Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.32 kB
import data.subtype data.equiv.algebra ring_theory.ideal_operations
import for_mathlib.data.set.basic
universes u u₁ u₂ v v₁ w
attribute [move_cast] units.inv_eq_inv units.coe_inv
open set
lemma range_units_coe (K : Type*) [division_ring K]: range (coe : units K → K) = -{0} :=
begin
ext x,
rw mem_compl_singleton_iff,
split,
{ rintro ⟨u, hu⟩ h',
change u.val = x at hu,
simpa [hu, h'] using u.val_inv },
{ intro h,
refine ⟨units.mk0 _ h, _⟩,
change (units.mk0 x h).val = _,
simp [units.mk0] }
end
lemma range_units_val (K : Type*) [division_ring K]: range (coe : units K → K) = -{0} :=
range_units_coe K
namespace ideal
open function
local attribute [instance] set.pointwise_mul_comm_semiring
-- The following should just be the conjunction of
-- comap f ⊥ = ker f
-- ker f = ⊥ (for injective f)
-- jmc: we have inj_iff_ker_eq_bot in mathlib (ideal_operations.lean). I guess that should work.
-- So I think this one can be deleted.
lemma comap_bot_of_inj {R : Type u} [comm_ring R] {S : Type v} [comm_ring S] (f : R → S) [is_ring_hom f]
(h : injective f) :
ideal.comap f ⊥ = ⊥ :=
lattice.eq_bot_iff.2 $
begin
intros r hr,
change r ∈ f ⁻¹' {0} at hr,
simp at *,
apply h,
rw hr,
symmetry,
rw is_ring_hom.map_zero f,
end
end ideal