Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import field_theory.perfect_closure | |
import for_mathlib.nnreal | |
import valuation.basic | |
lemma iterate_frobenius_apply {α : Type*} [monoid α] (p n : ℕ) (a : α) : | |
(frobenius α p)^[n] a = a^p^n := | |
begin | |
induction n with n ih, {simp}, | |
rw [nat.iterate_succ', ih, frobenius_def, ← pow_mul, nat.pow_succ] | |
end | |
noncomputable theory | |
open_locale classical | |
namespace valuation | |
variables {R : Type*} [comm_ring R] | |
variables (v : valuation R nnreal) | |
namespace perfection | |
open nnreal | |
variables (p : ℕ) [nat.prime p] [char_p R p] | |
private def f₀ : ℕ × R → nnreal := | |
λ (x : ℕ × R), (v x.2)^(p^(-x.1 : ℤ) : ℝ) | |
private def hf₀ : ∀ (x₁ x₂ : ℕ × R) (h : perfect_closure.r R p x₁ x₂), | |
f₀ v p x₁ = f₀ v p x₂ | |
| x₁ x₂ (perfect_closure.r.intro _ n x) := | |
show v x ^ (p ^ (-n : ℤ) : ℝ) = v (x ^ p) ^ (p ^ (-(↑n + 1) : ℤ) : ℝ), | |
from have hp : (p : ℝ) ≠ 0 := by exact_mod_cast nat.prime.ne_zero ‹_›, | |
by rw [valuation.map_pow, ← rpow_nat_cast, ← rpow_mul, neg_add_rev, | |
fpow_add hp, ← mul_assoc, fpow_inv, mul_inv_cancel hp, one_mul] | |
def f : perfect_closure R p → nnreal := | |
quot.lift (f₀ v p) (hf₀ v p) | |
lemma f_zero : f v p (0 : perfect_closure R p) = 0 := | |
calc f v p (0 : perfect_closure R p) = quot.lift (f₀ v p) (hf₀ v p) (0 : perfect_closure R p) : rfl | |
... = (v (0:R))^(p^(-0:ℤ) : ℝ) : quot.lift_beta (f₀ v p) (hf₀ v p) (0, 0) | |
... = 0 : by rw [v.map_zero, neg_zero, fpow_zero, rpow_one] | |
lemma f_one : f v p (1 : perfect_closure R p) = 1 := | |
calc f v p (1 : perfect_closure R p) = quot.lift (f₀ v p) (hf₀ v p) (1 : perfect_closure R p) : rfl | |
... = (v (1:R))^(p^(-0:ℤ) : ℝ) : quot.lift_beta (f₀ v p) (hf₀ v p) (0, 1) | |
... = 1 : by rw [v.map_one, neg_zero, fpow_zero, rpow_one] | |
lemma f_mul (r s : perfect_closure R p) : f v p (r * s) = f v p r * f v p s := | |
quot.induction_on r $ λ ⟨m,x⟩, quot.induction_on s $ λ ⟨n,y⟩, | |
show f₀ v p (m + n, _) = f₀ v p (m,x) * f₀ v p (n,y), from | |
have hp : p ≠ 0 := nat.prime.ne_zero ‹_›, | |
have hpQ : (p : ℝ) ≠ 0 := by exact_mod_cast hp, | |
begin | |
clear _fun_match _fun_match _x _x, | |
dsimp only [f₀], | |
simp only [iterate_frobenius_apply, v.map_mul, v.map_pow, mul_rpow], | |
congr' 1, | |
all_goals { | |
rw [← rpow_nat_cast, ← rpow_mul, nat.cast_pow, ←fpow_of_nat, ← fpow_add hpQ], | |
{ congr, rw [int.coe_nat_add, neg_add], abel }, }, | |
end | |
lemma f_add (r s : perfect_closure R p) : | |
f v p (r + s) ≤ max (f v p r) (f v p s) := | |
quot.induction_on r $ λ ⟨m,x⟩, quot.induction_on s $ λ ⟨n,y⟩, | |
show f₀ v p (m + n, _) ≤ max (f₀ v p (m,x)) (f₀ v p (n,y)), from | |
have hp : p ≠ 0 := nat.prime.ne_zero ‹_›, | |
have hpQ : (p : ℝ) ≠ 0 := by exact_mod_cast hp, | |
begin | |
clear _fun_match _fun_match _x _x, | |
dsimp only [f₀], | |
rw [iterate_frobenius_apply, iterate_frobenius_apply], | |
have h := v.map_add (x^p^n) (y^p^m), | |
rw le_max_iff at h ⊢, | |
cases h with h h; [ {left, rw add_comm m}, right], | |
all_goals { | |
conv_rhs at h { rw v.map_pow }, | |
refine le_trans (rpow_le_rpow _ h (fpow_nonneg_of_nonneg (nat.cast_nonneg p) _)) (le_of_eq _), | |
rw [← rpow_nat_cast, ← rpow_mul, nat.cast_pow, ←fpow_of_nat, ← fpow_add hpQ], | |
{ congr, rw [int.coe_nat_add, neg_add], abel }, } | |
end | |
end perfection | |
section | |
variables (p : ℕ) [nat.prime p] [char_p R p] | |
def perfection : valuation (perfect_closure R p) nnreal := | |
{ to_fun := perfection.f v p, | |
map_zero' := perfection.f_zero v p, | |
map_one' := perfection.f_one v p, | |
map_mul' := perfection.f_mul v p, | |
map_add' := | |
begin | |
-- TODO(jmc): This is really ugly. But Lean doesn't cooperate. | |
-- It finds two instances that aren't defeq. | |
intros r s, | |
convert perfection.f_add v p r s, | |
delta classical.DLO nnreal.decidable_linear_order, | |
congr, | |
end } | |
end | |
end valuation | |