Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.99 kB
import data.padics.padic_numbers
import for_mathlib.punit_instances
import perfectoid_space
/-!
# An example of a perfectoid space
In this file we show that the empty space is perfectoid.
Every nonempty example requires a non-trivial amount of mathematical effort.
-/
/-- The structure presheaf on the empty space. -/
def CLVRS.empty_presheaf : presheaf_of_topological_rings empty :=
{ F := λ _, unit,
res := λ _ _ _ _, (),
Hid := λ U, by {funext x, cases x, refl},
Hcomp := λ U V W _ _, rfl,
Fring := λ x, punit.comm_ring,
res_is_ring_hom := λ U V _,
{ map_one := rfl,
map_mul := λ _ _, rfl,
map_add := λ _ _, rfl },
Ftop := λ U, by apply_instance,
Ftop_ring := λ U, by apply_instance,
res_continuous := λ U V _, continuous_of_discrete_topology }
/-- The structure sheaf on the empty space. -/
def CLVRS.empty_sheaf : sheaf_of_topological_rings empty :=
{ F := CLVRS.empty_presheaf,
locality := by {rintro _ _ ⟨s⟩ ⟨t⟩ _, refl},
gluing := by {intros _ _ c _, use (), intro i, cases c i, refl},
homeo :=
begin
rintros ⟨U, HU⟩ ⟨γ, Uis, _⟩ c d,
dsimp at *,
change set unit at c,
rcases subset_subsingleton c with rfl|rfl,
{ convert is_open_empty,
exact set.image_empty _ },
{ convert is_open_univ,
apply set.image_univ_of_surjective,
rintro ⟨s, hs⟩,
use (),
apply subtype.eq,
funext i,
show () = s i,
apply subsingleton.elim, },
end }
/--The empty CLVRS-/
def CLVRS.empty : CLVRS := {
space := empty,
sheaf' := CLVRS.empty_sheaf,
complete := λ U,
{ complete := λ f hf,
begin
use (),
rintro V HV,
convert f.univ_sets,
funext x,
cases x,
show _ = true, rw eq_true,
exact mem_of_nhds HV,
end },
valuation := by rintro ⟨⟩,
local_stalks := by rintro ⟨⟩,
supp_maximal := by rintro ⟨⟩ }
example : PerfectoidSpace ⟨37, by norm_num⟩ := ⟨CLVRS.empty, by rintro ⟨⟩⟩