Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import set_theory.game.state | |
/-! | |
# Domineering as a combinatorial game. | |
We define the game of Domineering, played on a chessboard of arbitrary shape | |
(possibly even disconnected). | |
Left moves by placing a domino vertically, while Right moves by placing a domino horizontally. | |
This is only a fragment of a full development; | |
in order to successfully analyse positions we would need some more theorems. | |
Most importantly, we need a general statement that allows us to discard irrelevant moves. | |
Specifically to domineering, we need the fact that | |
disjoint parts of the chessboard give sums of games. | |
-/ | |
namespace pgame | |
namespace domineering | |
open function | |
/-- The equivalence `(x, y) β¦ (x, y+1)`. -/ | |
@[simps] | |
def shift_up : β€ Γ β€ β β€ Γ β€ := | |
(equiv.refl β€).prod_congr (equiv.add_right (1 : β€)) | |
/-- The equivalence `(x, y) β¦ (x+1, y)`. -/ | |
@[simps] | |
def shift_right : β€ Γ β€ β β€ Γ β€ := | |
(equiv.add_right (1 : β€)).prod_congr (equiv.refl β€) | |
/-- A Domineering board is an arbitrary finite subset of `β€ Γ β€`. -/ | |
@[derive inhabited] | |
def board := finset (β€ Γ β€) | |
local attribute [reducible] board | |
/-- Left can play anywhere that a square and the square below it are open. -/ | |
def left (b : board) : finset (β€ Γ β€) := b β© b.map shift_up | |
/-- Right can play anywhere that a square and the square to the left are open. -/ | |
def right (b : board) : finset (β€ Γ β€) := b β© b.map shift_right | |
lemma mem_left {b : board} (x : β€ Γ β€) : x β left b β x β b β§ (x.1, x.2 - 1) β b := | |
finset.mem_inter.trans (and_congr iff.rfl finset.mem_map_equiv) | |
lemma mem_right {b : board} (x : β€ Γ β€) : x β right b β x β b β§ (x.1 - 1, x.2) β b := | |
finset.mem_inter.trans (and_congr iff.rfl finset.mem_map_equiv) | |
/-- After Left moves, two vertically adjacent squares are removed from the board. -/ | |
def move_left (b : board) (m : β€ Γ β€) : board := | |
(b.erase m).erase (m.1, m.2 - 1) | |
/-- After Left moves, two horizontally adjacent squares are removed from the board. -/ | |
def move_right (b : board) (m : β€ Γ β€) : board := | |
(b.erase m).erase (m.1 - 1, m.2) | |
lemma fst_pred_mem_erase_of_mem_right {b : board} {m : β€ Γ β€} (h : m β right b) : | |
(m.1 - 1, m.2) β b.erase m := | |
begin | |
rw mem_right at h, | |
apply finset.mem_erase_of_ne_of_mem _ h.2, | |
exact ne_of_apply_ne prod.fst (pred_ne_self m.1), | |
end | |
lemma snd_pred_mem_erase_of_mem_left {b : board} {m : β€ Γ β€} (h : m β left b) : | |
(m.1, m.2 - 1) β b.erase m := | |
begin | |
rw mem_left at h, | |
apply finset.mem_erase_of_ne_of_mem _ h.2, | |
exact ne_of_apply_ne prod.snd (pred_ne_self m.2), | |
end | |
lemma card_of_mem_left {b : board} {m : β€ Γ β€} (h : m β left b) : 2 β€ finset.card b := | |
begin | |
have wβ : m β b := (finset.mem_inter.1 h).1, | |
have wβ : (m.1, m.2 - 1) β b.erase m := snd_pred_mem_erase_of_mem_left h, | |
have iβ := finset.card_erase_lt_of_mem wβ, | |
have iβ := nat.lt_of_le_of_lt (nat.zero_le _) (finset.card_erase_lt_of_mem wβ), | |
exact nat.lt_of_le_of_lt iβ iβ, | |
end | |
lemma card_of_mem_right {b : board} {m : β€ Γ β€} (h : m β right b) : 2 β€ finset.card b := | |
begin | |
have wβ : m β b := (finset.mem_inter.1 h).1, | |
have wβ := fst_pred_mem_erase_of_mem_right h, | |
have iβ := finset.card_erase_lt_of_mem wβ, | |
have iβ := nat.lt_of_le_of_lt (nat.zero_le _) (finset.card_erase_lt_of_mem wβ), | |
exact nat.lt_of_le_of_lt iβ iβ, | |
end | |
lemma move_left_card {b : board} {m : β€ Γ β€} (h : m β left b) : | |
finset.card (move_left b m) + 2 = finset.card b := | |
begin | |
dsimp [move_left], | |
rw finset.card_erase_of_mem (snd_pred_mem_erase_of_mem_left h), | |
rw finset.card_erase_of_mem (finset.mem_of_mem_inter_left h), | |
exact tsub_add_cancel_of_le (card_of_mem_left h), | |
end | |
lemma move_right_card {b : board} {m : β€ Γ β€} (h : m β right b) : | |
finset.card (move_right b m) + 2 = finset.card b := | |
begin | |
dsimp [move_right], | |
rw finset.card_erase_of_mem (fst_pred_mem_erase_of_mem_right h), | |
rw finset.card_erase_of_mem (finset.mem_of_mem_inter_left h), | |
exact tsub_add_cancel_of_le (card_of_mem_right h), | |
end | |
lemma move_left_smaller {b : board} {m : β€ Γ β€} (h : m β left b) : | |
finset.card (move_left b m) / 2 < finset.card b / 2 := | |
by simp [βmove_left_card h, lt_add_one] | |
lemma move_right_smaller {b : board} {m : β€ Γ β€} (h : m β right b) : | |
finset.card (move_right b m) / 2 < finset.card b / 2 := | |
by simp [βmove_right_card h, lt_add_one] | |
/-- The instance describing allowed moves on a Domineering board. -/ | |
instance state : state board := | |
{ turn_bound := Ξ» s, s.card / 2, | |
L := Ξ» s, (left s).image (move_left s), | |
R := Ξ» s, (right s).image (move_right s), | |
left_bound := Ξ» s t m, | |
begin | |
simp only [finset.mem_image, prod.exists] at m, | |
rcases m with β¨_, _, β¨h, rflβ©β©, | |
exact move_left_smaller h | |
end, | |
right_bound := Ξ» s t m, | |
begin | |
simp only [finset.mem_image, prod.exists] at m, | |
rcases m with β¨_, _, β¨h, rflβ©β©, | |
exact move_right_smaller h | |
end, } | |
end domineering | |
/-- Construct a pre-game from a Domineering board. -/ | |
def domineering (b : domineering.board) : pgame := pgame.of_state b | |
/-- All games of Domineering are short, because each move removes two squares. -/ | |
instance short_domineering (b : domineering.board) : short (domineering b) := | |
by { dsimp [domineering], apply_instance } | |
/-- The Domineering board with two squares arranged vertically, in which Left has the only move. -/ | |
def domineering.one := domineering ([(0,0), (0,1)].to_finset) | |
/-- The `L` shaped Domineering board, in which Left is exactly half a move ahead. -/ | |
def domineering.L := domineering ([(0,2), (0,1), (0,0), (1,0)].to_finset) | |
instance short_one : short domineering.one := by { dsimp [domineering.one], apply_instance } | |
instance short_L : short domineering.L := by { dsimp [domineering.L], apply_instance } | |
-- The VM can play small games successfully: | |
-- #eval to_bool (domineering.one β 1) | |
-- #eval to_bool (domineering.L + domineering.L β 1) | |
-- The following no longer works since Lean 3.29, since definitions by well-founded | |
-- recursion no longer reduce definitionally. | |
-- We can check that `decidable` instances reduce as expected, | |
-- and so our implementation of domineering is computable. | |
-- run_cmd tactic.whnf `(by apply_instance : decidable (domineering.one β€ 1)) >>= tactic.trace | |
-- dec_trivial can handle most of the dictionary of small games described in [conway2001] | |
-- example : domineering.one β 1 := dec_trivial | |
-- example : domineering.L + domineering.L β 1 := dec_trivial | |
-- example : domineering.L β pgame.of_lists [0] [1] := dec_trivial | |
-- example : (domineering ([(0,0), (0,1), (0,2), (0,3)].to_finset) β 2) := dec_trivial | |
-- example : (domineering ([(0,0), (0,1), (1,0), (1,1)].to_finset) β pgame.of_lists [1] [-1]) := | |
-- dec_trivial. | |
-- The 3x3 grid is doable, but takes a minute... | |
-- example : | |
-- (domineering ([(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)].to_finset) β | |
-- pgame.of_lists [1] [-1]) := dec_trivial | |
-- The 5x5 grid is actually 0, but brute-forcing this is too challenging even for the VM. | |
-- #eval to_bool (domineering ([ | |
-- (0,0), (0,1), (0,2), (0,3), (0,4), | |
-- (1,0), (1,1), (1,2), (1,3), (1,4), | |
-- (2,0), (2,1), (2,2), (2,3), (2,4), | |
-- (3,0), (3,1), (3,2), (3,3), (3,4), | |
-- (4,0), (4,1), (4,2), (4,3), (4,4) | |
-- ].to_finset) β 0) | |
end pgame | |