Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import data.subtype data.equiv.algebra ring_theory.ideal_operations | |
import for_mathlib.data.set.basic | |
universes u u₁ u₂ v v₁ w | |
attribute [move_cast] units.inv_eq_inv units.coe_inv | |
open set | |
lemma range_units_coe (K : Type*) [division_ring K]: range (coe : units K → K) = -{0} := | |
begin | |
ext x, | |
rw mem_compl_singleton_iff, | |
split, | |
{ rintro ⟨u, hu⟩ h', | |
change u.val = x at hu, | |
simpa [hu, h'] using u.val_inv }, | |
{ intro h, | |
refine ⟨units.mk0 _ h, _⟩, | |
change (units.mk0 x h).val = _, | |
simp [units.mk0] } | |
end | |
lemma range_units_val (K : Type*) [division_ring K]: range (coe : units K → K) = -{0} := | |
range_units_coe K | |
namespace ideal | |
open function | |
local attribute [instance] set.pointwise_mul_comm_semiring | |
-- The following should just be the conjunction of | |
-- comap f ⊥ = ker f | |
-- ker f = ⊥ (for injective f) | |
-- jmc: we have inj_iff_ker_eq_bot in mathlib (ideal_operations.lean). I guess that should work. | |
-- So I think this one can be deleted. | |
lemma comap_bot_of_inj {R : Type u} [comm_ring R] {S : Type v} [comm_ring S] (f : R → S) [is_ring_hom f] | |
(h : injective f) : | |
ideal.comap f ⊥ = ⊥ := | |
lattice.eq_bot_iff.2 $ | |
begin | |
intros r hr, | |
change r ∈ f ⁻¹' {0} at hr, | |
simp at *, | |
apply h, | |
rw hr, | |
symmetry, | |
rw is_ring_hom.map_zero f, | |
end | |
end ideal | |