Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import algebra.group data.equiv.basic | |
import group_theory.subgroup | |
import group_theory.quotient_group | |
import for_mathlib.equiv | |
variables {G : Type*} [group G] | |
open quotient_group | |
-- this one lemma is not PR'ed yet. | |
def mul_equiv.quot_eq_of_eq {G1 : set G} [normal_subgroup G1] {G2 : set G} [normal_subgroup G2] | |
(h : G1 = G2) : mul_equiv (quotient G1) (quotient G2) := | |
{ to_fun := λ q, quotient.lift_on' q (quotient_group.mk : G → quotient G2) $ | |
λ a b hab, quotient.sound' | |
begin | |
change a⁻¹ * b ∈ G1 at hab, rwa h at hab | |
end, | |
inv_fun := λ q, quotient.lift_on' q (quotient_group.mk : G → quotient G1) $ | |
λ a b hab, quotient.sound' | |
begin | |
change a⁻¹ * b ∈ G2 at hab, rwa ←h at hab, | |
end, | |
left_inv := λ x, by induction x; refl, | |
right_inv := λ x, by induction x; refl, | |
map_mul' := λ a b, begin | |
let f : G → quotient G2 := quotient_group.mk, | |
have h2 := quotient_group.is_group_hom_quotient_lift G1 f, | |
have h3 := h2 (λ x hx, by rwa [←is_group_hom.mem_ker f, quotient_group.ker_mk G2, ←h]), | |
have h4 := h3.map_mul, | |
exact h4 a b, | |
end | |
} | |
variables {M : Type*} [monoid M] | |
lemma units.ext_inv (a b : units M) (h : a.inv = b.inv) : a = b := | |
inv_inj $ units.ext h | |
-- is this true for non-commutative monoids? | |
-- KL: No, s := nat.pred, t := nat.succ, u := id | |
/-- produces a unit s from a proof that s divides a unit -/ | |
def units.unit_of_mul_left_eq_unit {M : Type*} [comm_monoid M] | |
{s t : M} {u : units M} | |
(h : s * t = u) : units M := | |
{ val := s, | |
inv := t * (u⁻¹ : units M), | |
val_inv := by {show s * (t * (u⁻¹ : units M)) = 1, rw [←mul_assoc, h], simp}, | |
inv_val := by {show t * (u⁻¹ : units M) * s = 1, rw [mul_comm, ←mul_assoc, h], simp} } | |