Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.02 kB
/-
Copyright (c) 2020 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Anatole Dedecker
-/
import topology.separation
/-!
# Extending a function from a subset
The main definition of this file is `extend_from A f` where `f : X β†’ Y`
and `A : set X`. This defines a new function `g : X β†’ Y` which maps any
`xβ‚€ : X` to the limit of `f` as `x` tends to `xβ‚€`, if such a limit exists.
This is analoguous to the way `dense_inducing.extend` "extends" a function
`f : X β†’ Z` to a function `g : Y β†’ Z` along a dense inducing `i : X β†’ Y`.
The main theorem we prove about this definition is `continuous_on_extend_from`
which states that, for `extend_from A f` to be continuous on a set `B βŠ† closure A`,
it suffices that `f` converges within `A` at any point of `B`, provided that
`f` is a function to a T₃ space.
-/
noncomputable theory
open_locale topological_space
open filter set
variables {X Y : Type*} [topological_space X] [topological_space Y]
/-- Extend a function from a set `A`. The resulting function `g` is such that
at any `xβ‚€`, if `f` converges to some `y` as `x` tends to `xβ‚€` within `A`,
then `g xβ‚€` is defined to be one of these `y`. Else, `g xβ‚€` could be anything. -/
def extend_from (A : set X) (f : X β†’ Y) : X β†’ Y :=
Ξ» x, @@lim _ ⟨f x⟩ (𝓝[A] x) f
/-- If `f` converges to some `y` as `x` tends to `xβ‚€` within `A`,
then `f` tends to `extend_from A f x` as `x` tends to `xβ‚€`. -/
lemma tendsto_extend_from {A : set X} {f : X β†’ Y} {x : X}
(h : βˆƒ y, tendsto f (𝓝[A] x) (𝓝 y)) : tendsto f (𝓝[A] x) (𝓝 $ extend_from A f x) :=
tendsto_nhds_lim h
lemma extend_from_eq [t2_space Y] {A : set X} {f : X β†’ Y} {x : X} {y : Y} (hx : x ∈ closure A)
(hf : tendsto f (𝓝[A] x) (𝓝 y)) : extend_from A f x = y :=
begin
haveI := mem_closure_iff_nhds_within_ne_bot.mp hx,
exact tendsto_nhds_unique (tendsto_nhds_lim ⟨y, hf⟩) hf,
end
lemma extend_from_extends [t2_space Y] {f : X β†’ Y} {A : set X} (hf : continuous_on f A) :
βˆ€ x ∈ A, extend_from A f x = f x :=
Ξ» x x_in, extend_from_eq (subset_closure x_in) (hf x x_in)
/-- If `f` is a function to a T₃ space `Y` which has a limit within `A` at any
point of a set `B βŠ† closure A`, then `extend_from A f` is continuous on `B`. -/
lemma continuous_on_extend_from [t3_space Y] {f : X β†’ Y} {A B : set X} (hB : B βŠ† closure A)
(hf : βˆ€ x ∈ B, βˆƒ y, tendsto f (𝓝[A] x) (𝓝 y)) : continuous_on (extend_from A f) B :=
begin
set Ο† := extend_from A f,
intros x x_in,
suffices : βˆ€ V' ∈ 𝓝 (Ο† x), is_closed V' β†’ Ο† ⁻¹' V' ∈ 𝓝[B] x,
by simpa [continuous_within_at, (closed_nhds_basis _).tendsto_right_iff],
intros V' V'_in V'_closed,
obtain ⟨V, V_in, V_op, hV⟩ : βˆƒ V ∈ 𝓝 x, is_open V ∧ V ∩ A βŠ† f ⁻¹' V',
{ have := tendsto_extend_from (hf x x_in),
rcases (nhds_within_basis_open x A).tendsto_left_iff.mp this V' V'_in with ⟨V, ⟨hxV, V_op⟩, hV⟩,
use [V, is_open.mem_nhds V_op hxV, V_op, hV] },
suffices : βˆ€ y ∈ V ∩ B, Ο† y ∈ V',
from mem_of_superset (inter_mem_inf V_in $ mem_principal_self B) this,
rintros y ⟨hyV, hyB⟩,
haveI := mem_closure_iff_nhds_within_ne_bot.mp (hB hyB),
have limy : tendsto f (𝓝[A] y) (𝓝 $ Ο† y) := tendsto_extend_from (hf y hyB),
have hVy : V ∈ 𝓝 y := is_open.mem_nhds V_op hyV,
have : V ∩ A ∈ (𝓝[A] y),
by simpa [inter_comm] using inter_mem_nhds_within _ hVy,
exact V'_closed.mem_of_tendsto limy (mem_of_superset this hV)
end
/-- If a function `f` to a T₃ space `Y` has a limit within a
dense set `A` for any `x`, then `extend_from A f` is continuous. -/
lemma continuous_extend_from [t3_space Y] {f : X β†’ Y} {A : set X} (hA : dense A)
(hf : βˆ€ x, βˆƒ y, tendsto f (𝓝[A] x) (𝓝 y)) : continuous (extend_from A f) :=
begin
rw continuous_iff_continuous_on_univ,
exact continuous_on_extend_from (Ξ» x _, hA x) (by simpa using hf)
end