Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import topology.algebra.ring | |
import valuation_spectrum | |
import valuation.valuation_field_completion | |
import for_mathlib.nonarchimedean.basic | |
/-! | |
# Continuous valuations | |
The general theory of valuations does not consider a topology on the ring. | |
However, in practice many rings are naturally topological rings: for example β, β, β€_p and β_p. | |
Among all valuations one can single out a class of βcontinuousβ valuations. | |
This notions is constant on equivalence classes, and therefore defines a predicate on `Spv R`. | |
In this file, we introduce this predicate. | |
-/ | |
universes u uβ uβ uβ uβ | |
namespace valuation | |
variables {R : Type uβ} [comm_ring R] [topological_space R] | |
variables {Ξβ : Type u} [linear_ordered_comm_group_with_zero Ξβ] | |
variables {Ξ'β : Type uβ} [linear_ordered_comm_group_with_zero Ξ'β] | |
variables {Ξ''β : Type uβ} [linear_ordered_comm_group_with_zero Ξ''β] | |
variables {vβ : valuation R Ξ'β} {vβ : valuation R Ξ''β} | |
/-- Continuity of a valuation [Wedhorn 7.7]. -/ | |
def is_continuous (v : valuation R Ξβ) : Prop := | |
β g : value_monoid v, is_open {r : R | canonical_valuation v r < g} | |
/-- Continuity of a valuation only depends on its equivalence class. -/ | |
lemma is_equiv.is_continuous_iff (h : vβ.is_equiv vβ) : | |
vβ.is_continuous β vβ.is_continuous := | |
begin | |
unfold valuation.is_continuous, | |
rw β forall_iff_forall_surj (h.value_mul_equiv.to_equiv.bijective.2), | |
apply forall_congr, | |
intro g, | |
convert iff.rfl, | |
funext r, | |
apply propext, | |
rw β h.with_zero_value_mul_equiv_mk_eq_mk, | |
symmetry, | |
rw (preorder_equiv.to_lt_equiv h.value_monoid_le_equiv).lt_map, | |
exact iff.rfl | |
end | |
local attribute [instance] valued.subgroups_basis valued.uniform_space | |
/- | |
Mathematical warning: | |
It is *not true* that v is continuous iff the map R -> Ξβ is continuous | |
where Ξβ gets the usual topology where {Ξ³} and {x < Ξ³} are open, for Ξ³ β 0. | |
What is true is that the valuation is continuous iff the associated map | |
from R to the valuation field is continuous. | |
-/ | |
variable [topological_ring R] | |
/--If R is a topological ring with continuous valuation v, then the natural map from R | |
to the valuation field of v is continuous.-/ | |
theorem continuous_valuation_field_mk_of_continuous (v : valuation R Ξβ) (hv : is_continuous v) : | |
continuous (valuation_field_mk v) := | |
topological_add_group.continuous_of_continuous_at_zero (valuation_field_mk v) $ | |
begin | |
intros U HU, | |
rw is_ring_hom.map_zero (valuation_field_mk v) at HU, | |
rcases subgroups_basis.mem_nhds_zero.mp HU with β¨_, β¨Ξ³, rflβ©, HΞ³β©, | |
show valuation_field_mk v β»ΒΉ' U β (nhds (0 : R)), | |
let V := {r : R | (canonical_valuation v) r < βΞ³}, | |
have HV : is_open V := hv Ξ³, | |
have H0V : (0 : R) β V, | |
{ show (canonical_valuation v) 0 < Ξ³, | |
rw (canonical_valuation v).map_zero, | |
exact linear_ordered_structure.zero_lt_unit _ }, | |
refine filter.mem_sets_of_superset (mem_nhds_sets HV H0V) _, | |
intros u Hu, | |
apply set.mem_of_mem_of_subset _ HΞ³, | |
exact Hu, -- the joys of definitional equality | |
end | |
variables {L : Type*} [discrete_field L] [topological_space L] [topological_ring L] | |
/-- A valuation on a field is continuous if and only if | |
the sets {y | v y < v x} are open, for all x. -/ | |
lemma is_continuous_iff {v : valuation L Ξβ} : | |
v.is_continuous β β x:L, is_open {y:L | v y < v x} := | |
begin | |
have help : β x:L, value_monoid.to_Ξβ v (v.canonical_valuation x) = v x, | |
{ intro x, show v x * (v 1)β»ΒΉ = v x, by simp }, | |
split, | |
{ intros h x, | |
specialize h (v.canonical_valuation x), | |
simpa only [(value_monoid.to_Ξβ_strict_mono v).lt_iff_lt.symm, help] using h, }, | |
{ intros h x, | |
rcases canonical_valuation.surjective v x with β¨x, rflβ©, | |
simpa only [(value_monoid.to_Ξβ_strict_mono v).lt_iff_lt.symm, help] using h x, } | |
end | |
/-- The trivial valuation on a field is continuous if and only if | |
the topology on the field is discrete. -/ | |
lemma is_continuous_iff_discrete_of_is_trivial (v : valuation L Ξβ) (hv : v.is_trivial) : | |
v.is_continuous β discrete_topology L := | |
begin | |
split; intro h, | |
{ rw valuation.is_continuous_iff at h, | |
suffices : is_open ({(0:L)} : set L), | |
from topological_add_group.discrete_iff_open_zero.mpr this, | |
specialize h 1, | |
rw v.map_one at h, | |
suffices : {y : L | v y < 1} = {0}, by rwa this at h, | |
ext x, | |
rw [set.mem_singleton_iff, β v.zero_iff], | |
show v x < 1 β v x = 0, | |
split; intro hx, | |
{ cases hv x with H H, {assumption}, | |
{ exfalso, rw H at hx, exact lt_irrefl _ hx }, }, | |
{ rw hx, apply lt_of_le_of_ne linear_ordered_structure.zero_le, exact zero_ne_one } }, | |
{ resetI, intro g, exact is_open_discrete _ } | |
end | |
end valuation | |
namespace Spv | |
variables {R : Type uβ} [comm_ring R] [topological_space R] | |
/--An equivalence class of valuations is continuous if one representative is continuous.-/ | |
def is_continuous : Spv R β Prop := lift (@valuation.is_continuous _ _ _) | |
end Spv | |
variables (R : Type uβ) [comm_ring R] [topological_space R] | |
variables {Ξβ : Type u} [linear_ordered_comm_group_with_zero Ξβ] | |
/--The type of equivalence classes of continuous valuations.-/ | |
def Cont := {v : Spv R | v.is_continuous} | |
variable {R} | |
/--A valuation v is continuous if and only if its equivalence class is continuous.-/ | |
lemma mk_mem_Cont (v : valuation R Ξβ) : Spv.mk v β Cont R β v.is_continuous := | |
begin | |
show Spv.lift (by exactI (Ξ» _ _, by exactI valuation.is_continuous)) (Spv.mk v) | |
β valuation.is_continuous v, | |
refine (Spv.lift_eq' _ _ _ _), | |
intros _ _ _ h, | |
resetI, | |
exact h.is_continuous_iff, | |
end | |
/-- The topology on the space of continuous valuations. -/ | |
instance Cont.topological_space : topological_space (Cont R) := by apply_instance | |
/- | |
Wedhorn, p.59 contains the following typo: | |
A valuation v on A is continuous if and only if for all Ξ³ β Ξβ_v (the value group), | |
the set A_{β€Ξ³} := { a β A ; v(a) β₯ Ξ³ } is open in A. | |
This is a typo, it should be v(a) β€ Ξ³. | |
-/ | |