Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import ring_theory.noetherian | |
import ring_theory.algebra_operations | |
local attribute [instance] classical.prop_decidable | |
namespace submodule | |
open algebra | |
variables {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] | |
local attribute [instance] set.pointwise_mul_semiring | |
local attribute [instance] set.singleton.is_monoid_hom | |
set_option class.instance_max_depth 80 | |
lemma smul_eq_smul_span_int (S : set R) (I : ideal R) : | |
(↑(S • I) : set R) = (↑(S • (span ℤ (↑I : set R))) : set R) := | |
begin | |
conv_lhs {erw ← span_eq I}, | |
dsimp only [(•)], | |
erw [span_mul_span, span_mul_span], | |
apply set.subset.antisymm, | |
all_goals { | |
intros x hx, | |
apply span_induction hx, | |
{ intros, apply subset_span, assumption }, | |
{ apply submodule.zero_mem (span _ _) }, | |
{ intros, apply submodule.add_mem (span _ _), assumption' }, | |
{ intros a si hsi, | |
apply span_induction hsi, | |
{ rintros _ ⟨s, hs, i, hi, rfl⟩, | |
apply subset_span, | |
refine ⟨s, hs, a * i, I.mul_mem_left hi, _⟩, | |
rw [← mul_assoc, mul_comm s a, mul_assoc, smul_def''], | |
refl }, | |
{ rw smul_zero, apply submodule.zero_mem (span _ _) }, | |
{ intros, rw smul_add, apply submodule.add_mem (span _ _), assumption' }, | |
{ intros b si hsi, | |
rw [show a • b • si = b • a • si, by {simp}], | |
apply submodule.smul_mem (span _ _) b hsi } } } | |
end | |
section | |
variables {B : Type*} [comm_ring B] [algebra R B] | |
variables (S : subalgebra R B) | |
lemma span_mono' (X : set B) : (↑(span R X) : set B) ⊆ span S X := | |
λ b hb, span_induction hb | |
(λ x hx, subset_span hx) | |
(span S X).zero_mem | |
(λ x y hx hy, (span S X).add_mem hx hy) | |
(λ r b hb, by { rw algebra.smul_def, exact (span S X).smul_mem (algebra_map S r) hb }) | |
lemma span_span' (X : set B) : span S ↑(span R X) = span S X := | |
le_antisymm (span_le.mpr $ span_mono' S X) (span_mono subset_span) | |
lemma span_span_int (S' : set B) [is_subring S'] (X : set B) : span S' ↑(span ℤ X) = span S' X := | |
le_antisymm | |
begin | |
rw span_le, | |
intros x hx, | |
refine span_induction hx (λ x hx, subset_span hx) (span S' X).zero_mem | |
(λ x y hx hy, (span S' X).add_mem hx hy) _, | |
intros n b hb, | |
erw [smul_def'', ← gsmul_eq_mul], | |
apply is_add_subgroup.gsmul_mem hb, | |
end | |
(span_mono subset_span) | |
end | |
instance mul_action_algebra : mul_action A (submodule R A) := | |
{ smul := λ a M, ({a} : set A) • M, | |
mul_smul := λ s t P, show ({s * t} : set A) • _ = _, | |
by { rw [is_mul_hom.map_mul (singleton : A → set A)], apply mul_smul }, | |
one_smul := (submodule.semimodule_set R A).one_smul } | |
end submodule | |