Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import data.equiv.algebra | |
import group_theory.quotient_group | |
-- Some stuff is now in mathlib | |
namespace quotient_group | |
theorem map_id {G : Type*} [group G] (K : set G) [normal_subgroup K] (g : quotient K) : | |
map K K id (λ x h, h) g = g := by induction g; refl | |
theorem map_comp | |
{G : Type*} {H : Type*} {J : Type*} | |
[group G] [group H] [group J] | |
(a : G → H) [is_group_hom a] (b : H → J) [is_group_hom b] | |
{G1 : set G} {H1 : set H} {J1 : set J} | |
[normal_subgroup G1] [normal_subgroup H1] [normal_subgroup J1] | |
(h1 : G1 ⊆ a ⁻¹' H1) (h2 : H1 ⊆ b ⁻¹' J1) | |
(g : quotient G1) : | |
map H1 J1 b h2 (map G1 H1 a h1 g) = map G1 J1 (b ∘ a) (λ _ hx, h2 $ h1 hx) g := | |
by induction g; refl | |
end quotient_group | |
open quotient_group | |
-- This version is better (than a previous, deleted version), | |
-- but Mario points out that really I shuold be using a | |
-- relation rather than h2 : he.to_equiv ⁻¹' K = J. | |
def mul_equiv.quotient {G : Type*} {H : Type*} [group G] [group H] | |
(he : G ≃* H) (J : set G) [normal_subgroup J] (K : set H) [normal_subgroup K] | |
(h2 : he.to_equiv ⁻¹' K = J) : | |
mul_equiv (quotient_group.quotient J) (quotient_group.quotient K) := | |
{ to_fun := quotient_group.lift J (mk ∘ he) begin | |
unfold set.preimage at h2, | |
intros g hg, | |
rw ←h2 at hg, | |
rw ←is_group_hom.mem_ker (quotient_group.mk : H → quotient_group.quotient K), | |
rwa quotient_group.ker_mk, | |
end, | |
inv_fun := quotient_group.lift K (mk ∘ he.symm) begin | |
intros h hh, | |
rw ←is_group_hom.mem_ker (quotient_group.mk : G → quotient_group.quotient J), | |
rw quotient_group.ker_mk, | |
show he.to_equiv.symm h ∈ J, | |
rw ←h2, | |
show he.to_equiv (he.to_equiv.symm h) ∈ K, | |
convert hh, | |
exact he.to_equiv.right_inv h | |
end, | |
left_inv := λ g, begin | |
induction g, | |
conv begin | |
to_rhs, | |
rw ←he.to_equiv.left_inv g, | |
end, | |
refl, refl, | |
end, | |
right_inv := λ h, begin | |
induction h, | |
conv begin | |
to_rhs, | |
rw ←he.to_equiv.right_inv h, | |
end, | |
refl, refl, | |
end, | |
map_mul' := (quotient_group.is_group_hom_quotient_lift J _ _).map_mul } | |