Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Roberto Alvarez. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Roberto Alvarez | |
-/ | |
import algebraic_topology.fundamental_groupoid.fundamental_group | |
/-! | |
# `n`th homotopy group | |
We define the `n`th homotopy group at `x`, `π n x`, as the equivalence classes | |
of functions from the nth dimensional cube to the topological space `X` | |
that send the boundary to the base point `x`, up to homotopic equivalence. | |
Note that such functions are generalized loops `gen_loop n x`, in particular | |
`gen_loop 1 x ≃ path x x` | |
We show that `π 0 x` is equivalent to the path-conected components, and | |
that `π 1 x` is equivalent to the fundamental group at `x`. | |
## definitions | |
* `gen_loop n x` is the type of continous fuctions `I^n → X` that send the boundary to `x` | |
* `homotopy_group n x` denoted `π n x` is the quotient of `gen_loop n x` by homotopy relative | |
to the boundary | |
TODO: show that `π n x` is a group when `n > 0` and abelian when `n > 1`. Show that | |
`pi1_equiv_fundamental_group` is an isomorphism of groups. | |
-/ | |
open_locale unit_interval topological_space | |
noncomputable theory | |
universes u | |
variables {X : Type u} [topological_space X] | |
variables {n : ℕ} {x : X} | |
/-- | |
The `n`-dimensional cube. | |
-/ | |
@[derive [has_zero, has_one, topological_space]] | |
def cube (n : ℕ) : Type := fin n → I | |
local notation `I^` := cube | |
namespace cube | |
@[continuity] lemma proj_continuous (i : fin n) : continuous (λ f : I^n, f i) := | |
continuous_apply i | |
/-- | |
The points of the `n`-dimensional cube with at least one projection equal to 0 or 1. | |
-/ | |
def boundary (n : ℕ) : set (I^n) := {y | ∃ i, y i = 0 ∨ y i = 1} | |
/-- | |
The first projection of a positive-dimensional cube. | |
-/ | |
@[simp] def head {n} : I^(n+1) → I := λ c, c 0 | |
@[continuity] lemma head.continuous {n} : continuous (@head n) := proj_continuous 0 | |
/-- | |
The projection to the last `n` coordinates from an `n+1` dimensional cube. | |
-/ | |
@[simp] def tail {n} : I^(n+1) → I^n := λ c, fin.tail c | |
instance unique_cube0 : unique (I^0) := pi.unique_of_is_empty _ | |
lemma one_char (f : I^1) : f = λ _, f 0 := by convert eq_const_of_unique f | |
end cube | |
/-- | |
The `n`-dimensional generalized loops; functions `I^n → X` that send the boundary to the base point. | |
-/ | |
structure gen_loop (n : ℕ) (x : X) extends C(I^n, X) := | |
(boundary : ∀ y ∈ cube.boundary n, to_fun y = x) | |
namespace gen_loop | |
instance fun_like : fun_like (gen_loop n x) (I^n) (λ _, X) := | |
{ coe := λ f, f.1, | |
coe_injective' := λ ⟨⟨f, _⟩, _⟩ ⟨⟨g, _⟩, _⟩ h, by { congr, exact h } } | |
@[ext] lemma ext (f g : gen_loop n x) (H : ∀ y, f y = g y) : f = g := fun_like.ext f g H | |
@[simp] lemma mk_apply (f : C(I^n, X)) (H y) : (⟨f, H⟩ : gen_loop n x) y = f y := rfl | |
/-- | |
The constant `gen_loop` at `x`. | |
-/ | |
def const : gen_loop n x := ⟨continuous_map.const _ x, λ _ _, rfl⟩ | |
instance inhabited : inhabited (gen_loop n x) := { default := const } | |
/-- | |
The "homotopy relative to boundary" relation between `gen_loop`s. | |
-/ | |
def homotopic (f g : gen_loop n x) : Prop := | |
f.to_continuous_map.homotopic_rel g.to_continuous_map (cube.boundary n) | |
namespace homotopic | |
section | |
variables {f g h : gen_loop n x} | |
@[refl] lemma refl (f : gen_loop n x) : homotopic f f := continuous_map.homotopic_rel.refl _ | |
@[symm] lemma symm (H : f.homotopic g) : g.homotopic f := H.symm | |
@[trans] lemma trans (H0 : f.homotopic g) (H1 : g.homotopic h) : f.homotopic h := H0.trans H1 | |
lemma equiv : equivalence (@homotopic X _ n x) := | |
⟨homotopic.refl, λ _ _, homotopic.symm, λ _ _ _, homotopic.trans⟩ | |
instance setoid (n : ℕ) (x : X) : setoid (gen_loop n x) := ⟨homotopic, equiv⟩ | |
end | |
end homotopic | |
end gen_loop | |
/-- | |
The `n`th homotopy group at `x` defined as the quotient of `gen_loop n x` by the | |
`homotopic` relation. | |
-/ | |
@[derive inhabited] | |
def homotopy_group (n : ℕ) (x : X) : Type _ := quotient (gen_loop.homotopic.setoid n x) | |
local notation `π` := homotopy_group | |
/-- The 0-dimensional generalized loops based at `x` are in 1-1 correspondence with `X`. -/ | |
def gen_loop_zero_equiv : gen_loop 0 x ≃ X := | |
{ to_fun := λ f, f 0, | |
inv_fun := λ x, ⟨continuous_map.const _ x, λ _ ⟨f0,_⟩, f0.elim0⟩, | |
left_inv := λ f, by { ext1, exact congr_arg f (subsingleton.elim _ _) }, | |
right_inv := λ _, rfl } | |
/-- | |
The 0th homotopy "group" is equivalent to the path components of `X`, aka the `zeroth_homotopy`. | |
-/ | |
def pi0_equiv_path_components : π 0 x ≃ zeroth_homotopy X := | |
quotient.congr gen_loop_zero_equiv | |
begin | |
-- joined iff homotopic | |
intros, split; rintro ⟨H⟩, | |
exacts | |
[⟨{ to_fun := λ t, H ⟨t, fin.elim0⟩, | |
source' := (H.apply_zero _).trans (congr_arg a₁ matrix.zero_empty.symm), | |
target' := (H.apply_one _).trans (congr_arg a₂ matrix.zero_empty.symm) }⟩, | |
⟨{ to_fun := λ t0, H t0.fst, | |
map_zero_left' := λ _, by convert H.source, | |
map_one_left' := λ _, by convert H.target, | |
prop' := λ _ _ ⟨i,_⟩, i.elim0 }⟩] | |
end | |
/-- The 1-dimensional generalized loops based at `x` are in 1-1 correspondence with | |
paths from `x` to itself. -/ | |
@[simps] def gen_loop_one_equiv_path_self : gen_loop 1 x ≃ path x x := | |
{ to_fun := λ p, path.mk ⟨λ t, p (λ _, t), by {continuity, exact p.1.2}⟩ | |
(p.boundary (λ _, 0) ⟨0, or.inl rfl⟩) | |
(p.boundary (λ _, 1) ⟨1, or.inr rfl⟩), | |
inv_fun := λ p, | |
{ to_fun := λ c, p c.head, | |
boundary := begin | |
rintro y ⟨i, iH|iH⟩; cases unique.eq_default i; | |
apply (congr_arg p iH).trans, exacts [p.source, p.target], | |
end }, | |
left_inv := λ p, by { ext1, exact congr_arg p y.one_char.symm }, | |
right_inv := λ p, by { ext, refl } } | |
/-- | |
The first homotopy group at `x` is equivalent to the fundamental group, | |
i.e. the loops based at `x` up to homotopy. | |
-/ | |
def pi1_equiv_fundamental_group : π 1 x ≃ fundamental_group X x := | |
begin | |
refine equiv.trans _ (category_theory.groupoid.iso_equiv_hom _ _).symm, | |
refine quotient.congr gen_loop_one_equiv_path_self _, | |
-- homotopic iff homotopic | |
intros, split; rintros ⟨H⟩, | |
exacts | |
[⟨{ to_fun := λ tx, H (tx.fst, λ _, tx.snd), | |
map_zero_left' := λ _, by convert H.apply_zero _, | |
map_one_left' := λ _, by convert H.apply_one _, | |
prop' := λ t y iH, H.prop' _ _ ⟨0,iH⟩ }⟩, | |
⟨{ to_fun := λ tx, H (tx.fst, tx.snd.head), | |
map_zero_left' := λ y, by { convert H.apply_zero _, exact y.one_char }, | |
map_one_left' := λ y, by { convert H.apply_one _, exact y.one_char }, | |
prop' := λ t y ⟨i, iH⟩, begin | |
cases unique.eq_default i, split, | |
{ convert H.eq_fst _ _, exacts [y.one_char, iH] }, | |
{ convert H.eq_snd _ _, exacts [y.one_char, iH] }, | |
end }⟩], | |
end | |