Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /perfectoid /continuous_valuations.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.02 kB
import topology.algebra.ring
import valuation_spectrum
import valuation.valuation_field_completion
import for_mathlib.nonarchimedean.basic
/-!
# Continuous valuations
The general theory of valuations does not consider a topology on the ring.
However, in practice many rings are naturally topological rings: for example ℝ, β„‚, β„€_p and β„š_p.
Among all valuations one can single out a class of β€œcontinuous” valuations.
This notions is constant on equivalence classes, and therefore defines a predicate on `Spv R`.
In this file, we introduce this predicate.
-/
universes u uβ‚€ u₁ uβ‚‚ u₃
namespace valuation
variables {R : Type uβ‚€} [comm_ring R] [topological_space R]
variables {Ξ“β‚€ : Type u} [linear_ordered_comm_group_with_zero Ξ“β‚€]
variables {Ξ“'β‚€ : Type u₁} [linear_ordered_comm_group_with_zero Ξ“'β‚€]
variables {Ξ“''β‚€ : Type uβ‚‚} [linear_ordered_comm_group_with_zero Ξ“''β‚€]
variables {v₁ : valuation R Ξ“'β‚€} {vβ‚‚ : valuation R Ξ“''β‚€}
/-- Continuity of a valuation [Wedhorn 7.7]. -/
def is_continuous (v : valuation R Ξ“β‚€) : Prop :=
βˆ€ g : value_monoid v, is_open {r : R | canonical_valuation v r < g}
/-- Continuity of a valuation only depends on its equivalence class. -/
lemma is_equiv.is_continuous_iff (h : v₁.is_equiv vβ‚‚) :
v₁.is_continuous ↔ vβ‚‚.is_continuous :=
begin
unfold valuation.is_continuous,
rw ← forall_iff_forall_surj (h.value_mul_equiv.to_equiv.bijective.2),
apply forall_congr,
intro g,
convert iff.rfl,
funext r,
apply propext,
rw ← h.with_zero_value_mul_equiv_mk_eq_mk,
symmetry,
rw (preorder_equiv.to_lt_equiv h.value_monoid_le_equiv).lt_map,
exact iff.rfl
end
local attribute [instance] valued.subgroups_basis valued.uniform_space
/-
Mathematical warning:
It is *not true* that v is continuous iff the map R -> Ξ“β‚€ is continuous
where Ξ“β‚€ gets the usual topology where {Ξ³} and {x < Ξ³} are open, for Ξ³ β‰  0.
What is true is that the valuation is continuous iff the associated map
from R to the valuation field is continuous.
-/
variable [topological_ring R]
/--If R is a topological ring with continuous valuation v, then the natural map from R
to the valuation field of v is continuous.-/
theorem continuous_valuation_field_mk_of_continuous (v : valuation R Ξ“β‚€) (hv : is_continuous v) :
continuous (valuation_field_mk v) :=
topological_add_group.continuous_of_continuous_at_zero (valuation_field_mk v) $
begin
intros U HU,
rw is_ring_hom.map_zero (valuation_field_mk v) at HU,
rcases subgroups_basis.mem_nhds_zero.mp HU with ⟨_, ⟨γ, rfl⟩, Hγ⟩,
show valuation_field_mk v ⁻¹' U ∈ (nhds (0 : R)),
let V := {r : R | (canonical_valuation v) r < ↑γ},
have HV : is_open V := hv Ξ³,
have H0V : (0 : R) ∈ V,
{ show (canonical_valuation v) 0 < Ξ³,
rw (canonical_valuation v).map_zero,
exact linear_ordered_structure.zero_lt_unit _ },
refine filter.mem_sets_of_superset (mem_nhds_sets HV H0V) _,
intros u Hu,
apply set.mem_of_mem_of_subset _ HΞ³,
exact Hu, -- the joys of definitional equality
end
variables {L : Type*} [discrete_field L] [topological_space L] [topological_ring L]
/-- A valuation on a field is continuous if and only if
the sets {y | v y < v x} are open, for all x. -/
lemma is_continuous_iff {v : valuation L Ξ“β‚€} :
v.is_continuous ↔ βˆ€ x:L, is_open {y:L | v y < v x} :=
begin
have help : βˆ€ x:L, value_monoid.to_Ξ“β‚€ v (v.canonical_valuation x) = v x,
{ intro x, show v x * (v 1)⁻¹ = v x, by simp },
split,
{ intros h x,
specialize h (v.canonical_valuation x),
simpa only [(value_monoid.to_Ξ“β‚€_strict_mono v).lt_iff_lt.symm, help] using h, },
{ intros h x,
rcases canonical_valuation.surjective v x with ⟨x, rfl⟩,
simpa only [(value_monoid.to_Ξ“β‚€_strict_mono v).lt_iff_lt.symm, help] using h x, }
end
/-- The trivial valuation on a field is continuous if and only if
the topology on the field is discrete. -/
lemma is_continuous_iff_discrete_of_is_trivial (v : valuation L Ξ“β‚€) (hv : v.is_trivial) :
v.is_continuous ↔ discrete_topology L :=
begin
split; intro h,
{ rw valuation.is_continuous_iff at h,
suffices : is_open ({(0:L)} : set L),
from topological_add_group.discrete_iff_open_zero.mpr this,
specialize h 1,
rw v.map_one at h,
suffices : {y : L | v y < 1} = {0}, by rwa this at h,
ext x,
rw [set.mem_singleton_iff, ← v.zero_iff],
show v x < 1 ↔ v x = 0,
split; intro hx,
{ cases hv x with H H, {assumption},
{ exfalso, rw H at hx, exact lt_irrefl _ hx }, },
{ rw hx, apply lt_of_le_of_ne linear_ordered_structure.zero_le, exact zero_ne_one } },
{ resetI, intro g, exact is_open_discrete _ }
end
end valuation
namespace Spv
variables {R : Type uβ‚€} [comm_ring R] [topological_space R]
/--An equivalence class of valuations is continuous if one representative is continuous.-/
def is_continuous : Spv R β†’ Prop := lift (@valuation.is_continuous _ _ _)
end Spv
variables (R : Type u₁) [comm_ring R] [topological_space R]
variables {Ξ“β‚€ : Type u} [linear_ordered_comm_group_with_zero Ξ“β‚€]
/--The type of equivalence classes of continuous valuations.-/
def Cont := {v : Spv R | v.is_continuous}
variable {R}
/--A valuation v is continuous if and only if its equivalence class is continuous.-/
lemma mk_mem_Cont (v : valuation R Ξ“β‚€) : Spv.mk v ∈ Cont R ↔ v.is_continuous :=
begin
show Spv.lift (by exactI (Ξ» _ _, by exactI valuation.is_continuous)) (Spv.mk v)
↔ valuation.is_continuous v,
refine (Spv.lift_eq' _ _ _ _),
intros _ _ _ h,
resetI,
exact h.is_continuous_iff,
end
/-- The topology on the space of continuous valuations. -/
instance Cont.topological_space : topological_space (Cont R) := by apply_instance
/-
Wedhorn, p.59 contains the following typo:
A valuation v on A is continuous if and only if for all Ξ³ ∈ Ξ“β‚€_v (the value group),
the set A_{≀γ} := { a ∈ A ; v(a) β‰₯ Ξ³ } is open in A.
This is a typo, it should be v(a) ≀ Ξ³.
-/