Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import topology.metric_space.isometry | |
/-! | |
# Metric space gluing | |
Gluing two metric spaces along a common subset. Formally, we are given | |
``` | |
Φ | |
Z ---> X | |
| | |
|Ψ | |
v | |
Y | |
``` | |
where `hΦ : isometry Φ` and `hΨ : isometry Ψ`. | |
We want to complete the square by a space `glue_space hΦ hΨ` and two isometries | |
`to_glue_l hΦ hΨ` and `to_glue_r hΦ hΨ` that make the square commute. | |
We start by defining a predistance on the disjoint union `X ⊕ Y`, for which | |
points `Φ p` and `Ψ p` are at distance 0. The (quotient) metric space associated | |
to this predistance is the desired space. | |
This is an instance of a more general construction, where `Φ` and `Ψ` do not have to be isometries, | |
but the distances in the image almost coincide, up to `2ε` say. Then one can almost glue the two | |
spaces so that the images of a point under `Φ` and `Ψ` are `ε`-close. If `ε > 0`, this yields a | |
metric space structure on `X ⊕ Y`, without the need to take a quotient. In particular, | |
this gives a natural metric space structure on `X ⊕ Y`, where the basepoints | |
are at distance 1, say, and the distances between other points are obtained by going through the two | |
basepoints. | |
(We also register the same metric space structure on a general disjoint union `Σ i, E i`). | |
We also define the inductive limit of metric spaces. Given | |
``` | |
f 0 f 1 f 2 f 3 | |
X 0 -----> X 1 -----> X 2 -----> X 3 -----> ... | |
``` | |
where the `X n` are metric spaces and `f n` isometric embeddings, we define the inductive | |
limit of the `X n`, also known as the increasing union of the `X n` in this context, if we | |
identify `X n` and `X (n+1)` through `f n`. This is a metric space in which all `X n` embed | |
isometrically and in a way compatible with `f n`. | |
-/ | |
noncomputable theory | |
universes u v w | |
open function set | |
open_locale uniformity | |
namespace metric | |
section approx_gluing | |
variables {X : Type u} {Y : Type v} {Z : Type w} | |
variables [metric_space X] [metric_space Y] | |
{Φ : Z → X} {Ψ : Z → Y} {ε : ℝ} | |
open _root_.sum (inl inr) | |
/-- Define a predistance on `X ⊕ Y`, for which `Φ p` and `Ψ p` are at distance `ε` -/ | |
def glue_dist (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) : X ⊕ Y → X ⊕ Y → ℝ | |
| (inl x) (inl y) := dist x y | |
| (inr x) (inr y) := dist x y | |
| (inl x) (inr y) := (⨅ p, dist x (Φ p) + dist y (Ψ p)) + ε | |
| (inr x) (inl y) := (⨅ p, dist y (Φ p) + dist x (Ψ p)) + ε | |
private lemma glue_dist_self (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) : ∀ x, glue_dist Φ Ψ ε x x = 0 | |
| (inl x) := dist_self _ | |
| (inr x) := dist_self _ | |
lemma glue_dist_glued_points [nonempty Z] (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) (p : Z) : | |
glue_dist Φ Ψ ε (inl (Φ p)) (inr (Ψ p)) = ε := | |
begin | |
have : (⨅ q, dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q)) = 0, | |
{ have A : ∀ q, 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) := | |
λq, by rw ← add_zero (0 : ℝ); exact add_le_add dist_nonneg dist_nonneg, | |
refine le_antisymm _ (le_cinfi A), | |
have : 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p), by simp, | |
rw this, | |
exact cinfi_le ⟨0, forall_range_iff.2 A⟩ p }, | |
rw [glue_dist, this, zero_add] | |
end | |
private lemma glue_dist_comm (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) : | |
∀ x y, glue_dist Φ Ψ ε x y = glue_dist Φ Ψ ε y x | |
| (inl x) (inl y) := dist_comm _ _ | |
| (inr x) (inr y) := dist_comm _ _ | |
| (inl x) (inr y) := rfl | |
| (inr x) (inl y) := rfl | |
variable [nonempty Z] | |
private lemma glue_dist_triangle (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) | |
(H : ∀ p q, |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε) : | |
∀ x y z, glue_dist Φ Ψ ε x z ≤ glue_dist Φ Ψ ε x y + glue_dist Φ Ψ ε y z | |
| (inl x) (inl y) (inl z) := dist_triangle _ _ _ | |
| (inr x) (inr y) (inr z) := dist_triangle _ _ _ | |
| (inr x) (inl y) (inl z) := begin | |
have B : ∀ a b, bdd_below (range (λ (p : Z), dist a (Φ p) + dist b (Ψ p))) := | |
λa b, ⟨0, forall_range_iff.2 (λp, add_nonneg dist_nonneg dist_nonneg)⟩, | |
unfold glue_dist, | |
have : (⨅ p, dist z (Φ p) + dist x (Ψ p)) ≤ (⨅ p, dist y (Φ p) + dist x (Ψ p)) + dist y z, | |
{ have : (⨅ p, dist y (Φ p) + dist x (Ψ p)) + dist y z = | |
infi ((λt, t + dist y z) ∘ (λp, dist y (Φ p) + dist x (Ψ p))), | |
{ refine monotone.map_cinfi_of_continuous_at (continuous_at_id.add continuous_at_const) _ | |
(B _ _), | |
intros x y hx, simpa }, | |
rw [this, comp], | |
refine cinfi_mono (B _ _) (λp, _), | |
calc | |
dist z (Φ p) + dist x (Ψ p) ≤ (dist y z + dist y (Φ p)) + dist x (Ψ p) : | |
add_le_add (dist_triangle_left _ _ _) le_rfl | |
... = dist y (Φ p) + dist x (Ψ p) + dist y z : by ring }, | |
linarith | |
end | |
| (inr x) (inr y) (inl z) := begin | |
have B : ∀ a b, bdd_below (range (λ (p : Z), dist a (Φ p) + dist b (Ψ p))) := | |
λa b, ⟨0, forall_range_iff.2 (λp, add_nonneg dist_nonneg dist_nonneg)⟩, | |
unfold glue_dist, | |
have : (⨅ p, dist z (Φ p) + dist x (Ψ p)) ≤ dist x y + ⨅ p, dist z (Φ p) + dist y (Ψ p), | |
{ have : dist x y + (⨅ p, dist z (Φ p) + dist y (Ψ p)) = | |
infi ((λt, dist x y + t) ∘ (λp, dist z (Φ p) + dist y (Ψ p))), | |
{ refine monotone.map_cinfi_of_continuous_at (continuous_at_const.add continuous_at_id) _ | |
(B _ _), | |
intros x y hx, simpa }, | |
rw [this, comp], | |
refine cinfi_mono (B _ _) (λp, _), | |
calc | |
dist z (Φ p) + dist x (Ψ p) ≤ dist z (Φ p) + (dist x y + dist y (Ψ p)) : | |
add_le_add le_rfl (dist_triangle _ _ _) | |
... = dist x y + (dist z (Φ p) + dist y (Ψ p)) : by ring }, | |
linarith | |
end | |
| (inl x) (inl y) (inr z) := begin | |
have B : ∀ a b, bdd_below (range (λ (p : Z), dist a (Φ p) + dist b (Ψ p))) := | |
λa b, ⟨0, forall_range_iff.2 (λp, add_nonneg dist_nonneg dist_nonneg)⟩, | |
unfold glue_dist, | |
have : (⨅ p, dist x (Φ p) + dist z (Ψ p)) ≤ dist x y + ⨅ p, dist y (Φ p) + dist z (Ψ p), | |
{ have : dist x y + (⨅ p, dist y (Φ p) + dist z (Ψ p)) = | |
infi ((λt, dist x y + t) ∘ (λp, dist y (Φ p) + dist z (Ψ p))), | |
{ refine monotone.map_cinfi_of_continuous_at (continuous_at_const.add continuous_at_id) _ | |
(B _ _), | |
intros x y hx, simpa }, | |
rw [this, comp], | |
refine cinfi_mono (B _ _) (λp, _), | |
calc | |
dist x (Φ p) + dist z (Ψ p) ≤ (dist x y + dist y (Φ p)) + dist z (Ψ p) : | |
add_le_add (dist_triangle _ _ _) le_rfl | |
... = dist x y + (dist y (Φ p) + dist z (Ψ p)) : by ring }, | |
linarith | |
end | |
| (inl x) (inr y) (inr z) := begin | |
have B : ∀ a b, bdd_below (range (λ (p : Z), dist a (Φ p) + dist b (Ψ p))) := | |
λa b, ⟨0, forall_range_iff.2 (λp, add_nonneg dist_nonneg dist_nonneg)⟩, | |
unfold glue_dist, | |
have : (⨅ p, dist x (Φ p) + dist z (Ψ p)) ≤ (⨅ p, dist x (Φ p) + dist y (Ψ p)) + dist y z, | |
{ have : (⨅ p, dist x (Φ p) + dist y (Ψ p)) + dist y z = | |
infi ((λt, t + dist y z) ∘ (λp, dist x (Φ p) + dist y (Ψ p))), | |
{ refine monotone.map_cinfi_of_continuous_at (continuous_at_id.add continuous_at_const) _ | |
(B _ _), | |
intros x y hx, simpa }, | |
rw [this, comp], | |
refine cinfi_mono (B _ _) (λp, _), | |
calc | |
dist x (Φ p) + dist z (Ψ p) ≤ dist x (Φ p) + (dist y z + dist y (Ψ p)) : | |
add_le_add le_rfl (dist_triangle_left _ _ _) | |
... = dist x (Φ p) + dist y (Ψ p) + dist y z : by ring }, | |
linarith | |
end | |
| (inl x) (inr y) (inl z) := le_of_forall_pos_le_add $ λδ δpos, begin | |
obtain ⟨p, hp⟩ : ∃ p, dist x (Φ p) + dist y (Ψ p) < (⨅ p, dist x (Φ p) + dist y (Ψ p)) + δ / 2, | |
from exists_lt_of_cinfi_lt (by linarith), | |
obtain ⟨q, hq⟩ : ∃ q, dist z (Φ q) + dist y (Ψ q) < (⨅ p, dist z (Φ p) + dist y (Ψ p)) + δ / 2, | |
from exists_lt_of_cinfi_lt (by linarith), | |
have : dist (Φ p) (Φ q) ≤ dist (Ψ p) (Ψ q) + 2 * ε, | |
{ have := le_trans (le_abs_self _) (H p q), by linarith }, | |
calc dist x z ≤ dist x (Φ p) + dist (Φ p) (Φ q) + dist (Φ q) z : dist_triangle4 _ _ _ _ | |
... ≤ dist x (Φ p) + dist (Ψ p) (Ψ q) + dist z (Φ q) + 2 * ε : by rw [dist_comm z]; linarith | |
... ≤ dist x (Φ p) + (dist y (Ψ p) + dist y (Ψ q)) + dist z (Φ q) + 2 * ε : | |
add_le_add (add_le_add (add_le_add le_rfl (dist_triangle_left _ _ _)) le_rfl) le_rfl | |
... ≤ ((⨅ p, dist x (Φ p) + dist y (Ψ p)) + ε) + | |
((⨅ p, dist z (Φ p) + dist y (Ψ p)) + ε) + δ : by linarith | |
end | |
| (inr x) (inl y) (inr z) := le_of_forall_pos_le_add $ λδ δpos, begin | |
obtain ⟨p, hp⟩ : ∃ p, dist y (Φ p) + dist x (Ψ p) < (⨅ p, dist y (Φ p) + dist x (Ψ p)) + δ / 2, | |
from exists_lt_of_cinfi_lt (by linarith), | |
obtain ⟨q, hq⟩ : ∃ q, dist y (Φ q) + dist z (Ψ q) < (⨅ p, dist y (Φ p) + dist z (Ψ p)) + δ / 2, | |
from exists_lt_of_cinfi_lt (by linarith), | |
have : dist (Ψ p) (Ψ q) ≤ dist (Φ p) (Φ q) + 2 * ε, | |
{ have := le_trans (neg_le_abs_self _) (H p q), by linarith }, | |
calc dist x z ≤ dist x (Ψ p) + dist (Ψ p) (Ψ q) + dist (Ψ q) z : dist_triangle4 _ _ _ _ | |
... ≤ dist x (Ψ p) + dist (Φ p) (Φ q) + dist z (Ψ q) + 2 * ε : by rw [dist_comm z]; linarith | |
... ≤ dist x (Ψ p) + (dist y (Φ p) + dist y (Φ q)) + dist z (Ψ q) + 2 * ε : | |
add_le_add (add_le_add (add_le_add le_rfl (dist_triangle_left _ _ _)) le_rfl) le_rfl | |
... ≤ ((⨅ p, dist y (Φ p) + dist x (Ψ p)) + ε) + | |
((⨅ p, dist y (Φ p) + dist z (Ψ p)) + ε) + δ : by linarith | |
end | |
private lemma glue_eq_of_dist_eq_zero (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) (ε0 : 0 < ε) : | |
∀ p q : X ⊕ Y, glue_dist Φ Ψ ε p q = 0 → p = q | |
| (inl x) (inl y) h := by rw eq_of_dist_eq_zero h | |
| (inl x) (inr y) h := begin | |
have : 0 ≤ (⨅ p, dist x (Φ p) + dist y (Ψ p)) := | |
le_cinfi (λp, by simpa using add_le_add (@dist_nonneg _ _ x _) (@dist_nonneg _ _ y _)), | |
have : 0 + ε ≤ glue_dist Φ Ψ ε (inl x) (inr y) := add_le_add this (le_refl ε), | |
exfalso, | |
linarith | |
end | |
| (inr x) (inl y) h := begin | |
have : 0 ≤ ⨅ p, dist y (Φ p) + dist x (Ψ p) := | |
le_cinfi (λp, by simpa [add_comm] | |
using add_le_add (@dist_nonneg _ _ x _) (@dist_nonneg _ _ y _)), | |
have : 0 + ε ≤ glue_dist Φ Ψ ε (inr x) (inl y) := add_le_add this (le_refl ε), | |
exfalso, | |
linarith | |
end | |
| (inr x) (inr y) h := by rw eq_of_dist_eq_zero h | |
/-- Given two maps `Φ` and `Ψ` intro metric spaces `X` and `Y` such that the distances between | |
`Φ p` and `Φ q`, and between `Ψ p` and `Ψ q`, coincide up to `2 ε` where `ε > 0`, one can almost | |
glue the two spaces `X` and `Y` along the images of `Φ` and `Ψ`, so that `Φ p` and `Ψ p` are | |
at distance `ε`. -/ | |
def glue_metric_approx (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ) (ε0 : 0 < ε) | |
(H : ∀ p q, |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε) : metric_space (X ⊕ Y) := | |
{ dist := glue_dist Φ Ψ ε, | |
dist_self := glue_dist_self Φ Ψ ε, | |
dist_comm := glue_dist_comm Φ Ψ ε, | |
dist_triangle := glue_dist_triangle Φ Ψ ε H, | |
eq_of_dist_eq_zero := glue_eq_of_dist_eq_zero Φ Ψ ε ε0 } | |
end approx_gluing | |
section sum | |
/- A particular case of the previous construction is when one uses basepoints in `X` and `Y` and one | |
glues only along the basepoints, putting them at distance 1. We give a direct definition of | |
the distance, without infi, as it is easier to use in applications, and show that it is equal to | |
the gluing distance defined above to take advantage of the lemmas we have already proved. -/ | |
variables {X : Type u} {Y : Type v} {Z : Type w} | |
variables [metric_space X] [metric_space Y] | |
open sum (inl inr) | |
/-- Distance on a disjoint union. There are many (noncanonical) ways to put a distance compatible | |
with each factor. | |
If the two spaces are bounded, one can say for instance that each point in the first is at distance | |
`diam X + diam Y + 1` of each point in the second. | |
Instead, we choose a construction that works for unbounded spaces, but requires basepoints, | |
chosen arbitrarily. | |
We embed isometrically each factor, set the basepoints at distance 1, | |
arbitrarily, and say that the distance from `a` to `b` is the sum of the distances of `a` and `b` to | |
their respective basepoints, plus the distance 1 between the basepoints. | |
Since there is an arbitrary choice in this construction, it is not an instance by default. -/ | |
def sum.dist : X ⊕ Y → X ⊕ Y → ℝ | |
| (inl a) (inl a') := dist a a' | |
| (inr b) (inr b') := dist b b' | |
| (inl a) (inr b) := dist a (nonempty.some ⟨a⟩) + 1 + dist (nonempty.some ⟨b⟩) b | |
| (inr b) (inl a) := dist b (nonempty.some ⟨b⟩) + 1 + dist (nonempty.some ⟨a⟩) a | |
lemma sum.dist_eq_glue_dist {p q : X ⊕ Y} (x : X) (y : Y) : | |
sum.dist p q = glue_dist (λ _ : unit, nonempty.some ⟨x⟩) (λ _ : unit, nonempty.some ⟨y⟩) 1 p q := | |
by cases p; cases q; refl <|> simp [sum.dist, glue_dist, dist_comm, add_comm, add_left_comm] | |
private lemma sum.dist_comm (x y : X ⊕ Y) : sum.dist x y = sum.dist y x := | |
by cases x; cases y; simp only [sum.dist, dist_comm, add_comm, add_left_comm] | |
lemma sum.one_dist_le {x : X} {y : Y} : 1 ≤ sum.dist (inl x) (inr y) := | |
le_trans (le_add_of_nonneg_right dist_nonneg) $ | |
add_le_add_right (le_add_of_nonneg_left dist_nonneg) _ | |
lemma sum.one_dist_le' {x : X} {y : Y} : 1 ≤ sum.dist (inr y) (inl x) := | |
by rw sum.dist_comm; exact sum.one_dist_le | |
private lemma sum.mem_uniformity (s : set ((X ⊕ Y) × (X ⊕ Y))) : | |
s ∈ 𝓤 (X ⊕ Y) ↔ ∃ ε > 0, ∀ a b, sum.dist a b < ε → (a, b) ∈ s := | |
begin | |
split, | |
{ rintro ⟨hsX, hsY⟩, | |
rcases mem_uniformity_dist.1 hsX with ⟨εX, εX0, hX⟩, | |
rcases mem_uniformity_dist.1 hsY with ⟨εY, εY0, hY⟩, | |
refine ⟨min (min εX εY) 1, lt_min (lt_min εX0 εY0) zero_lt_one, _⟩, | |
rintro (a|a) (b|b) h, | |
{ exact hX (lt_of_lt_of_le h (le_trans (min_le_left _ _) (min_le_left _ _))) }, | |
{ cases not_le_of_lt (lt_of_lt_of_le h (min_le_right _ _)) sum.one_dist_le }, | |
{ cases not_le_of_lt (lt_of_lt_of_le h (min_le_right _ _)) sum.one_dist_le' }, | |
{ exact hY (lt_of_lt_of_le h (le_trans (min_le_left _ _) (min_le_right _ _))) } }, | |
{ rintro ⟨ε, ε0, H⟩, | |
split; rw [filter.mem_sets, filter.mem_map, mem_uniformity_dist]; | |
exact ⟨ε, ε0, λ x y h, H _ _ (by exact h)⟩ } | |
end | |
/-- The distance on the disjoint union indeed defines a metric space. All the distance properties | |
follow from our choice of the distance. The harder work is to show that the uniform structure | |
defined by the distance coincides with the disjoint union uniform structure. -/ | |
def metric_space_sum : metric_space (X ⊕ Y) := | |
{ dist := sum.dist, | |
dist_self := λx, by cases x; simp only [sum.dist, dist_self], | |
dist_comm := sum.dist_comm, | |
dist_triangle := λ p q r, | |
begin | |
cases p; cases q; cases r, | |
{ exact dist_triangle _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist p r], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist p q], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist p q], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist q p], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist q p], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ simp only [dist, sum.dist_eq_glue_dist r p], | |
exact glue_dist_triangle _ _ _ (by norm_num) _ _ _ }, | |
{ exact dist_triangle _ _ _ }, | |
end, | |
eq_of_dist_eq_zero := λ p q, | |
begin | |
cases p; cases q, | |
{ simp only [sum.dist, dist_eq_zero, imp_self] }, | |
{ assume h, | |
simp only [dist, sum.dist_eq_glue_dist p q] at h, | |
exact glue_eq_of_dist_eq_zero _ _ _ zero_lt_one _ _ h }, | |
{ assume h, | |
simp only [dist, sum.dist_eq_glue_dist q p] at h, | |
exact glue_eq_of_dist_eq_zero _ _ _ zero_lt_one _ _ h }, | |
{ simp only [sum.dist, dist_eq_zero, imp_self] }, | |
end, | |
to_uniform_space := sum.uniform_space, | |
uniformity_dist := uniformity_dist_of_mem_uniformity _ _ sum.mem_uniformity } | |
local attribute [instance] metric_space_sum | |
lemma sum.dist_eq {x y : X ⊕ Y} : dist x y = sum.dist x y := rfl | |
/-- The left injection of a space in a disjoint union is an isometry -/ | |
lemma isometry_inl : isometry (sum.inl : X → (X ⊕ Y)) := | |
isometry.of_dist_eq $ λ x y, rfl | |
/-- The right injection of a space in a disjoint union is an isometry -/ | |
lemma isometry_inr : isometry (sum.inr : Y → (X ⊕ Y)) := | |
isometry.of_dist_eq $ λ x y, rfl | |
end sum | |
namespace sigma | |
/- Copy of the previous paragraph, but for arbitrary disjoint unions instead of the disjoint union | |
of two spaces. I.e., work with sigma types instead of sum types. -/ | |
variables {ι : Type*} {E : ι → Type*} [∀ i, metric_space (E i)] | |
open_locale classical | |
/-- Distance on a disjoint union. There are many (noncanonical) ways to put a distance compatible | |
with each factor. | |
We choose a construction that works for unbounded spaces, but requires basepoints, | |
chosen arbitrarily. | |
We embed isometrically each factor, set the basepoints at distance 1, arbitrarily, | |
and say that the distance from `a` to `b` is the sum of the distances of `a` and `b` to | |
their respective basepoints, plus the distance 1 between the basepoints. | |
Since there is an arbitrary choice in this construction, it is not an instance by default. -/ | |
protected def dist : (Σ i, E i) → (Σ i, E i) → ℝ | |
| ⟨i, x⟩ ⟨j, y⟩ := | |
if h : i = j then by { have : E j = E i, by rw h, exact has_dist.dist x (cast this y) } | |
else has_dist.dist x (nonempty.some ⟨x⟩) + 1 + has_dist.dist (nonempty.some ⟨y⟩) y | |
/-- A `has_dist` instance on the disjoint union `Σ i, E i`. | |
We embed isometrically each factor, set the basepoints at distance 1, arbitrarily, | |
and say that the distance from `a` to `b` is the sum of the distances of `a` and `b` to | |
their respective basepoints, plus the distance 1 between the basepoints. | |
Since there is an arbitrary choice in this construction, it is not an instance by default. -/ | |
def has_dist : has_dist (Σ i, E i) := | |
⟨sigma.dist⟩ | |
local attribute [instance] sigma.has_dist | |
@[simp] lemma dist_same (i : ι) (x : E i) (y : E i) : | |
dist (⟨i, x⟩ : Σ j, E j) ⟨i, y⟩ = dist x y := | |
by simp [has_dist.dist, sigma.dist] | |
@[simp] lemma dist_ne {i j : ι} (h : i ≠ j) (x : E i) (y : E j) : | |
dist (⟨i, x⟩ : Σ k, E k) ⟨j, y⟩ = dist x (nonempty.some ⟨x⟩) + 1 + dist (nonempty.some ⟨y⟩) y := | |
by simp [has_dist.dist, sigma.dist, h] | |
lemma one_le_dist_of_ne {i j : ι} (h : i ≠ j) (x : E i) (y : E j) : | |
1 ≤ dist (⟨i, x⟩ : Σ k, E k) ⟨j, y⟩ := | |
begin | |
rw sigma.dist_ne h x y, | |
linarith [@dist_nonneg _ _ x (nonempty.some ⟨x⟩), @dist_nonneg _ _ (nonempty.some ⟨y⟩) y] | |
end | |
lemma fst_eq_of_dist_lt_one (x y : Σ i, E i) (h : dist x y < 1) : | |
x.1 = y.1 := | |
begin | |
cases x, cases y, | |
contrapose! h, | |
apply one_le_dist_of_ne h, | |
end | |
protected lemma dist_triangle (x y z : Σ i, E i) : | |
dist x z ≤ dist x y + dist y z := | |
begin | |
rcases x with ⟨i, x⟩, rcases y with ⟨j, y⟩, rcases z with ⟨k, z⟩, | |
rcases eq_or_ne i k with rfl|hik, | |
{ rcases eq_or_ne i j with rfl|hij, | |
{ simpa using dist_triangle x y z }, | |
{ simp only [hij, hij.symm, sigma.dist_same, sigma.dist_ne, ne.def, not_false_iff], | |
calc dist x z ≤ dist x (nonempty.some ⟨x⟩) + 0 + 0 + (0 + 0 + dist (nonempty.some ⟨z⟩) z) : | |
by simpa only [zero_add, add_zero] using dist_triangle _ _ _ | |
... ≤ _ : by apply_rules [add_le_add, le_rfl, dist_nonneg, zero_le_one] } }, | |
{ rcases eq_or_ne i j with rfl|hij, | |
{ simp only [hik, sigma.dist_ne, ne.def, not_false_iff, sigma.dist_same], | |
calc dist x (nonempty.some ⟨x⟩) + 1 + dist (nonempty.some ⟨z⟩) z ≤ | |
(dist x y + dist y (nonempty.some ⟨y⟩) + 1 + dist (nonempty.some ⟨z⟩) z) : | |
by apply_rules [add_le_add, le_rfl, dist_triangle] | |
... = _ : by abel }, | |
{ rcases eq_or_ne j k with rfl|hjk, | |
{ simp only [hij, sigma.dist_ne, ne.def, not_false_iff, sigma.dist_same], | |
calc dist x (nonempty.some ⟨x⟩) + 1 + dist (nonempty.some ⟨z⟩) z ≤ | |
dist x (nonempty.some ⟨x⟩) + 1 + (dist (nonempty.some ⟨z⟩) y + dist y z) : | |
by apply_rules [add_le_add, le_rfl, dist_triangle] | |
... = _ : by abel }, | |
{ simp only [hik, hij, hjk, sigma.dist_ne, ne.def, not_false_iff], | |
calc dist x (nonempty.some ⟨x⟩) + 1 + dist (nonempty.some ⟨z⟩) z | |
= dist x (nonempty.some ⟨x⟩) + 1 + 0 + (0 + 0 + dist (nonempty.some ⟨z⟩) z) : | |
by simp only [add_zero, zero_add] | |
... ≤ _ : | |
by apply_rules [add_le_add, zero_le_one, dist_nonneg, le_rfl] } } } | |
end | |
protected lemma is_open_iff (s : set (Σ i, E i)) : | |
is_open s ↔ ∀ x ∈ s, ∃ ε > 0, ∀ y, dist x y < ε → y ∈ s := | |
begin | |
split, | |
{ rintros hs ⟨i, x⟩ hx, | |
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ) (H : ε > 0), ball x ε ⊆ sigma.mk i ⁻¹' s := | |
metric.is_open_iff.1 (is_open_sigma_iff.1 hs i) x hx, | |
refine ⟨min ε 1, lt_min εpos zero_lt_one, _⟩, | |
rintros ⟨j, y⟩ hy, | |
rcases eq_or_ne i j with rfl|hij, | |
{ simp only [sigma.dist_same, lt_min_iff] at hy, | |
exact hε (mem_ball'.2 hy.1) }, | |
{ apply (lt_irrefl (1 : ℝ) _).elim, | |
calc 1 ≤ sigma.dist ⟨i, x⟩ ⟨j, y⟩ : sigma.one_le_dist_of_ne hij _ _ | |
... < 1 : hy.trans_le (min_le_right _ _) } }, | |
{ assume H, | |
apply is_open_sigma_iff.2 (λ i, _), | |
apply metric.is_open_iff.2 (λ x hx, _), | |
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ) (H : ε > 0), ∀ y, dist (⟨i, x⟩ : Σ j, E j) y < ε → y ∈ s := | |
H ⟨i, x⟩ hx, | |
refine ⟨ε, εpos, λ y hy, _⟩, | |
apply hε ⟨i, y⟩, | |
rw sigma.dist_same, | |
exact mem_ball'.1 hy } | |
end | |
/-- A metric space structure on the disjoint union `Σ i, E i`. | |
We embed isometrically each factor, set the basepoints at distance 1, arbitrarily, | |
and say that the distance from `a` to `b` is the sum of the distances of `a` and `b` to | |
their respective basepoints, plus the distance 1 between the basepoints. | |
Since there is an arbitrary choice in this construction, it is not an instance by default. -/ | |
protected def metric_space : metric_space (Σ i, E i) := | |
begin | |
refine metric_space.of_metrizable sigma.dist _ _ sigma.dist_triangle | |
sigma.is_open_iff _, | |
{ rintros ⟨i, x⟩, simp [sigma.dist] }, | |
{ rintros ⟨i, x⟩ ⟨j, y⟩, | |
rcases eq_or_ne i j with rfl|h, | |
{ simp [sigma.dist, dist_comm] }, | |
{ simp only [sigma.dist, dist_comm, h, h.symm, not_false_iff, dif_neg], abel } }, | |
{ rintros ⟨i, x⟩ ⟨j, y⟩, | |
rcases eq_or_ne i j with rfl|hij, | |
{ simp [sigma.dist] }, | |
{ assume h, | |
apply (lt_irrefl (1 : ℝ) _).elim, | |
calc 1 ≤ sigma.dist (⟨i, x⟩ : Σ k, E k) ⟨j, y⟩ : sigma.one_le_dist_of_ne hij _ _ | |
... < 1 : by { rw h, exact zero_lt_one } } } | |
end | |
local attribute [instance] sigma.metric_space | |
open_locale topological_space | |
open filter | |
/-- The injection of a space in a disjoint union is an isometry -/ | |
lemma isometry_mk (i : ι) : isometry (sigma.mk i : E i → Σ k, E k) := | |
isometry.of_dist_eq (λ x y, by simp) | |
/-- A disjoint union of complete metric spaces is complete. -/ | |
protected lemma complete_space [∀ i, complete_space (E i)] : complete_space (Σ i, E i) := | |
begin | |
set s : ι → set (Σ i, E i) := λ i, (sigma.fst ⁻¹' {i}), | |
set U := {p : (Σ k, E k) × (Σ k, E k) | dist p.1 p.2 < 1}, | |
have hc : ∀ i, is_complete (s i), | |
{ intro i, | |
simp only [s, ← range_sigma_mk], | |
exact (isometry_mk i).uniform_inducing.is_complete_range }, | |
have hd : ∀ i j (x ∈ s i) (y ∈ s j), (x, y) ∈ U → i = j, | |
from λ i j x hx y hy hxy, (eq.symm hx).trans ((fst_eq_of_dist_lt_one _ _ hxy).trans hy), | |
refine complete_space_of_is_complete_univ _, | |
convert is_complete_Union_separated hc (dist_mem_uniformity zero_lt_one) hd, | |
simp [s, ← preimage_Union] | |
end | |
end sigma | |
section gluing | |
/- Exact gluing of two metric spaces along isometric subsets. -/ | |
variables {X : Type u} {Y : Type v} {Z : Type w} | |
variables [nonempty Z] [metric_space Z] [metric_space X] [metric_space Y] | |
{Φ : Z → X} {Ψ : Z → Y} {ε : ℝ} | |
open _root_.sum (inl inr) | |
local attribute [instance] pseudo_metric.dist_setoid | |
/-- Given two isometric embeddings `Φ : Z → X` and `Ψ : Z → Y`, we define a pseudo metric space | |
structure on `X ⊕ Y` by declaring that `Φ x` and `Ψ x` are at distance `0`. -/ | |
def glue_premetric (hΦ : isometry Φ) (hΨ : isometry Ψ) : pseudo_metric_space (X ⊕ Y) := | |
{ dist := glue_dist Φ Ψ 0, | |
dist_self := glue_dist_self Φ Ψ 0, | |
dist_comm := glue_dist_comm Φ Ψ 0, | |
dist_triangle := glue_dist_triangle Φ Ψ 0 $ λp q, by rw [hΦ.dist_eq, hΨ.dist_eq]; simp } | |
/-- Given two isometric embeddings `Φ : Z → X` and `Ψ : Z → Y`, we define a | |
space `glue_space hΦ hΨ` by identifying in `X ⊕ Y` the points `Φ x` and `Ψ x`. -/ | |
def glue_space (hΦ : isometry Φ) (hΨ : isometry Ψ) : Type* := | |
@pseudo_metric_quot _ (glue_premetric hΦ hΨ) | |
instance metric_space_glue_space (hΦ : isometry Φ) (hΨ : isometry Ψ) : | |
metric_space (glue_space hΦ hΨ) := | |
@metric_space_quot _ (glue_premetric hΦ hΨ) | |
/-- The canonical map from `X` to the space obtained by gluing isometric subsets in `X` and `Y`. -/ | |
def to_glue_l (hΦ : isometry Φ) (hΨ : isometry Ψ) (x : X) : glue_space hΦ hΨ := | |
by letI : pseudo_metric_space (X ⊕ Y) := glue_premetric hΦ hΨ; exact ⟦inl x⟧ | |
/-- The canonical map from `Y` to the space obtained by gluing isometric subsets in `X` and `Y`. -/ | |
def to_glue_r (hΦ : isometry Φ) (hΨ : isometry Ψ) (y : Y) : glue_space hΦ hΨ := | |
by letI : pseudo_metric_space (X ⊕ Y) := glue_premetric hΦ hΨ; exact ⟦inr y⟧ | |
instance inhabited_left (hΦ : isometry Φ) (hΨ : isometry Ψ) [inhabited X] : | |
inhabited (glue_space hΦ hΨ) := | |
⟨to_glue_l _ _ default⟩ | |
instance inhabited_right (hΦ : isometry Φ) (hΨ : isometry Ψ) [inhabited Y] : | |
inhabited (glue_space hΦ hΨ) := | |
⟨to_glue_r _ _ default⟩ | |
lemma to_glue_commute (hΦ : isometry Φ) (hΨ : isometry Ψ) : | |
(to_glue_l hΦ hΨ) ∘ Φ = (to_glue_r hΦ hΨ) ∘ Ψ := | |
begin | |
letI : pseudo_metric_space (X ⊕ Y) := glue_premetric hΦ hΨ, | |
funext, | |
simp only [comp, to_glue_l, to_glue_r, quotient.eq], | |
exact glue_dist_glued_points Φ Ψ 0 x | |
end | |
lemma to_glue_l_isometry (hΦ : isometry Φ) (hΨ : isometry Ψ) : isometry (to_glue_l hΦ hΨ) := | |
isometry.of_dist_eq $ λ_ _, rfl | |
lemma to_glue_r_isometry (hΦ : isometry Φ) (hΨ : isometry Ψ) : isometry (to_glue_r hΦ hΨ) := | |
isometry.of_dist_eq $ λ_ _, rfl | |
end gluing --section | |
section inductive_limit | |
/- In this section, we define the inductive limit of | |
f 0 f 1 f 2 f 3 | |
X 0 -----> X 1 -----> X 2 -----> X 3 -----> ... | |
where the X n are metric spaces and f n isometric embeddings. We do it by defining a premetric | |
space structure on Σ n, X n, where the predistance dist x y is obtained by pushing x and y in a | |
common X k using composition by the f n, and taking the distance there. This does not depend on | |
the choice of k as the f n are isometries. The metric space associated to this premetric space | |
is the desired inductive limit.-/ | |
open nat | |
variables {X : ℕ → Type u} [∀ n, metric_space (X n)] {f : Π n, X n → X (n+1)} | |
/-- Predistance on the disjoint union `Σ n, X n`. -/ | |
def inductive_limit_dist (f : Π n, X n → X (n+1)) (x y : Σ n, X n) : ℝ := | |
dist (le_rec_on (le_max_left x.1 y.1) f x.2 : X (max x.1 y.1)) | |
(le_rec_on (le_max_right x.1 y.1) f y.2 : X (max x.1 y.1)) | |
/-- The predistance on the disjoint union `Σ n, X n` can be computed in any `X k` for large | |
enough `k`. -/ | |
lemma inductive_limit_dist_eq_dist (I : ∀ n, isometry (f n)) | |
(x y : Σ n, X n) (m : ℕ) : ∀ hx : x.1 ≤ m, ∀ hy : y.1 ≤ m, | |
inductive_limit_dist f x y = dist (le_rec_on hx f x.2 : X m) (le_rec_on hy f y.2 : X m) := | |
begin | |
induction m with m hm, | |
{ assume hx hy, | |
have A : max x.1 y.1 = 0, { rw [nonpos_iff_eq_zero.1 hx, nonpos_iff_eq_zero.1 hy], simp }, | |
unfold inductive_limit_dist, | |
congr; simp only [A] }, | |
{ assume hx hy, | |
by_cases h : max x.1 y.1 = m.succ, | |
{ unfold inductive_limit_dist, | |
congr; simp only [h] }, | |
{ have : max x.1 y.1 ≤ succ m := by simp [hx, hy], | |
have : max x.1 y.1 ≤ m := by simpa [h] using of_le_succ this, | |
have xm : x.1 ≤ m := le_trans (le_max_left _ _) this, | |
have ym : y.1 ≤ m := le_trans (le_max_right _ _) this, | |
rw [le_rec_on_succ xm, le_rec_on_succ ym, (I m).dist_eq], | |
exact hm xm ym }} | |
end | |
/-- Premetric space structure on `Σ n, X n`.-/ | |
def inductive_premetric (I : ∀ n, isometry (f n)) : | |
pseudo_metric_space (Σ n, X n) := | |
{ dist := inductive_limit_dist f, | |
dist_self := λx, by simp [dist, inductive_limit_dist], | |
dist_comm := λx y, begin | |
let m := max x.1 y.1, | |
have hx : x.1 ≤ m := le_max_left _ _, | |
have hy : y.1 ≤ m := le_max_right _ _, | |
unfold dist, | |
rw [inductive_limit_dist_eq_dist I x y m hx hy, inductive_limit_dist_eq_dist I y x m hy hx, | |
dist_comm] | |
end, | |
dist_triangle := λx y z, begin | |
let m := max (max x.1 y.1) z.1, | |
have hx : x.1 ≤ m := le_trans (le_max_left _ _) (le_max_left _ _), | |
have hy : y.1 ≤ m := le_trans (le_max_right _ _) (le_max_left _ _), | |
have hz : z.1 ≤ m := le_max_right _ _, | |
calc inductive_limit_dist f x z | |
= dist (le_rec_on hx f x.2 : X m) (le_rec_on hz f z.2 : X m) : | |
inductive_limit_dist_eq_dist I x z m hx hz | |
... ≤ dist (le_rec_on hx f x.2 : X m) (le_rec_on hy f y.2 : X m) | |
+ dist (le_rec_on hy f y.2 : X m) (le_rec_on hz f z.2 : X m) : | |
dist_triangle _ _ _ | |
... = inductive_limit_dist f x y + inductive_limit_dist f y z : | |
by rw [inductive_limit_dist_eq_dist I x y m hx hy, | |
inductive_limit_dist_eq_dist I y z m hy hz] | |
end } | |
local attribute [instance] inductive_premetric pseudo_metric.dist_setoid | |
/-- The type giving the inductive limit in a metric space context. -/ | |
def inductive_limit (I : ∀ n, isometry (f n)) : Type* := | |
@pseudo_metric_quot _ (inductive_premetric I) | |
/-- Metric space structure on the inductive limit. -/ | |
instance metric_space_inductive_limit (I : ∀ n, isometry (f n)) : | |
metric_space (inductive_limit I) := | |
@metric_space_quot _ (inductive_premetric I) | |
/-- Mapping each `X n` to the inductive limit. -/ | |
def to_inductive_limit (I : ∀ n, isometry (f n)) (n : ℕ) (x : X n) : metric.inductive_limit I := | |
by letI : pseudo_metric_space (Σ n, X n) := inductive_premetric I; exact ⟦sigma.mk n x⟧ | |
instance (I : ∀ n, isometry (f n)) [inhabited (X 0)] : inhabited (inductive_limit I) := | |
⟨to_inductive_limit _ 0 default⟩ | |
/-- The map `to_inductive_limit n` mapping `X n` to the inductive limit is an isometry. -/ | |
lemma to_inductive_limit_isometry (I : ∀ n, isometry (f n)) (n : ℕ) : | |
isometry (to_inductive_limit I n) := isometry.of_dist_eq $ λ x y, | |
begin | |
change inductive_limit_dist f ⟨n, x⟩ ⟨n, y⟩ = dist x y, | |
rw [inductive_limit_dist_eq_dist I ⟨n, x⟩ ⟨n, y⟩ n (le_refl n) (le_refl n), | |
le_rec_on_self, le_rec_on_self] | |
end | |
/-- The maps `to_inductive_limit n` are compatible with the maps `f n`. -/ | |
lemma to_inductive_limit_commute (I : ∀ n, isometry (f n)) (n : ℕ) : | |
(to_inductive_limit I n.succ) ∘ (f n) = to_inductive_limit I n := | |
begin | |
funext, | |
simp only [comp, to_inductive_limit, quotient.eq], | |
show inductive_limit_dist f ⟨n.succ, f n x⟩ ⟨n, x⟩ = 0, | |
{ rw [inductive_limit_dist_eq_dist I ⟨n.succ, f n x⟩ ⟨n, x⟩ n.succ, | |
le_rec_on_self, le_rec_on_succ, le_rec_on_self, dist_self], | |
exact le_rfl, | |
exact le_rfl, | |
exact le_succ _ } | |
end | |
end inductive_limit --section | |
end metric --namespace | |