Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Fox Thomson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Fox Thomson | |
-/ | |
import set_theory.game.basic | |
import tactic.nth_rewrite.default | |
/-! | |
# Basic definitions about impartial (pre-)games | |
We will define an impartial game, one in which left and right can make exactly the same moves. | |
Our definition differs slightly by saying that the game is always equivalent to its negative, | |
no matter what moves are played. This allows for games such as poker-nim to be classifed as | |
impartial. | |
-/ | |
universe u | |
open_locale pgame | |
namespace pgame | |
/-- The definition for a impartial game, defined using Conway induction. -/ | |
def impartial_aux : pgame → Prop | |
| G := G ≈ -G ∧ (∀ i, impartial_aux (G.move_left i)) ∧ ∀ j, impartial_aux (G.move_right j) | |
using_well_founded { dec_tac := pgame_wf_tac } | |
lemma impartial_aux_def {G : pgame} : G.impartial_aux ↔ G ≈ -G ∧ | |
(∀ i, impartial_aux (G.move_left i)) ∧ ∀ j, impartial_aux (G.move_right j) := | |
by rw impartial_aux | |
/-- A typeclass on impartial games. -/ | |
class impartial (G : pgame) : Prop := (out : impartial_aux G) | |
lemma impartial_iff_aux {G : pgame} : G.impartial ↔ G.impartial_aux := | |
⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
lemma impartial_def {G : pgame} : G.impartial ↔ G ≈ -G ∧ | |
(∀ i, impartial (G.move_left i)) ∧ ∀ j, impartial (G.move_right j) := | |
by simpa only [impartial_iff_aux] using impartial_aux_def | |
namespace impartial | |
instance impartial_zero : impartial 0 := | |
by { rw impartial_def, dsimp, simp } | |
instance impartial_star : impartial star := | |
by { rw impartial_def, simpa using impartial.impartial_zero } | |
lemma neg_equiv_self (G : pgame) [h : G.impartial] : G ≈ -G := (impartial_def.1 h).1 | |
@[simp] lemma mk_neg_equiv_self (G : pgame) [h : G.impartial] : -⟦G⟧ = ⟦G⟧ := | |
quot.sound (neg_equiv_self G).symm | |
instance move_left_impartial {G : pgame} [h : G.impartial] (i : G.left_moves) : | |
(G.move_left i).impartial := | |
(impartial_def.1 h).2.1 i | |
instance move_right_impartial {G : pgame} [h : G.impartial] (j : G.right_moves) : | |
(G.move_right j).impartial := | |
(impartial_def.1 h).2.2 j | |
theorem impartial_congr : ∀ {G H : pgame} (e : G ≡r H) [G.impartial], H.impartial | |
| G H := λ e, begin | |
introI h, | |
exact impartial_def.2 | |
⟨e.symm.equiv.trans ((neg_equiv_self G).trans (neg_equiv_neg_iff.2 e.equiv)), | |
λ i, impartial_congr (e.move_left_symm i), λ j, impartial_congr (e.move_right_symm j)⟩ | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance impartial_add : ∀ (G H : pgame) [G.impartial] [H.impartial], (G + H).impartial | |
| G H := | |
begin | |
introsI hG hH, | |
rw impartial_def, | |
refine ⟨(add_congr (neg_equiv_self _) (neg_equiv_self _)).trans | |
(neg_add_relabelling _ _).equiv.symm, λ k, _, λ k, _⟩, | |
{ apply left_moves_add_cases k, | |
all_goals | |
{ intro i, simp only [add_move_left_inl, add_move_left_inr], | |
apply impartial_add } }, | |
{ apply right_moves_add_cases k, | |
all_goals | |
{ intro i, simp only [add_move_right_inl, add_move_right_inr], | |
apply impartial_add } } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance impartial_neg : ∀ (G : pgame) [G.impartial], (-G).impartial | |
| G := | |
begin | |
introI hG, | |
rw impartial_def, | |
refine ⟨_, λ i, _, λ i, _⟩, | |
{ rw neg_neg, | |
exact (neg_equiv_self G).symm }, | |
{ rw move_left_neg', | |
apply impartial_neg }, | |
{ rw move_right_neg', | |
apply impartial_neg } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
variables (G : pgame) [impartial G] | |
lemma nonpos : ¬ 0 < G := | |
λ h, begin | |
have h' := neg_lt_neg_iff.2 h, | |
rw [pgame.neg_zero, lt_congr_left (neg_equiv_self G).symm] at h', | |
exact (h.trans h').false | |
end | |
lemma nonneg : ¬ G < 0 := | |
λ h, begin | |
have h' := neg_lt_neg_iff.2 h, | |
rw [pgame.neg_zero, lt_congr_right (neg_equiv_self G).symm] at h', | |
exact (h.trans h').false | |
end | |
/-- In an impartial game, either the first player always wins, or the second player always wins. -/ | |
lemma equiv_or_fuzzy_zero : G ≈ 0 ∨ G ∥ 0 := | |
begin | |
rcases lt_or_equiv_or_gt_or_fuzzy G 0 with h | h | h | h, | |
{ exact ((nonneg G) h).elim }, | |
{ exact or.inl h }, | |
{ exact ((nonpos G) h).elim }, | |
{ exact or.inr h } | |
end | |
@[simp] lemma not_equiv_zero_iff : ¬ G ≈ 0 ↔ G ∥ 0 := | |
⟨(equiv_or_fuzzy_zero G).resolve_left, fuzzy.not_equiv⟩ | |
@[simp] lemma not_fuzzy_zero_iff : ¬ G ∥ 0 ↔ G ≈ 0 := | |
⟨(equiv_or_fuzzy_zero G).resolve_right, equiv.not_fuzzy⟩ | |
lemma add_self : G + G ≈ 0 := | |
(add_congr_left (neg_equiv_self G)).trans (add_left_neg_equiv G) | |
@[simp] lemma mk_add_self : ⟦G⟧ + ⟦G⟧ = 0 := quot.sound (add_self G) | |
/-- This lemma doesn't require `H` to be impartial. -/ | |
lemma equiv_iff_add_equiv_zero (H : pgame) : H ≈ G ↔ H + G ≈ 0 := | |
by { rw [equiv_iff_game_eq, equiv_iff_game_eq, ←@add_right_cancel_iff _ _ (-⟦G⟧)], simpa } | |
/-- This lemma doesn't require `H` to be impartial. -/ | |
lemma equiv_iff_add_equiv_zero' (H : pgame) : G ≈ H ↔ G + H ≈ 0 := | |
by { rw [equiv_iff_game_eq, equiv_iff_game_eq, ←@add_left_cancel_iff _ _ (-⟦G⟧), eq_comm], simpa } | |
lemma le_zero_iff {G : pgame} [G.impartial] : G ≤ 0 ↔ 0 ≤ G := | |
by rw [←zero_le_neg_iff, le_congr_right (neg_equiv_self G)] | |
lemma lf_zero_iff {G : pgame} [G.impartial] : G ⧏ 0 ↔ 0 ⧏ G := | |
by rw [←zero_lf_neg_iff, lf_congr_right (neg_equiv_self G)] | |
lemma equiv_zero_iff_le: G ≈ 0 ↔ G ≤ 0 := ⟨and.left, λ h, ⟨h, le_zero_iff.1 h⟩⟩ | |
lemma fuzzy_zero_iff_lf : G ∥ 0 ↔ G ⧏ 0 := ⟨and.left, λ h, ⟨h, lf_zero_iff.1 h⟩⟩ | |
lemma equiv_zero_iff_ge : G ≈ 0 ↔ 0 ≤ G := ⟨and.right, λ h, ⟨le_zero_iff.2 h, h⟩⟩ | |
lemma fuzzy_zero_iff_gf : G ∥ 0 ↔ 0 ⧏ G := ⟨and.right, λ h, ⟨lf_zero_iff.2 h, h⟩⟩ | |
lemma forall_left_moves_fuzzy_iff_equiv_zero : (∀ i, G.move_left i ∥ 0) ↔ G ≈ 0 := | |
begin | |
refine ⟨λ hb, _, λ hp i, _⟩, | |
{ rw [equiv_zero_iff_le G, le_zero_lf], | |
exact λ i, (hb i).1 }, | |
{ rw fuzzy_zero_iff_lf, | |
exact hp.1.move_left_lf i } | |
end | |
lemma forall_right_moves_fuzzy_iff_equiv_zero : (∀ j, G.move_right j ∥ 0) ↔ G ≈ 0 := | |
begin | |
refine ⟨λ hb, _, λ hp i, _⟩, | |
{ rw [equiv_zero_iff_ge G, zero_le_lf], | |
exact λ i, (hb i).2 }, | |
{ rw fuzzy_zero_iff_gf, | |
exact hp.2.lf_move_right i } | |
end | |
lemma exists_left_move_equiv_iff_fuzzy_zero : (∃ i, G.move_left i ≈ 0) ↔ G ∥ 0 := | |
begin | |
refine ⟨λ ⟨i, hi⟩, (fuzzy_zero_iff_gf G).2 (lf_of_le_move_left hi.2), λ hn, _⟩, | |
rw [fuzzy_zero_iff_gf G, zero_lf_le] at hn, | |
cases hn with i hi, | |
exact ⟨i, (equiv_zero_iff_ge _).2 hi⟩ | |
end | |
lemma exists_right_move_equiv_iff_fuzzy_zero : (∃ j, G.move_right j ≈ 0) ↔ G ∥ 0 := | |
begin | |
refine ⟨λ ⟨i, hi⟩, (fuzzy_zero_iff_lf G).2 (lf_of_move_right_le hi.1), λ hn, _⟩, | |
rw [fuzzy_zero_iff_lf G, lf_zero_le] at hn, | |
cases hn with i hi, | |
exact ⟨i, (equiv_zero_iff_le _).2 hi⟩ | |
end | |
end impartial | |
end pgame | |