,set,set] means | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).($1+1) & | |
$3 = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).$2,Keyi); | |
1+0 <= 7+m by XREAL_1:7; | |
then 1 in Seg (Nr+1); | |
then 1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then ((KeyExpansion(SBT,m)).(Key)).1 in rng kky by FUNCT_1:3; | |
then reconsider Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider I0 = AddRoundKey.(text,Keyi1) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
X1: for n being Nat st 1 <= n & n < Nr | |
for z being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds ex y being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P[n,z,y] | |
proof | |
let n be Nat; | |
assume | |
X11: 1 <= n & n < Nr; | |
let z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
X111: n+1 <= Nr+1 by XREAL_1:7,X11; | |
0+1 <= n+1 by XREAL_1:7; | |
then n+1 in Seg (Nr+1) by X111; | |
then n+1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then ((KeyExpansion(SBT,m)).(Key)).(n+1) in rng kky by FUNCT_1:3; | |
then reconsider Keyi = ((KeyExpansion(SBT,m)).(Key)).(n+1) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider y = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).z,Keyi) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
take y; | |
thus P[n,z,y]; | |
end; | |
consider seq be | |
FinSequence of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
X2: len seq = Nr & (seq.1 = I0 or Nr = 0) & | |
for i be Nat st 1 <= i & i < Nr holds P[i,seq.i,seq.(i+1)] | |
from RECDEF_1:sch 4(X1); | |
Nr in Seg Nr by FINSEQ_1:3,N1; | |
then | |
Nr in dom seq by FINSEQ_1:def 3,X2; | |
then seq.Nr in rng seq by FUNCT_1:3; | |
then reconsider seq10 = seq.Nr as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
Nr+1 in Seg (Nr+1) by FINSEQ_1:3; | |
then Nr+1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then ((KeyExpansion(SBT,m)).(Key)).(Nr+1) in rng kky by FUNCT_1:3; | |
then reconsider KeyNr = ((KeyExpansion(SBT,m)).(Key)).(Nr+1) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider w = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq10),KeyNr) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
w = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq.Nr),KeyNr); | |
hence thesis by XREAL_1:8,X2; | |
end; | |
uniqueness | |
proof | |
let s1,s2 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
1+0 < 7+m by XREAL_1:8; | |
then 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider Nr = 7+m-1 as Nat; | |
assume | |
A1: ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
seq.1 = AddRoundKey.(text,Keyi1)) & (for i be Nat st 1 <= i & i < 7+m-1 | |
holds ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & | |
seq.(i+1) = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq.i),Keyi)) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
s1 = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq.(7+m-1)),KeyNr); | |
assume | |
A2: ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
seq.1 = AddRoundKey.(text,Keyi1)) & (for i be Nat st 1 <= i & i < 7+m-1 | |
holds ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & | |
seq.(i+1) = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq.i),Keyi)) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
s2 = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq.(7+m-1)),KeyNr); | |
consider seq1 be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P1: len seq1 = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
seq1.1 = AddRoundKey.(text,Keyi1)) & (for i be Nat st 1 <= i & i < Nr | |
holds ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & | |
seq1.(i+1) = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq1.i),Keyi)) | |
& ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(Nr+1) & | |
s1 = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq1.(Nr)),KeyNr) by A1; | |
consider seq2 be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P2: len seq2 = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
seq2.1 = AddRoundKey.(text,Keyi1)) & (for i be Nat st 1 <= i & i < Nr | |
holds ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & | |
seq2.(i+1) = AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq2.i),Keyi)) | |
& ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(Nr+1) & | |
s2 = AddRoundKey.((ShiftRows*SubBytes(SBT)).(seq2.(Nr)),KeyNr) by A2; | |
defpred EQ[Nat] means | |
1 <= $1 & $1 <= len seq1 implies seq1.$1 = seq2.$1; | |
Q50: EQ[0]; | |
Q51: for i be Nat st EQ[i] holds EQ[i+1] | |
proof | |
let i be Nat; | |
assume | |
Q52: EQ[i]; | |
assume 1 <= i+1 & i+1 <= len seq1; | |
then | |
Q54: 1-1 <= i+1-1 & i+1-1 <= len seq1-1 by XREAL_1:9; | |
Q550: (len seq1)-1 <= (len seq1)-0 by XREAL_1:13; | |
per cases; | |
suppose | |
C1: i = 0; | |
thus seq1.(i+1) = seq2.(i+1) by C1,P1,P2; | |
end; | |
suppose | |
Q560: i <> 0; | |
Nr-1 < Nr-0 by XREAL_1:15; | |
then | |
XX1: 1 <= i & i < Nr by Q560,NAT_1:14,P1,Q54,XXREAL_0:2; | |
then | |
Q60: ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & seq1.(i+1) = | |
AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq1.i),Keyi) by P1; | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & seq2.(i+1) = | |
AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(seq2.i),Keyi) by P2,XX1; | |
hence seq1.(i+1) = seq2.(i+1) | |
by Q560,NAT_1:14,Q550,Q54,XXREAL_0:2,Q52,Q60; | |
end; | |
end; | |
for i be Nat holds EQ[i] from NAT_1:sch 2(Q50,Q51); | |
hence s1 = s2 by P1,P2,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let SBT; | |
let MCFunc; | |
let m be Nat; | |
let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
let Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
func AES-DEC(SBT,MCFunc,text,Key) -> | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
:defDEC: | |
ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
seq.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) & | |
(for i be Nat st 1 <= i & i < 7+m-1 holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
it = AddRoundKey.(seq.(7+m-1),KeyNr); | |
existence | |
proof | |
1+0 < 7+m by XREAL_1:8; | |
then | |
N1: 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider Nr = 7+m-1 as Nat; | |
ZZ1: Rev((KeyExpansion(SBT,m)).(Key)) in | |
(Nr+1)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
reconsider kky = Rev((KeyExpansion(SBT,m)).(Key)) as Element of | |
(Nr+1)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
XX12: ex s be Element of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)))* | |
st kky = s & len s = Nr+1 by ZZ1; | |
defpred P[Nat,set,set] means | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).($1+1) & | |
$3 = (InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.($2,Keyi)); | |
1+0 <= 7+m by XREAL_1:7; | |
then 1 in Seg (Nr+1); | |
then 1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then (Rev((KeyExpansion(SBT,m)).(Key))).1 in rng kky by FUNCT_1:3; | |
then reconsider Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider I0 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1)) | |
as Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
X1: for n being Nat st 1 <= n & n < Nr | |
for z being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds ex y being Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st P[n,z,y] | |
proof | |
let n be Nat; | |
assume | |
X11: 1 <= n & n < Nr; | |
let z be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
X111: n+1 <= Nr+1 by XREAL_1:7,X11; | |
0+1 <= n+1 by XREAL_1:7; | |
then n+1 in Seg (Nr+1) by X111; | |
then n+1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then (Rev((KeyExpansion(SBT,m)).(Key))).(n+1) in rng kky by FUNCT_1:3; | |
then reconsider Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(n+1) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider y = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(z,Keyi)) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
take y; | |
thus P[n,z,y]; | |
end; | |
consider seq be | |
FinSequence of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) such that | |
X2: len seq = Nr & (seq.1 = I0 or Nr = 0) & | |
for i be Nat st 1 <= i & i < Nr holds P[i,seq.i,seq.(i+1)] | |
from RECDEF_1:sch 4(X1); | |
Nr in Seg Nr by FINSEQ_1:3,N1; | |
then Nr in dom seq by FINSEQ_1:def 3,X2; | |
then seq.Nr in rng seq by FUNCT_1:3; | |
then reconsider seq10 = seq.Nr as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
Nr+1 in Seg (Nr+1) by FINSEQ_1:3; | |
then Nr+1 in dom (kky) by FINSEQ_1:def 3,XX12; | |
then (Rev((KeyExpansion(SBT,m)).(Key))).(Nr+1) in rng kky by FUNCT_1:3; | |
then reconsider KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(Nr+1) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider w = AddRoundKey.((seq10),KeyNr) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
w = AddRoundKey.(seq.Nr,KeyNr); | |
hence thesis by X2,XREAL_1:8; | |
end; | |
uniqueness | |
proof | |
let s1,s2 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
1+0 < 7+m by XREAL_1:8; | |
then 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider Nr = 7+m-1 as Nat; | |
assume | |
A1: ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
seq.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) & | |
(for i be Nat st 1 <= i & i < 7+m-1 holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
s1 = AddRoundKey.(seq.(7+m-1),KeyNr); | |
assume | |
A2: ex seq be FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) | |
st len seq = 7+m-1 & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
seq.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) & | |
(for i be Nat st 1 <= i & i < 7+m-1 holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
s2 = AddRoundKey.(seq.(7+m-1),KeyNr); | |
consider seq1 be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P1: len seq1 = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
seq1.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) & | |
(for i be Nat st 1 <= i & i < Nr holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq1.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq1.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
s1 = AddRoundKey.(seq1.(7+m-1),KeyNr) by A1; | |
consider seq2 be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P2: len seq2 = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
seq2.1 = (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(text,Keyi1))) & | |
(for i be Nat st 1 <= i & i < Nr holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq2.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq2.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
s2 = AddRoundKey.(seq2.(7+m-1),KeyNr) by A2; | |
defpred EQ[Nat] means | |
1 <= $1 & $1 <= len seq1 implies seq1.$1 = seq2.$1; | |
Q50: EQ[0]; | |
Q51: for i be Nat st EQ[i] holds EQ[i+1] | |
proof | |
let i be Nat; | |
assume | |
Q52: EQ[i]; | |
assume 1 <= i+1 & i+1 <= len seq1; | |
then | |
Q54: 1-1 <= i+1-1 & i+1-1 <= (len seq1)-1 by XREAL_1:9; | |
Q550: (len seq1)-1 <= (len seq1)-0 by XREAL_1:13; | |
per cases; | |
suppose | |
C1: i = 0; | |
thus seq1.(i+1) = seq2.(i+1) by C1,P1,P2; | |
end; | |
suppose | |
Q560: i <> 0; | |
Nr-1 < Nr-0 by XREAL_1:15; | |
then | |
XX1: 1 <= i & i < Nr by Q560,NAT_1:14,P1,Q54,XXREAL_0:2; | |
then | |
Q60: ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq1.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq1.i,Keyi)) | |
by P1; | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
seq2.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(seq2.i,Keyi)) | |
by P2,XX1; | |
hence seq1.(i+1) = seq2.(i+1) | |
by Q560,NAT_1:14,Q550,Q54,XXREAL_0:2,Q52,Q60; | |
end; | |
end; | |
for i be Nat holds EQ[i] from NAT_1:sch 2(Q50,Q51); | |
hence s1 = s2 by FINSEQ_1:14,P1,P2; | |
end; | |
end; | |
theorem INV01: | |
for input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds (MCFunc").(MCFunc.input) = input | |
proof | |
let input be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
thus (MCFunc").(MCFunc.(input)) = ((MCFunc")*MCFunc).input by FUNCT_2:15 | |
.= (id (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)))).input | |
by FUNCT_2:61 | |
.= input; | |
end; | |
theorem | |
for output be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
holds MCFunc.((MCFunc").output) = output | |
proof | |
let output be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
thus (MCFunc).((MCFunc").(output)) = (MCFunc*(MCFunc")).output by FUNCT_2:15 | |
.= (id (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)))).output | |
by FUNCT_2:61 | |
.= output; | |
end; | |
theorem LAST01: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) holds | |
(InvSubBytes(SBT)*InvShiftRows).((ShiftRows*SubBytes(SBT)).text) = text | |
proof | |
let m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
thus (InvSubBytes(SBT)*InvShiftRows).((ShiftRows*SubBytes(SBT)).text) = | |
(InvSubBytes(SBT)*InvShiftRows).(ShiftRows.((SubBytes(SBT)).text)) | |
by FUNCT_2:15 | |
.= (InvSubBytes(SBT)).(InvShiftRows.(ShiftRows.((SubBytes(SBT)).text))) | |
by FUNCT_2:15 | |
.= (InvSubBytes(SBT)). ((SubBytes(SBT)).text) by INV04 | |
.= text by INV07; | |
end; | |
theorem LAST02: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) holds | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")). | |
((MCFunc*ShiftRows*SubBytes(SBT)).text) = text | |
proof | |
let m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
thus (InvSubBytes(SBT)*InvShiftRows*(MCFunc")). | |
((MCFunc*ShiftRows*SubBytes(SBT)).text) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")). | |
((MCFunc*ShiftRows).((SubBytes(SBT)).text)) by FUNCT_2:15 | |
.= (InvSubBytes(SBT)*InvShiftRows*(MCFunc")). | |
(MCFunc.(ShiftRows.((SubBytes(SBT)).text))) by FUNCT_2:15 | |
.= (InvSubBytes(SBT)*InvShiftRows).((MCFunc"). | |
(MCFunc.(ShiftRows.((SubBytes(SBT)).text)))) by FUNCT_2:15 | |
.= (InvSubBytes(SBT)*InvShiftRows).(ShiftRows.((SubBytes(SBT)).text)) | |
by INV01 | |
.= (InvSubBytes(SBT)).(InvShiftRows.(ShiftRows.((SubBytes(SBT)).text))) | |
by FUNCT_2:15 | |
.= (InvSubBytes(SBT)).((SubBytes(SBT)).text) by INV04 | |
.= text by INV07; | |
end; | |
theorem LAST03: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
dkeyi,ekeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & dkeyi = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
ekeyi = ((KeyExpansion(SBT,m)).(Key)).(7+m) | |
holds AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi) = text | |
proof | |
let m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
dkeyi,ekeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & dkeyi = (Rev((KeyExpansion(SBT,m)).(key))).1 & | |
ekeyi = ((KeyExpansion(SBT,m)).(key)).(7+m); | |
set p = (KeyExpansion(SBT,m)).(key); | |
(KeyExpansion(SBT,m)).(key) in | |
(7+m)-tuples_on(4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN))); | |
then | |
B0: ex s be Element of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
st (KeyExpansion(SBT,m)).(key) = s & len s = (7+m); | |
1+0 < 7+m by XREAL_1:8; | |
then 1 in Seg (7+m); | |
then | |
B1: 1 in dom p by FINSEQ_1:def 3,B0; | |
A0: dkeyi = p.((len p)-1+1) by AS,FINSEQ_5:58,B1 | |
.= ekeyi by B0,AS; | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then consider etextij,ekeyij be Element of 8-tuples_on BOOLEAN such that | |
A4: etextij = (text.i).j & ekeyij = (ekeyi.i).j & | |
((AddRoundKey.(text,ekeyi)).i).j = Op-XOR(etextij,ekeyij) | |
by DefAddRoundKey; | |
consider dtextij,dkeyij be Element of 8-tuples_on BOOLEAN such that | |
A5: dtextij = ((AddRoundKey.(text,ekeyi)).i).j & dkeyij = (dkeyi.i).j & | |
((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = | |
Op-XOR(dtextij,dkeyij) by DefAddRoundKey,A3; | |
thus ((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = (text.i).j | |
by A4,A5,A0,DESCIP_1:17; | |
end; | |
hence AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi) = text by LM01; | |
end; | |
LAST04: | |
for m be Nat, | |
text,otext be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Keyi1,KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
otext = AddRoundKey.((ShiftRows*SubBytes(SBT)).text,KeyNr) | |
holds (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(otext,Keyi1)) = text | |
proof | |
let m be Nat, | |
text,otext be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Keyi1,KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
otext = AddRoundKey.((ShiftRows*SubBytes(SBT)).text,KeyNr); | |
(AddRoundKey.(otext,Keyi1)) = (ShiftRows*SubBytes(SBT)).text by AS,LAST03; | |
hence (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey. (otext,Keyi1)) | |
= text by LAST01; | |
end; | |
theorem LAST05: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
dkeyi,ekeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & dkeyi = ((KeyExpansion(SBT,m)).(key)).1 & | |
ekeyi = (Rev((KeyExpansion(SBT,m)).(key))).(7+m) | |
holds AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi) = text | |
proof | |
let m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
dkeyi,ekeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & dkeyi = ((KeyExpansion(SBT,m)).(key)).1 & | |
ekeyi = (Rev((KeyExpansion(SBT,m)).(key))).(7+m); | |
set p = (KeyExpansion(SBT,m)).(key); | |
(KeyExpansion(SBT,m)).(key) in | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
then | |
B0: ex s be Element of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
st (KeyExpansion(SBT,m)).(key) = s & len s = (7+m); | |
1+0 < 7+m by XREAL_1:8; | |
then 7+m in Seg (7+m); | |
then | |
B1: 7+m in dom p by FINSEQ_1:def 3,B0; | |
A0: ekeyi = p.((len p)-(7+m)+1) by AS,FINSEQ_5:58,B1 | |
.= dkeyi by B0,AS; | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then consider etextij,ekeyij be Element of 8-tuples_on BOOLEAN such that | |
A4: etextij = (text.i).j & ekeyij = (ekeyi.i).j & | |
((AddRoundKey.(text,ekeyi)).i).j = Op-XOR(etextij,ekeyij) | |
by DefAddRoundKey; | |
consider dtextij,dkeyij be Element of 8-tuples_on BOOLEAN such that | |
A5: dtextij = ((AddRoundKey.(text,ekeyi)).i).j & dkeyij = (dkeyi.i).j & | |
((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = | |
Op-XOR(dtextij,dkeyij) by DefAddRoundKey,A3; | |
thus ((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = | |
(text.i).j by A4,A5,A0,DESCIP_1:17; | |
end; | |
hence AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi) = text by LM01; | |
end; | |
theorem | |
for m be Nat, | |
text,otext be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Keyi1,KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
otext = AddRoundKey.((ShiftRows*SubBytes(SBT)).text,KeyNr) | |
holds (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(otext,Keyi1)) = text | |
proof | |
let m be Nat, | |
text,otext be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Keyi1,KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
otext = AddRoundKey.((ShiftRows*SubBytes(SBT)).text,KeyNr); | |
(AddRoundKey.(otext,Keyi1)) = (ShiftRows*SubBytes(SBT)).text by AS,LAST05; | |
hence (InvSubBytes(SBT)*InvShiftRows).(AddRoundKey.(otext,Keyi1)) = text | |
by LAST01; | |
end; | |
theorem LAST08: | |
for m,i be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
eKeyi,dKeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & i <= 7+m-1 & | |
eKeyi = ((KeyExpansion(SBT,m)).(Key)).(7+m-i) & | |
dKeyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) | |
holds AddRoundKey.(AddRoundKey.(text,eKeyi),dKeyi) = text | |
proof | |
let m,i be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
ekeyi,dkeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & i <= 7+m-1 & | |
ekeyi = ((KeyExpansion(SBT,m)).(key)).(7+m-i) & | |
dkeyi = (Rev((KeyExpansion(SBT,m)).(key))).(i+1); | |
set p = (KeyExpansion(SBT,m)).(key); | |
(KeyExpansion(SBT,m)).(key) in | |
(7+m)-tuples_on(4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))); | |
then | |
B0: ex s be Element of (4-tuples_on (4-tuples_on (8-tuples_on BOOLEAN)))* | |
st (KeyExpansion(SBT,m)).(key) = s & len s = (7+m); | |
i+1 <= 7+m-1+1 by AS,XREAL_1:7; | |
then 1 <= i+1 & i+1 <= 7+m by NAT_1:11; | |
then i+1 in Seg (7+m); | |
then | |
B1: i+1 in dom p by FINSEQ_1:def 3,B0; | |
A0: dkeyi = p.((len p)-(i+1)+1) by AS,FINSEQ_5:58,B1 | |
.= ekeyi by B0,AS; | |
now let i,j be Nat; | |
assume | |
A3: i in Seg 4 & j in Seg 4; | |
then consider etextij,ekeyij be Element of 8-tuples_on BOOLEAN such that | |
A4: etextij = (text.i).j & ekeyij = (ekeyi.i).j & | |
((AddRoundKey.(text,ekeyi)).i).j = Op-XOR(etextij,ekeyij) | |
by DefAddRoundKey; | |
consider dtextij,dkeyij be Element of 8-tuples_on BOOLEAN such that | |
A5: dtextij = ((AddRoundKey.(text,ekeyi)).i).j & dkeyij = (dkeyi.i).j & | |
((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = | |
Op-XOR(dtextij,dkeyij) by DefAddRoundKey,A3; | |
thus ((AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi)).i).j = | |
(text.i).j by A4,A5,A0,DESCIP_1:17; | |
end; | |
hence AddRoundKey.(AddRoundKey.(text,ekeyi),dkeyi) = text by LM01; | |
end; | |
LAST07: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
eKeyi,dKeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) & eKeyi = ((KeyExpansion(SBT,m)).(Key)).1 & | |
dKeyi = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) | |
holds AddRoundKey.(AddRoundKey.(text,eKeyi),dKeyi) = text | |
proof | |
let m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
eKeyi,dKeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
AS: (m = 4 or m = 6 or m = 8) & eKeyi = ((KeyExpansion(SBT,m)).(Key)).1 & | |
dKeyi = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m); | |
1+0 < 7+m by XREAL_1:8; | |
then 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider i = 7+m-1 as Nat; | |
P2: eKeyi = ((KeyExpansion(SBT,m)).(Key)).(7+m-i) by AS; | |
dKeyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) by AS; | |
hence thesis by AS,P2,LAST08; | |
end; | |
theorem LASTXX: | |
for m be Nat, | |
text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st (m = 4 or m = 6 or m = 8) | |
holds AES-DEC(SBT,MCFunc,AES-ENC(SBT,MCFunc,text,Key),Key) = text | |
proof | |
let m be Nat; | |
let text be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
let Key be Element of m-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
1+0 < 7+m by XREAL_1:8; | |
then | |
N1: 0 < 7+m-1 by XREAL_1:50; | |
then 7+m-1 in NAT by INT_1:3; | |
then reconsider Nr = 7+m-1 as Nat; | |
A0: 1 <= Nr by NAT_1:14,N1; | |
assume | |
AS: (m = 4 or m = 6 or m = 8); | |
consider eseq be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P1: len eseq = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
eseq.1 = AddRoundKey.(text,Keyi1)) & (for i be Nat st 1 <= i & i < Nr holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = ((KeyExpansion(SBT,m)).(Key)).(i+1) & eseq.(i+1) = | |
AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(eseq.i),Keyi)) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
AES-ENC(SBT,MCFunc,text,Key) = | |
AddRoundKey.((ShiftRows*SubBytes(SBT)).(eseq.Nr),KeyNr) by defENC; | |
consider dseq be | |
FinSequence of (4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN))) such that | |
P2: len dseq = Nr & | |
(ex Keyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
dseq.1 = (InvSubBytes(SBT)*InvShiftRows). | |
(AddRoundKey.(AES-ENC(SBT,MCFunc,text,Key),Keyi1))) & | |
(for i be Nat st 1 <= i & i < Nr holds | |
ex Keyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st Keyi = (Rev((KeyExpansion(SBT,m)).(Key))).(i+1) & | |
dseq.(i+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(dseq.i,Keyi))) & | |
ex KeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
st KeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
AES-DEC(SBT,MCFunc,AES-ENC(SBT,MCFunc,text,Key),Key) = | |
AddRoundKey.(dseq.Nr,KeyNr) by defDEC; | |
consider eKeyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
P11: eKeyi1 = ((KeyExpansion(SBT,m)).(Key)).1 & | |
eseq.1 = AddRoundKey.(text,eKeyi1) by P1; | |
consider eKeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
P12: eKeyNr = ((KeyExpansion(SBT,m)).(Key)).(7+m) & | |
AES-ENC(SBT,MCFunc,text,Key) = | |
AddRoundKey.((ShiftRows*SubBytes(SBT)).(eseq.Nr),eKeyNr) by P1; | |
consider dKeyi1 be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
P21: dKeyi1 = (Rev((KeyExpansion(SBT,m)).(Key))).1 & | |
dseq.1 = (InvSubBytes(SBT)*InvShiftRows). | |
(AddRoundKey.(AES-ENC(SBT,MCFunc,text,Key),dKeyi1)) by P2; | |
consider dKeyNr be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
P22: dKeyNr = (Rev((KeyExpansion(SBT,m)).(Key))).(7+m) & | |
AES-DEC(SBT,MCFunc,AES-ENC(SBT,MCFunc,text,Key),Key) = | |
AddRoundKey.(dseq.Nr,dKeyNr) by P2; | |
defpred PQ[Nat] means | |
$1 < Nr implies dseq.($1+1) = eseq.(Nr-$1); | |
Nr in Seg Nr by A0; | |
then Nr in dom eseq by P1,FINSEQ_1:def 3; | |
then eseq.Nr in rng eseq by FUNCT_1:3; | |
then reconsider esqm = eseq.Nr as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
dseq.(1+0) = esqm by P12,P21,AS,LAST04 | |
.= eseq.(Nr-0); | |
then | |
PN1: PQ[0]; | |
PN2: for i be Nat st PQ[i] holds PQ[i+1] | |
proof | |
let i be Nat; | |
assume | |
A1: PQ[i]; | |
assume | |
A2: i+1 < Nr; | |
A4: i <= i+1 by NAT_1:11; | |
consider dKeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
A6: dKeyi = (Rev((KeyExpansion(SBT,m)).(Key))).((i+1)+1) & | |
dseq.((i+1)+1) = | |
(InvSubBytes(SBT)*InvShiftRows*(MCFunc")).(AddRoundKey.(dseq.(i+1),dKeyi)) | |
by P2,A2,NAT_1:11; | |
X11: 0 < Nr-(i+1) by A2,XREAL_1:50; | |
then Nr-(i+1) in NAT by INT_1:3; | |
then reconsider m7i1 = Nr-(i+1) as Nat; | |
1 <= m7i1 by NAT_1:14,X11; | |
then | |
A9: 1 <= Nr-(i+1) & Nr-(i+1) < Nr by XREAL_1:44; | |
consider eKeyi be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
such that | |
A10: eKeyi = ((KeyExpansion(SBT,m)).(Key)).(m7i1+1) & | |
eseq.(m7i1+1) = | |
AddRoundKey.((MCFunc*ShiftRows*SubBytes(SBT)).(eseq.(m7i1)),eKeyi) | |
by P1,A9; | |
m7i1 in Seg Nr by A9; | |
then m7i1 in dom eseq by P1,FINSEQ_1:def 3; | |
then eseq.m7i1 in rng eseq by FUNCT_1:3; | |
then reconsider esq7mi1 = eseq.m7i1 as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider MSSesq7mi1 = (MCFunc*ShiftRows*SubBytes(SBT)).esq7mi1 as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
XXX: eKeyi = ((KeyExpansion(SBT,m)).(Key)).(7+m-(i+1)) by A10; | |
A12: AddRoundKey.(eseq.(Nr-i),dKeyi) = MSSesq7mi1 by A10,A2,AS,A6,XXX,LAST08; | |
thus dseq.((i+1)+1) = eseq.(Nr-(i+1)) by A6,A4,A2,XXREAL_0:2,A1,A12,LAST02; | |
end; | |
P30: for k be Nat holds PQ[k] from NAT_1:sch 2(PN1,PN2); | |
5+m < 6+m by XREAL_1:8; | |
then | |
P31: dseq.(5+m+1) = eseq.(Nr-(5+m)) by P30; | |
1 <= 1 & 1 <= 1+(5+m) by NAT_1:11; | |
then 1 in Seg Nr; | |
then 1 in dom eseq by P1,FINSEQ_1:def 3; | |
then eseq.1 in rng eseq by FUNCT_1:3; | |
then reconsider esq1 = eseq.1 as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
thus AES-DEC(SBT,MCFunc,AES-ENC(SBT,MCFunc,text,Key),Key) = text | |
by P22,P31,P11,AS,LAST07; | |
end; | |
theorem LR8D1: | |
for D be non empty set, n,m be non zero Element of NAT, | |
r be Element of n-tuples_on D st m <= n & 8 <= n-m | |
holds Op-Left(Op-Right(r,m),8) is Element of 8-tuples_on D | |
proof | |
let D be non empty set, | |
n,m be non zero Element of NAT, | |
r be Element of n-tuples_on D; | |
assume | |
A1: m <= n & 8 <= n-m; | |
r in { s where s is Element of D*: len s = n}; | |
then consider s be Element of D* such that | |
A2: r = s & len s = n; | |
len Op-Right(r,m) = n - m by A1,A2,RFINSEQ:def 1; | |
then len(Op-Left(Op-Right(r,m),8)) = 8 by A1,FINSEQ_1:59; | |
hence thesis by FINSEQ_2:92; | |
end; | |
Lm1: | |
for D be non empty set, n be non zero Element of NAT, | |
r be Element of n-tuples_on D st 8 <= n & 8 <= n-8 & 16 <= n & | |
8 <= n-16 & 24 <= n & 8 <= n-24 | |
holds <* Op-Left(r,8),Op-Left(Op-Right(r,8),8),Op-Left(Op-Right(r,16),8), | |
Op-Left(Op-Right(r,24),8) *> is Element of 4-tuples_on (8-tuples_on D) | |
proof | |
let D be non empty set, n be non zero Element of NAT, | |
r be Element of n-tuples_on D; | |
assume 8 <= n & 8 <= n-8 & 16 <= n & 8 <= n-16 & 24 <= n & 8 <= n-24; | |
then Op-Left(r,8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,8),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,16),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,24),8) is Element of 8-tuples_on D by DESCIP_1:1,LR8D1; | |
hence thesis by LMGSEQ4; | |
end; | |
Lm2: | |
for D be non empty set, n,m,l,p,q be non zero Element of NAT, | |
r be Element of n-tuples_on D st m <= n & 8 <= n-m & l = m+8 & l <= n & | |
8 <= n-l & p = m+16 & p <= n & 8 <= n-p & q = m+24 & q <= n & 8 <= n-q | |
holds <* Op-Left(Op-Right(r,m),8),Op-Left(Op-Right(r,l),8), | |
Op-Left(Op-Right(r,p),8),Op-Left(Op-Right(r,q),8) *> is | |
Element of 4-tuples_on (8-tuples_on D) | |
proof | |
let D be non empty set, n,m,l,p,q be non zero Element of NAT, | |
r be Element of n-tuples_on D; | |
assume m <= n & 8 <= n-m & l = m+8 & l <= n & 8 <= n-l & | |
p = m+16 & p <= n & 8 <= n-p & q = m+24 & q <= n & 8 <= n-q; | |
then Op-Left(Op-Right(r,m),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,l),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,p),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,q),8) is Element of 8-tuples_on D by LR8D1; | |
hence thesis by LMGSEQ4; | |
end; | |
Lm3: | |
for D be non empty set, n,m,l,p,q be non zero Element of NAT, | |
r be Element of n-tuples_on D st m <= n & 8 <= n-m & l = m+8 & l <= n & | |
8 <= n-l & p = m+16 & p <= n & 8 <= n-p & q = m+24 & q <= n & 8 = n-q | |
holds <* Op-Left(Op-Right(r,m),8),Op-Left(Op-Right(r,l),8), | |
Op-Left(Op-Right(r,p),8),Op-Right(r,q) *> is | |
Element of 4-tuples_on (8-tuples_on D) | |
proof | |
let D be non empty set, n,m,l,p,q be non zero Element of NAT, | |
r be Element of n-tuples_on D; | |
assume m <= n & 8 <= n-m & l = m+8 & l <= n & 8 <= n-l & | |
p = m+16 & p <= n & 8 <= n-p & q = m+24 & q <= n & 8 = n-q; | |
then Op-Left(Op-Right(r,m),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,l),8) is Element of 8-tuples_on D & | |
Op-Left(Op-Right(r,p),8) is Element of 8-tuples_on D & | |
Op-Right(r,q) is Element of 8-tuples_on D by DESCIP_1:2,LR8D1; | |
hence thesis by LMGSEQ4; | |
end; | |
definition | |
let r be Element of 128-tuples_on BOOLEAN; | |
func AES-KeyInitState128(r) -> | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
it.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
it.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
it.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
it.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Right(r,120) *>; | |
existence | |
proof | |
set R1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *>; | |
set R2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *>; | |
set R3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *>; | |
set R4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Right(r,120) *>; | |
8 <= 128-8 & 8 <= 128-16 & 8 <= 128-24; | |
then reconsider R1 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm1; | |
8 <= 128-32 & 8 <= 128-40 & 8 <= 128-48 & 8 <= 128-56 & | |
40 = 32+8 & 48 = 32+16 & 56 = 32+24; | |
then reconsider R2 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 128-64 & 8 <= 128-72 & 8 <= 128-80 & 8 <= 128-88 & | |
72 = 64+8 & 80 = 64+16 & 88 = 64+24; | |
then reconsider R3 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 128-96 & 8 <= 128-104 & 8 <= 128-112 & 8 = 128-120 & | |
104 = 96+8 & 112 = 96+16 & 120 = 96+24 & 8 = 128-120; | |
then reconsider R4 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm3; | |
set T1 = <*R1,R2*>; | |
set T2 = <*R3,R4*>; | |
set T = T1^T2; | |
A4: T.1 = T1.1 & ... & T.2 = T1.2 by FINSEQ_3:154; | |
A5: T.(2+1) = T2.1 & ... & T.(2+2) = T2.2 by FINSEQ_3:155; | |
len T = 4 & T is FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) | |
by CARD_1:def 7; | |
then reconsider T as Element of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by FINSEQ_2:92; | |
take T; | |
thus thesis by A4,A5,FINSEQ_1:44; | |
end; | |
uniqueness | |
proof | |
let p,q be Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A6: p.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
p.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
p.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
p.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Right(r,120) *>; | |
assume | |
A7: q.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
q.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
q.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
q.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Right(r,120) *>; | |
p in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A8: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st p = v & | |
len v = 4; | |
q in 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A9: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st q = v & | |
len v = 4; | |
for i be Nat st 1 <= i & i <= len p holds p.i = q.i | |
proof | |
let i be Nat; | |
assume 1 <= i & i <= len p; | |
then i = 1 or ... or i = 4 by A8; | |
hence thesis by A6,A7; | |
end; | |
hence p = q by A8,A9,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let r be Element of 192-tuples_on BOOLEAN; | |
func AES-KeyInitState192(r) -> | |
Element of 6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
it.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
it.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
it.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
it.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
it.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
it.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Right(r,184) *>; | |
existence | |
proof | |
set R1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *>; | |
set R2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *>; | |
set R3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *>; | |
set R4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *>; | |
set R5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *>; | |
set R6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Right(r,184) *>; | |
8 <= 192-8 & 8 <= 192-16 & 8 <= 192-24; | |
then reconsider R1 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm1; | |
8 <= 192-32 & 8 <= 192-40 & 8 <= 192-48 & 8 <= 192-56 & | |
40 = 32+8 & 48 = 32+16 & 56 = 32+24; | |
then reconsider R2 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 192-64 & 8 <= 192-72 & 8 <= 192-80 & 8 <= 192-88 & | |
72 = 64+8 & 80 = 64+16 & 88 = 64+24; | |
then reconsider R3 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 192-96 & 8 <= 192-104 & 8 <= 192-112 & 8 <= 192-120 & | |
104 = 96+8 & 112 = 96+16 & 120 = 96+24; | |
then reconsider R4 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 192-128 & 8 <= 192-136 & 8 <= 192-144 & 8 <= 192-152 & | |
136 = 128+8 & 144 = 128+16 & 152 = 128+24; | |
then reconsider R5 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 192-160 & 8 <= 192-168 & 8 <= 192-176 & 8 = 192-184 & | |
168 = 160+8 & 176 = 160+16 & 184 = 160+24 & 8 = 192-184; | |
then reconsider R6 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm3; | |
set T1 = <*R1,R2,R3*>; | |
set T2 = <*R4,R5,R6*>; | |
set T = T1^T2; | |
A4: T.1 = T1.1 & ... & T.3 = T1.3 by FINSEQ_3:154; | |
A5: T.(3+1) = T2.1 & ... & T.(3+3) = T2.3 by FINSEQ_3:155; | |
len T = 6 & T is FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) | |
by CARD_1:def 7; | |
then reconsider T as Element of | |
6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by FINSEQ_2:92; | |
take T; | |
thus thesis by A4,A5,FINSEQ_1:45; | |
end; | |
uniqueness | |
proof | |
let p,q be Element of 6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A6: p.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
p.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
p.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
p.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
p.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
p.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Right(r,184) *>; | |
assume | |
A7: q.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
q.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
q.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
q.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
q.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
q.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Right(r,184) *>; | |
p in 6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A8: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st p = v & | |
len v = 6; | |
q in 6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A9: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st q = v & | |
len v = 6; | |
for i be Nat st 1 <= i & i <= len p holds p.i = q.i | |
proof | |
let i be Nat; | |
assume 1 <= i & i <= len p; | |
then i = 1 or ... or i = 6 by A8; | |
hence thesis by A6,A7; | |
end; | |
hence p = q by A8,A9,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let r be Element of 256-tuples_on BOOLEAN; | |
func AES-KeyInitState256(r) -> | |
Element of 8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) means | |
it.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
it.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
it.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
it.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
it.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
it.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Left(Op-Right(r,184),8) *> & | |
it.7 = <* Op-Left(Op-Right(r,192),8),Op-Left(Op-Right(r,200),8), | |
Op-Left(Op-Right(r,208),8),Op-Left(Op-Right(r,216),8) *> & | |
it.8 = <* Op-Left(Op-Right(r,224),8),Op-Left(Op-Right(r,232),8), | |
Op-Left(Op-Right(r,240),8),Op-Right(r,248) *>; | |
existence | |
proof | |
set R1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *>; | |
set R2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *>; | |
set R3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *>; | |
set R4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *>; | |
set R5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *>; | |
set R6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Left(Op-Right(r,184),8) *>; | |
set R7 = <* Op-Left(Op-Right(r,192),8),Op-Left(Op-Right(r,200),8), | |
Op-Left(Op-Right(r,208),8),Op-Left(Op-Right(r,216),8) *>; | |
set R8 = <* Op-Left(Op-Right(r,224),8),Op-Left(Op-Right(r,232),8), | |
Op-Left(Op-Right(r,240),8),Op-Right(r,248) *>; | |
8 <= 256-8 & 8 <= 256-16 & 8 <= 256-24; | |
then reconsider R1 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm1; | |
8 <= 256-32 & 8 <= 256-40 & 8 <= 256-48 & 8 <= 256-56 & | |
40 = 32+8 & 48 = 32+16 & 56 = 32+24; | |
then reconsider R2 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-64 & 8 <= 256-72 & 8 <= 256-80 & 8 <= 256-88 & | |
72 = 64+8 & 80 = 64+16 & 88 = 64+24; | |
then reconsider R3 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-96 & 8 <= 256-104 & 8 <= 256-112 & 8 <= 256-120 & | |
104 = 96+8 & 112 = 96+16 & 120 = 96+24; | |
then reconsider R4 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-128 & 8 <= 256-136 & 8 <= 256-144 & 8 <= 256-152 & | |
136 = 128+8 & 144 = 128+16 & 152 = 128+24; | |
then reconsider R5 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-160 & 8 <= 256-168 & 8 <= 256-176 & 8 <= 256-184 & | |
168 = 160+8 & 176 = 160+16 & 184 = 160+24; | |
then reconsider R6 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-192 & 8 <= 256-200 & 8 <= 256-208 & 8 <= 256-216 & | |
200 = 192+8 & 208 = 192+16 & 216 = 192+24; | |
then reconsider R7 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm2; | |
8 <= 256-224 & 8 <= 256-232 & 8 <= 256-240 & 8 = 256-248 & | |
232 = 224+8 & 240 = 224+16 & 248 = 224+24 & 8 = 256-248; | |
then reconsider R8 as Element of 4-tuples_on (8-tuples_on BOOLEAN) by Lm3; | |
set T1 = <*R1,R2,R3,R4*>; | |
set T2 = <*R5,R6,R7,R8*>; | |
set T = T1^T2; | |
A4: T.1 = T1.1 & ... & T.4 = T1.4 by FINSEQ_3:154; | |
A5: T.(4+1) = T2.1 & ... & T.(4+4) = T2.4 by FINSEQ_3:155; | |
len T = 8 & T is FinSequence of 4-tuples_on (8-tuples_on BOOLEAN) | |
by CARD_1:def 7; | |
then reconsider T as Element of | |
8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) by FINSEQ_2:92; | |
take T; | |
thus thesis by A4,A5,FINSEQ_4:76; | |
end; | |
uniqueness | |
proof | |
let p,q be Element of 8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
assume | |
A6: p.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
p.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
p.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
p.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
p.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
p.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Left(Op-Right(r,184),8) *> & | |
p.7 = <* Op-Left(Op-Right(r,192),8),Op-Left(Op-Right(r,200),8), | |
Op-Left(Op-Right(r,208),8),Op-Left(Op-Right(r,216),8) *> & | |
p.8 = <* Op-Left(Op-Right(r,224),8),Op-Left(Op-Right(r,232),8), | |
Op-Left(Op-Right(r,240),8),Op-Right(r,248) *>; | |
assume | |
A7: q.1 = <* Op-Left(r,8),Op-Left(Op-Right(r,8),8), | |
Op-Left(Op-Right(r,16),8),Op-Left(Op-Right(r,24),8) *> & | |
q.2 = <* Op-Left(Op-Right(r,32),8),Op-Left(Op-Right(r,40),8), | |
Op-Left(Op-Right(r,48),8),Op-Left(Op-Right(r,56),8) *> & | |
q.3 = <* Op-Left(Op-Right(r,64),8),Op-Left(Op-Right(r,72),8), | |
Op-Left(Op-Right(r,80),8),Op-Left(Op-Right(r,88),8) *> & | |
q.4 = <* Op-Left(Op-Right(r,96),8),Op-Left(Op-Right(r,104),8), | |
Op-Left(Op-Right(r,112),8),Op-Left(Op-Right(r,120),8) *> & | |
q.5 = <* Op-Left(Op-Right(r,128),8),Op-Left(Op-Right(r,136),8), | |
Op-Left(Op-Right(r,144),8),Op-Left(Op-Right(r,152),8) *> & | |
q.6 = <* Op-Left(Op-Right(r,160),8),Op-Left(Op-Right(r,168),8), | |
Op-Left(Op-Right(r,176),8),Op-Left(Op-Right(r,184),8) *> & | |
q.7 = <* Op-Left(Op-Right(r,192),8),Op-Left(Op-Right(r,200),8), | |
Op-Left(Op-Right(r,208),8),Op-Left(Op-Right(r,216),8) *> & | |
q.8 = <* Op-Left(Op-Right(r,224),8),Op-Left(Op-Right(r,232),8), | |
Op-Left(Op-Right(r,240),8),Op-Right(r,248) *>; | |
p in 8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A8: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st p = v & | |
len v = 8; | |
q in 8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
then | |
A9: ex v be Element of (4-tuples_on (8-tuples_on BOOLEAN))* st q = v & | |
len v = 8; | |
for i be Nat st 1 <= i & i <= len p holds p.i = q.i | |
proof | |
let i be Nat; | |
assume 1 <= i & i <= len p; | |
then i = 1 or ... or i = 8 by A8; | |
hence thesis by A6,A7; | |
end; | |
hence p = q by A8,A9,FINSEQ_1:14; | |
end; | |
end; | |
definition | |
let SBT,MixColumns; | |
let message be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 128-tuples_on BOOLEAN; | |
func AES128-ENC(SBT,MixColumns,message,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-ENC(SBT,MixColumns,AES-Statearray.message, | |
AES-KeyInitState128(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is Function of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),128-tuples_on BOOLEAN | |
by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
definition | |
let SBT,MixColumns; | |
let cipher be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 128-tuples_on BOOLEAN; | |
func AES128-DEC(SBT,MixColumns,cipher,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,AES-Statearray.cipher, | |
AES-KeyInitState128(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
128-tuples_on BOOLEAN by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
theorem | |
for SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message,Key be Element of 128-tuples_on BOOLEAN holds | |
AES128-DEC(SBT,MixColumns,AES128-ENC(SBT,MixColumns,message,Key),Key) = | |
message | |
proof | |
let SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message,Key be Element of 128-tuples_on BOOLEAN; | |
reconsider text = AES-Statearray.message as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider sKey = AES-KeyInitState128(Key) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider cipher = AES-ENC(SBT,MixColumns,text,sKey) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider CBLOCK = AES128-ENC(SBT,MixColumns,message,Key) as | |
Element of 128-tuples_on BOOLEAN; | |
AES128-DEC(SBT,MixColumns,CBLOCK,Key) = | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,cipher,sKey)) by LMINV1 | |
.=(AES-Statearray)".text by LASTXX; | |
hence thesis by FUNCT_2:26; | |
end; | |
definition | |
let SBT,MixColumns; | |
let message be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 192-tuples_on BOOLEAN; | |
func AES192-ENC(SBT,MixColumns,message,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-ENC(SBT,MixColumns,AES-Statearray.message, | |
AES-KeyInitState192(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is Function of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),128-tuples_on BOOLEAN | |
by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
definition | |
let SBT,MixColumns; | |
let cipher be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 192-tuples_on BOOLEAN; | |
func AES192-DEC(SBT,MixColumns,cipher,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,AES-Statearray.cipher, | |
AES-KeyInitState192(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
128-tuples_on BOOLEAN by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
theorem | |
for SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message be Element of 128-tuples_on BOOLEAN, | |
Key be Element of 192-tuples_on BOOLEAN holds | |
AES192-DEC(SBT,MixColumns,AES192-ENC(SBT,MixColumns,message,Key),Key) = | |
message | |
proof | |
let SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message be Element of 128-tuples_on BOOLEAN, | |
Key be Element of 192-tuples_on BOOLEAN; | |
reconsider text = AES-Statearray.message as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider sKey = AES-KeyInitState192(Key) as | |
Element of 6-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider cipher = AES-ENC(SBT,MixColumns,text,sKey) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider CBLOCK = AES192-ENC(SBT,MixColumns,message,Key) as | |
Element of 128-tuples_on BOOLEAN; | |
AES192-DEC(SBT,MixColumns,CBLOCK,Key) = | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,cipher,sKey)) by LMINV1 | |
.=(AES-Statearray)".text by LASTXX; | |
hence thesis by FUNCT_2:26; | |
end; | |
definition | |
let SBT,MixColumns; | |
let message be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 256-tuples_on BOOLEAN; | |
func AES256-ENC(SBT,MixColumns,message,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-ENC(SBT,MixColumns,AES-Statearray.message, | |
AES-KeyInitState256(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is Function of | |
4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)),128-tuples_on BOOLEAN | |
by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
definition | |
let SBT,MixColumns; | |
let cipher be Element of 128-tuples_on BOOLEAN; | |
let Key be Element of 256-tuples_on BOOLEAN; | |
func AES256-DEC(SBT,MixColumns,cipher,Key) -> | |
Element of 128-tuples_on BOOLEAN equals | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,AES-Statearray.cipher, | |
AES-KeyInitState256(Key))); | |
correctness | |
proof | |
rng AES-Statearray = 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)) | |
by FUNCT_2:def 3; | |
then (AES-Statearray)" is | |
Function of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
128-tuples_on BOOLEAN by FUNCT_2:25; | |
hence thesis by FUNCT_2:5; | |
end; | |
end; | |
theorem | |
for SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message be Element of 128-tuples_on BOOLEAN, | |
Key be Element of 256-tuples_on BOOLEAN holds | |
AES256-DEC(SBT,MixColumns,AES256-ENC(SBT,MixColumns,message,Key),Key) = | |
message | |
proof | |
let SBT be Permutation of (8-tuples_on BOOLEAN), | |
MixColumns be Permutation of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)), | |
message be Element of 128-tuples_on BOOLEAN, | |
Key be Element of 256-tuples_on BOOLEAN; | |
reconsider text = AES-Statearray.message as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider sKey = AES-KeyInitState256(Key) as | |
Element of 8-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider cipher = AES-ENC(SBT,MixColumns,text,sKey) as | |
Element of 4-tuples_on(4-tuples_on (8-tuples_on BOOLEAN)); | |
reconsider CBLOCK = AES256-ENC(SBT,MixColumns,message,Key) as | |
Element of 128-tuples_on BOOLEAN; | |
AES256-DEC(SBT,MixColumns,CBLOCK,Key) = | |
(AES-Statearray)".(AES-DEC(SBT,MixColumns,cipher,sKey)) by LMINV1 | |
.=(AES-Statearray)".text by LASTXX; | |
hence thesis by FUNCT_2:26; | |
end; | |