Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import continuous_valuations | |
import Huber_pair | |
/-! | |
# The adic spectrum as a topological space | |
In this file we define a structure (`rational_open_data`) that will parameterise | |
a basis for the topology on the adic spectrum of a Huber pair. | |
-/ | |
open_locale classical | |
local attribute [instance] set.pointwise_mul_comm_semiring | |
local attribute [instance] set.smul_set_action | |
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus | |
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] | |
-- We reserve the name `Spa` (with upper case `S`) for the bundled adic spectrum (`adic_space.lean`) | |
/-- The space underlying the adic spectrum of a Huber pair (A,A⁺) | |
consists of all the equivalence classes of valuations that are continuous | |
and whose value on the ring A⁺ is ≤ 1. [Wedhorn, Def 7.23]. -/ | |
definition spa (A : Huber_pair) : Type := | |
{v : Spv A // v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} | |
/--The equivalence class of a valuation is contained in spa | |
if and only if the valuation is continuous and its values on the ring A⁺ are ≤ 1, | |
since these properties are constant on equivalence classes.-/ | |
lemma mk_mem_spa {A : Huber_pair} {v : valuation A Γ₀} : | |
Spv.mk v ∈ {v : Spv A | v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} ↔ | |
v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1 := | |
begin | |
apply and_congr, | |
{ exact (Spv.out_mk v).is_continuous_iff, }, | |
{ apply forall_congr, | |
intro r, | |
simpa using (Spv.out_mk v) (algebra_map A r) 1, } | |
end | |
namespace spa | |
open set algebra | |
variables {A : Huber_pair} | |
/-- The coercion from the adic spectrum of a Huber pair to the ambient valuation spectrum.-/ | |
instance : has_coe (spa A) (Spv A) := ⟨subtype.val⟩ | |
@[ext] | |
lemma ext (v₁ v₂ : spa A) (h : (Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) : | |
v₁ = v₂ := | |
subtype.val_injective $ Spv.ext _ _ h | |
lemma ext_iff {v₁ v₂ : spa A} : | |
v₁ = v₂ ↔ ((Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) := | |
by rw [subtype.coe_ext, Spv.ext_iff] | |
/-- The value monoid of a random representative valuation of a point in the adic spectrum. -/ | |
abbreviation out_Γ₀ (v : spa A) := Spv.out_Γ₀ (v : Spv A) | |
/-- A valuation in the adic spectrum is continuous. -/ | |
lemma is_continuous (v : spa A) : Spv.is_continuous (v : Spv A) := v.property.left | |
/-- The valuation of an integral element is at most 1. -/ | |
lemma map_plus (v : spa A) (a : (A⁺)) : v (algebra_map A a) ≤ 1 := v.property.right a | |
/-- The valuation of a unit of the ring of integral elements is 1. -/ | |
@[simp] lemma map_unit (v : spa A) (u : units (A⁺)) : | |
v ((algebra_map A : (A⁺) → A) u) = 1 := | |
begin | |
have h₁ := map_plus v u, | |
have h₂ := map_plus v (u⁻¹ : _), | |
have := actual_ordered_comm_monoid.mul_eq_one_iff_of_le_one' h₁ h₂, | |
apply (this.mp _).left, | |
erw ← valuation.map_mul, | |
rw ← is_ring_hom.map_mul (algebra_map A : (A⁺) → A), | |
simp only [units.mul_inv, algebra.map_one, valuation.map_one] | |
end | |
-- We are now going to setup the topology on `spa A`. | |
-- A basis of the topology is indexed by the following data: | |
/--A rational open subset of `spa A` is indexed by: | |
* an element s of A, and | |
* a finite set T ⊆ A that generates an open ideal in A. | |
In the literature, these sets are commonly denoted by D(T,s).-/ | |
structure rational_open_data (A : Huber_pair) := | |
(s : A) | |
(T : set A) | |
[Tfin : fintype T] | |
(Hopen : is_open ((ideal.span T) : set A)) | |
namespace rational_open_data | |
variables (r : rational_open_data A) | |
attribute [instance] Tfin | |
@[ext] | |
lemma ext {r₁ r₂ : rational_open_data A} (hs : r₁.s = r₂.s) (hT : r₁.T = r₂.T) : | |
r₁ = r₂ := | |
begin | |
cases r₁, cases r₂, | |
congr; assumption | |
end | |
/--The subset of the adic spectrum associated with the data for a rational open subset. | |
In the literature, these sets are commonly denoted by D(T,s).-/ | |
def open_set (r : rational_open_data A) : set (spa A) := | |
{v : spa A | (∀ t ∈ r.T, (v t ≤ v r.s)) ∧ (v r.s ≠ 0)} | |
variable (A) | |
/--The rational open subset covering the entire adic spectrum.-/ | |
def univ : rational_open_data A := | |
{ s := 1, | |
T := {1}, | |
Hopen := by { rw ideal.span_singleton_one, exact is_open_univ } } | |
variable {A} | |
@[simp] lemma univ_s : (univ A).s = 1 := rfl | |
@[simp] lemma univ_T : (univ A).T = {1} := rfl | |
@[simp] lemma univ_open_set : | |
(univ A).open_set = set.univ := | |
begin | |
rw eq_univ_iff_forall, | |
intros v, | |
split, | |
{ intros t ht, | |
erw mem_singleton_iff at ht, | |
rw [ht, univ_s], }, | |
{ erw [univ_s, Spv.map_one], | |
exact one_ne_zero } | |
end | |
/--The rational open subset D(T,s) is the same as D(T ∪ {s}, s).-/ | |
noncomputable def insert_s (r : rational_open_data A) : rational_open_data A := | |
{ s := r.s, | |
T := insert r.s r.T, | |
Hopen := submodule.is_open_of_open_submodule | |
⟨ideal.span (r.T), r.Hopen, ideal.span_mono $ set.subset_insert _ _⟩ } | |
@[simp] lemma insert_s_s (r : rational_open_data A) : | |
(insert_s r).s = r.s := rfl | |
@[simp] lemma insert_s_T (r : rational_open_data A) : | |
(insert_s r).T = insert r.s r.T := rfl | |
@[simp] lemma insert_s_open_set (r : rational_open_data A) : | |
(insert_s r).open_set = r.open_set := | |
begin | |
ext v, | |
split; rintros ⟨h₁, h₂⟩; split; try { exact h₂ }; intros t ht, | |
{ apply h₁ t, | |
exact mem_insert_of_mem _ ht }, | |
{ cases ht, | |
{ rw [ht, insert_s_s], }, | |
{ exact h₁ t ht } }, | |
end | |
lemma mem_insert_s (r : rational_open_data A) : | |
r.s ∈ (insert_s r).T := by {left, refl} | |
/-- Auxilliary definition for the intersection of two rational open sets.-/ | |
noncomputable def inter_aux (r1 r2 : rational_open_data A) : rational_open_data A := | |
{ s := r1.s * r2.s, | |
T := r1.T * r2.T, | |
Tfin := set.pointwise_mul_fintype _ _, | |
Hopen := | |
begin | |
rcases Huber_ring.exists_pod_subset _ (mem_nhds_sets r1.Hopen $ ideal.zero_mem $ ideal.span r1.T) | |
with ⟨A₀, _, _, _, ⟨_, emb, I, fg, top⟩, hI⟩, | |
dsimp only at hI, | |
resetI, | |
rw is_ideal_adic_iff at top, | |
cases top.2 (algebra_map A ⁻¹' ↑(ideal.span r2.T)) _ with n hn, | |
{ apply submodule.is_open_of_open_submodule, | |
use ideal.map (of_id A₀ A) (I^(n+1)), | |
refine ⟨is_open_ideal_map_open_embedding emb _ (top.1 (n+1)), _⟩, | |
delta ideal.span, | |
erw [pow_succ, ideal.map_mul, ← submodule.span_mul_span], | |
apply submodule.mul_le_mul, | |
{ exact (ideal.span_le.mpr hI) }, | |
{ rw ← image_subset_iff at hn, | |
exact (ideal.span_le.mpr hn) } }, | |
{ apply emb.continuous.tendsto, | |
rw show algebra.to_fun A (0:A₀) = 0, | |
{ haveI : is_ring_hom (algebra.to_fun A : A₀ → A) := algebra.is_ring_hom, | |
apply is_ring_hom.map_zero }, | |
exact (mem_nhds_sets r2.Hopen $ ideal.zero_mem $ ideal.span r2.T) } | |
end } | |
/--The intersection of two rational open sets is a rational open set.-/ | |
noncomputable def inter (r1 r2 : rational_open_data A) : rational_open_data A := | |
inter_aux (rational_open_data.insert_s r1) (rational_open_data.insert_s r2) | |
@[simp] lemma inter_s (r1 r2 : rational_open_data A) : | |
(r1.inter r2).s = r1.s * r2.s := rfl | |
@[simp] lemma inter_T (r1 r2 : rational_open_data A) : | |
(r1.inter r2).T = (insert r1.s r1.T) * (insert r2.s r2.T) := rfl | |
lemma inter_open_set (r1 r2 : rational_open_data A) : | |
(inter r1 r2).open_set = r1.open_set ∩ r2.open_set := | |
begin | |
rw [← insert_s_open_set r1, ← insert_s_open_set r2], | |
apply le_antisymm, | |
{ rintros v ⟨hv, hs⟩, | |
have vmuls : v (r1.s * r2.s) = v r1.s * v r2.s := valuation.map_mul _ _ _, | |
have hs₁ : v r1.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs, | |
have hs₂ : v r2.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs, | |
split; split; try { assumption }; | |
intros t ht, | |
{ suffices H : v t * v r2.s ≤ v r1.s * v r2.s, | |
{ simpa [hs₂, mul_assoc, -coe_fn_coe_base] using | |
linear_ordered_structure.mul_le_mul_right H (group_with_zero.mk₀ _ hs₂)⁻¹, }, | |
{ simpa using hv (t * r2.s) ⟨t, ht, r2.s, mem_insert_s r2, rfl⟩, } }, | |
{ suffices H : v r1.s * v t ≤ v r1.s * v r2.s, | |
{ simpa [hs₁, mul_assoc, -coe_fn_coe_base] using | |
linear_ordered_structure.mul_le_mul_left H (group_with_zero.mk₀ _ hs₁)⁻¹, }, | |
{ simpa using hv (r1.s * t) ⟨r1.s, mem_insert_s r1, t, ht, rfl⟩, } } }, | |
{ rintros v ⟨⟨hv₁, hs₁⟩, ⟨hv₂, hs₂⟩⟩, | |
split, | |
{ rintros t ⟨t₁, ht₁, t₂, ht₂, rfl⟩, | |
convert le_trans | |
(linear_ordered_structure.mul_le_mul_right (hv₁ t₁ ht₁) _) | |
(linear_ordered_structure.mul_le_mul_left (hv₂ t₂ ht₂) _); | |
apply valuation.map_mul }, | |
{ assume eq_zero, simp at eq_zero, tauto }, } | |
end | |
lemma inter_symm (r1 r2 : rational_open_data A) : | |
r1.inter r2 = r2.inter r1 := | |
ext (mul_comm _ _) (mul_comm _ _) | |
end rational_open_data | |
variable (A) | |
/--The basis for the topology on the adic spectrum, consisting of rational open sets.-/ | |
def rational_basis := {U : set (spa A) | ∃ r : rational_open_data A, U = r.open_set} | |
/--The topology on the adic spectrum, generated by rational open sets.-/ | |
instance : topological_space (spa A) := | |
topological_space.generate_from (rational_basis A) | |
variable {A} | |
/--The rational open sets form a basis for the topology on the adic spectrum.-/ | |
lemma rational_basis.is_basis : topological_space.is_topological_basis (rational_basis A) := | |
begin | |
refine ⟨_, _, rfl⟩, | |
{ rintros _ ⟨r₁, rfl⟩ _ ⟨r₂, rfl⟩ x hx, | |
refine ⟨_, ⟨_, (rational_open_data.inter_open_set r₁ r₂).symm⟩, hx, subset.refl _⟩, }, | |
{ apply subset.antisymm (subset_univ _) (subset_sUnion_of_mem _), | |
exact ⟨_, rational_open_data.univ_open_set.symm⟩ } | |
end | |
end spa | |